INFORMATION CHANGE THE WORLD

International Journal of Information Engineering and Electronic Business(IJIEEB)

ISSN: 2074-9023 (Print), ISSN: 2074-9031 (Online)

Published By: MECS Press

IJIEEB Vol.3, No.1, Feb. 2011

Analysis of Net Causal Flows in Circuit of Premotor Control during Left Hand’s Movement Readiness State

Full Text (PDF, 177KB), PP.55-61


Views:48   Downloads:1

Author(s)

Yuqing Wang,Ling Zeng,Huafu Chen

Index Terms

Movement-readiness,conditional granger causality analysis

Abstract

The previous research revealed some functional coupling among nodes in model of motor control in human brain, which described nondirectional synchronous actions among these nodes during movement-readiness state. However, causal relationships among these nodes, which represent some directional interactions in movement-readiness state, are still lack. In the present study, we used functional magnetic resonance imaging (fMRI) and conditional Granger causality (CGC) method to investigate the interactions in model of motor control in left hand’s movement readiness state. Our results showed that upper precuneus (UPCU) and cingulated motor area (CMA) revealed net causal influences with contra lateral supplementary motor areas and contra lateral caudate nucleus during the left hand’s movement-readiness state. The net causal flows among these nodes can construct a closed circuit, which is similar as the circuit found in monkey’s brain and in human’s brain in right hand’s movement readiness state. This confirmed that there was an intrinsic circuit for motor control in either right hand’s or left hand’s movement readiness. Moreover, the results of Out-In degrees indicated that bilateral primary sensorimotor areas revealed competitive relationship during left hand’s movement-readiness.

Cite This Paper

Yuqing Wang,Ling Zeng,Huafu Chen,"Analysis of Net Causal Flows in Circuit of Premotor Control during Left Hand’s Movement Readiness State", IJIEEB, vol.3, no.1, pp.55-61, 2011.

Reference

[1]A.T. Newton, V.L. Morgan, J.C. Gore, “Task demand modulation of steady-state functional connectivity to primary motor cortex”, Hum Brain Mapp, vol. 28, pp. 663-672, 2007.

[2]C. Grefkes, S. B. Eickhoff, D. A. Nowak, D. Manuel, R.F. Gereon, “Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM”, Neuroimage, vol. 41, pp.1382-94, 2008.

[3]S. Treserras, K. Boulanouar, F. Conchou, M.S. Moreau, I. Berry, P. Celsis, F. Chollet, I. Loubinoux, “Transition from rest to movement: brain correlates revealed by functional connectivity”, Neuroimage, vol. 48, pp.207-216, 2009. 

[4]M.P. Deiber, V. Ibanez, N. Sadato, M. Hallett. “Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233-247. 1996

[5]V. B. Brooks, “The neural basis of motor control”, Oxford University Press, Oxford, 1986.

[6]M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D.C. Van Essen, M.E. Raichle, “The human brain is intrinsically organized into dynamic, anticorrelated functional networks”, Proc Natl Acad Sci USA, vol.102, pp.9673-9678, 2005.

[7]M.E. Raichle, A.Z. Snyder, 2007. “A Default Mode of Brain Function: A Brief History of an Evolving Idea”, NeuroImage 37:1083-1090. 

[8]A. Solodkin, P. Hlustik, E. E. Chen, S.L. Small, “Fine modulation in network activation during motorexecution and motor imagery”, Cereb Cortex, vol. 14, pp.1246-1255, 2004.

[9]L. Q. Uddin, A. M. C. Kelly, B. B. Biswal, F.X. Castellanos, M.P. Milham, “Functional connectivity of default mode network components: correlation, anticorrelation, and causality”, Hum. Brain Mapp. vol. 30, pp.625-637, 2009.

[10]H. Chen, Q. Yang, W. Liao, Q. Gong, S. Shen, “Evaluation of the effective connectivity of supplementary motor areas during motor imagery using Granger causality mapping”, Neuroimage 47: 1844-1853, 2009.

[11]J.F. Geweke,. “Measures of conditional linear dependence and feedback between time series”, J Am Stat Assoc 79:709-715, 1984.

[12]Y. Chen, S.L. Bressler, M. Ding, “Frequency decomposition of conditional Granger causality and application to multivariate neural field potential data”, J Neurosci Methods 150:228-237, 2006.

