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(a)                                (b)                                    (c)                                    (d)                                    (e)                                    (f)  

Figure 1.  Figure 1. Over view of our feature extraction pipeline: 1(a) original point cloud with computed normals; 1(b) potential feature points 
identified to be close to possible features; (c) principal directions with potential feature points (d) top: the zoon in part of potential feature points on 

nose; bottom: the zoon in part of the smoothed points on nose which presented in the next stage. (e) smoothed feature points; (f) reconstructed 
polylines that identify the sharp features.  

 
Abstract—We present an effective algorithm for detecting 
feature curves on point sets. Based on the local surface 
fitting method, our algorithm first compute the curvatures 
and principal directions of each point of point sets. The 
algorithm then extracts potential feature points according to 
the biggist principal curvature of the point, and evaluates 
the principal directions of the detected points. By projecting 
the points onto the principal axes of their neighborhoods, 
the potential feature points are smoothed. Using the 
principal directions with each optimized point, feature 
curves are generated by polyline growing along the 
principal directions of feature points. The results indicate 
that our algorithm is sensitive to both sharp and smooth 
feature curves of point set, and it supports multi-resolution 
extraction of features.  
 
Index Terms—ridges, valleys, valley-ridge extraction, MLS 
surface fitting, feature curves  
 

I.  INTRODUCTION 

Multiple techniques have investigated the 
identification of feature curves on point set models and 
polygonal models. The previous work on feature lines 
extraction can be roughly divided into three categories: 

normal deviation based, covariance analysis based, 
projection procedure based.  

Normal deviation based method proposed in paper [1] 
first estimates the normal vectors by the PCA analysis of 
these 1-ring neighbors, as explained in [2], and then the 
segmentation is performed on point cloud based on the 
variation of the normals. Once the connected graph where 
each edge connects two segments is constructed, the 
feature curves can be obtained after pruning and 
smoothing the graph.  

Covariance analysis based methods [3] [4] classify the 
points of point cloud according to the likelihood or 
unlikelihood that they belong to a feature, which is 
computed from principal component analysis on local 
neighborhoods. In paper [3], by changing the local 
neighbor size, multi-scale estimation is achieved. Both [3] 
and [4] build minimal spanning trees over the potential 
feature points, and then curve lines are computed to 
appropriate the features. However, the above methods 
require high quality of point cloud, and their sensitivity to 
the smooth features is very limited.  

Projection procedure based algorithm estimates the 
feature curves by approximating the point set surface. In 
paper [5], a robust algorithm that identifies sharp features 
in a point cloud by returning a set of smooth curves 
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aligned along the edges. This feature extraction is a 
multi-step refinement method that leverages the concept 
of Robust Moving Least Squares (RMLS) [6] to locally 
fit surfaces to potential features. By projecting the points 
to the intersections of multiple surfaces, polylines are 
expanded along the projected points. After resolving gaps, 
connecting corners, and relaxing the results, the algorithm 
returns a set of complete and smooth curves that define 
the features. Since the RMLS is computationally 
expensive, this algorithm is limited by time constraints.  

In this paper, we focus on extracting of valley-ridge 
lines from scatted point sets. The proposed algorithm falls 
into the third category of feature extraction algorithms, 
since it’s based on a projection procedure for local fitting. 
After approximating the neighborhoods of each point 
with a local MLS polynomial [7], the curvatures and 
curvature tensors are computed based on the first and 
second fundamental forms [8][9] of the surface. Points 
whose absolute value of principal curvatures is bigger 
than a threshold are defined as a potential feature point. 
By performing principal component analysis over the 
potential feature points, they are smoothed. Then feature 
curves are achieved by growing along the principal 
directions of the smoothed points.   

The point clouds used in our experiments may contain 
connection information in originals, we only use their 
coordinate information.  

Given an unorganized point cloud without normal and 
any connectivity information 

3{ }, , {1,..., }i iP p p R i N= ∈ ∈ , 
the valley-ridge curves on point cloud are achieved by 
performing the following four steps, see Figure 1.  

(1) Approximating the neighborhoods of each point 
with a local polynomial, the principal curvatures of each 
point can be computed. Then the potential feature points 
are extracted according to the curvature values of each 
point.  

(2)  Based on Fundamental forms of fitting surface, the 
principal directions for each potential point are computed.  

(3) Using cross-correlation coefficient analysis of local 
points and principal component analysis, we smooth the 
projected points.   

(4)  Create initial sets of valleys and ridges by growing 
polylines along the principal directions of the smoothed 
points, and then analyze the end-points of feature 
polylines to complete gaps.  

In the following sections, we’ll discuss each of the four 
steps of the algorithm, in details. 

II.  POTENTIAL VALLEY-RIDGE POINTS EXTRACTION 

A. MLS fitting 
The proposed algorithm employs moving least square 

(MLS) method