[13]Z. Zhou, Y. Chen, M. Ding, P. Wright, Z. Lu, Y. Liu, “Analyzing brain networks with PCA and conditional Granger causality”, Hum. Brain Mapp. 30, 2197-2206, 2009.

[14]M. Ding, Y. Chen, and S. L. Bressler, “Granger Causality: Basic Theory and Application to Neuroscience”, Verlage: Wiley-VCH, 2006.

[15]W. Liao, D. Mantini, Z. Zhang, Z. Pan, J. Ding, Q. Gong, Y. Yang, H. Chen, “Evaluating the effective connectivity of resting state networks using conditional Granger causality”, Biol Cybern. vol. 102, pp.57-69, 2009.

[16]V. D. Calhoun, T. Adali, G. D. Pearlson, J.J. Pekar, “A method for making group Inferences from functional MRI data using independent component analysis”, Hum Brain Mapp, vol. 14, pp.140-151, 2001.

[17]R. Goebel, A. Roebroeck, D. Kim, E. Formisano, “Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping”, Magn. Reson. Imaging, vol. 21, pp.1251-1261, 2003.

[18]A. Roebroeck, E. Formisano, and R. Goebel, “Mapping directed influence over the brain using Granger causality and fMRI”, NeuroImage, vol. 25, pp.230-242, 2005.

[19]B. Efron, R. J. Tibshirani, “An Introduction to the Bootstrap”, Chapman and Hall, NewYork, 1993.

[20]W. Schultz, P. Apicella, E. Scarnati, T. T Ljungberg, “Neuronal activity in monkey ventral striatum related to the expectation of reward”, J Neurosci, vol. 12, pp.4595-4610, 1992.

[21]O. Devinsky, M. J. Morrell, and B. A. Vogt, “Contributions of anterior cingulate cortex to behaviour”, Brain, vol. 118, pp.279-306, 1995.

[22]J. Parvizi, G. W. Van Hoesen, J. Buckwalter, A. Damasio, “Neural connections of the posteromedial cortex in the macaque”, Proc Natl Acad Sci USA, vol. 103, pp.1563-1568, 2006.

[23]N. Sadato, G. Campbell, V. Ibanez, M.P. Deiber, M. Hallett, “Complexity affects regional cerebral blood flow change during sequential finger movements”, J Neurosci, vol. 16, pp.2691-2700, 1996.

[24]T. Ogiso, K. Kobayashi. and M. Sugishita, “The precuneus in motor imagery: a magnetoencephalographic study”, Neuroreport, vol.11, pp.1345-1349, 2000.

[25]K. Oishi, K. Toma, E. Bagarinao, K. Matsuo, T. Nakai, K. Chihara, H. Fukuyama, “Activation of the precuneus is related to reduced reaction time in serial reaction time tasks”, Neurosci Res, vol.52, pp.37-45, 2005.

[26]A. E. Cavanna, and M. R. Trimble, “The precuneus: a review of its functional anatomy and behavioural correlates”, Brain, vol.129, pp.564-583, 2006.

[27]S. N. Haber, “The primate basal ganglia: parallel and integrative networks”, J Chem Neuroanat., vol. 26, pp.317-330, 2003.

[28]S. Lehericy, E. Bardinet, L.Tremblay, P.F. Van de Moortele, J.B. Pochon, D. Dormont, D.S. Kim, J. Yelnik, K. Ugurbil, “Motor control in basal ganglia circuits using fMRI and brain atlas approaches”, Cereb Cortex, vol.16, pp. 149-161, 2006.

[29]A. Martino, A. Scheres, D. S. Margulies, A.M.C. Kelly, L.Q. Uddin, Z. Shehzad, B. Biswal, J.R. Walters, F.X. Castellanos, M.P. Milham, “Functional Connectivity of Human Striatum: A Resting State fMRI Study”, Cereb Cortex, vol.18, pp.2735-2747, 2008.

[30]E. T. Rolls, “Neurophysiology and cognitive functions of the striatum”, Rev Neurol (Paris), vol.150, pp.648-660, 1994.

[31]N. U. Dosenbach, K. M. Visscher, E. D. Palmer, F.M. Miezin, K.K. Wenger, H.C. Kang, E.D. Burgund, A.L. 

[32]Grimes, B.L. Schlaggar, S.E. Petersen, “A core systemfor the implementation of task sets”, Neu-ron, vol.50, pp.799-812, 2006.

[33]N.U. Dosenbach, D. A. Fair, F. M. Miezin, A.L. Cohen, K.K. Wenger, R.A.T. Dosenbach, M.D. Fox, A.Z. Snyder, J.L. Vincent, M.E. Raichle, B.L. Schlaggar, S.E. Petersen, “Distinct brain networks for adaptive and stable task control in humans”, ProcNatlAcad Sci USA, vol.104, pp.1073-11078, 2007.

[34]D. Mantini, M. Corbetta, M.G. Perrucci, M.G. Perruccia, G.L. Romania, C.D. Gratta, “Large-scale brain networks account for sustained and transient activity during target detection”, Neuroimage, vol.44, pp.265-274, 2009.

[35]K.F. Muakkassa, P.L Strick,. “Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized‘premotor’area”, Brain Res. 177, 176-182, 1979.

[36]C. Summerfield, T. Egner, M. Greene, E, Koechlin, J. Mangels, J. Hirsch, “Predictive codes for forthcoming perception in the frontal cortex”, Science 314: 1311-1314, 2006.

[37]M. Bar, E. Aminoff, M. Mason, M. Fenske, “The units of thought”, Hippocampus 17: 420-428, 2007.

[38]C. Baleydier, F. Mauguiere, “The duality of the cingulate gyrus in monkey. Neuroanatomical study and functional hypothesis”, Brain 103: 525-554, 1980.

[39]B.A. Vogt, D.N. Pandya, D.L. Rosene, “Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents”, J Comp Neurol 262: 256-270, 1987.

[40]H. Tokuno, A. Nambu, “Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: An electrophysiological study in the macaque monkey”, Cereb Cortex 10: 58-68, 2000.

[41]J.L. Vincent, G.H. Patel, M.D. Fox, A.Z. Snyder, J.T. Baker, D.C. Van Essen, J.M. Zempel, L.H. Snyder, M. Corbetta, M.E. Raichle, Intrinsic functional architecture in the anaesthetized monkey brain”, Nature 447: 83-86, 2007.

[42]S.V. Astafiev, G.L. Shulman, C.M. Stanley, A.Z. Snyder, D.C. Van Essen, M. Corbetta, “Functional organization of human intraparietal and frontal cortex for attending looking and pointing”, J Neurosci 23: 4689-4699, 2003.

[43]P. Nachev, H. Wydell, K. O'Neill, M. Husain, C. Kennard, “The role of the pre-supplementary motor area in the control of action”, Neuroimage 36 Suppl 2: T155-163, 2007.

[44]P. Nachev, C. Kennard, M. Husain, “Functional role of the supplementary and pre-supplementary motor areas”, Nature Rev Neurosci. 9, 856-869, 2008.

[45]T. Baumer, F. Bock, G. Koch, R. Lange, J.C. Rothwell,, H.R. Siebner, A. Munchau, “Magnetic stimulation of human premotor or motor cortex produces interhemispheric facilitation through distinct pathways”, J Physiol 572: 857-868, 2006.

[46]C.H. Kasess, C. Windischberger, R. Cunnington, R. Lanzenberger, L. Pezawas, E. Moser, “The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling”, NeuroImage 40, 828-837, 2008.

[47]J. Reis, O.B. Swayne, Y. Vandermeeren, M. Camus, M.A. Dimyan, M. Harris-Love, M.A. Perez, P. Ragert, J.C. Rothwell, L.G. Cohen, “Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control”, J Physiol 586: 325-351, 2008.

[48]Q. Gao, H. Chen, Q. Gong, “Evaluation of the effective connectivity of the dominant primary motor cortex during bimanual movement using Granger causality”, Neurosci Lett 443:1-6, 2008.

[49]M.F. Mason, M.I. Norton, J. D. Van Horn, D.M. Wegner, S.T. Grafton, C.N. Macrae, “Wandering minds: the default network and stimulus-independent thought”, Science 315: 393-395, 2007.

[50]M.D. Greicius, V. Menon, “Default-mode activity during a passive sensory task: Uncoupled from deactivation but impacting activation”, J Cogn Neurosci 16:1484-1492, 2004.

[51]M.D. Greicius, B. Krasnow, A.L. Reiss, V. Menon, “Functional connectivity in the resting brain: a network analysis of the default mode hypothesis”, Proc Natl Acad Sci U S A 100: 253-258, 2003.

[52]H. Boecker, J. Jankowski, P. Ditter et al, “A role of the basal ganglia and midbrain nuclei for initiation of motor sequences”, NeuroImage, vol. 39, pp.1356-1369, 2008.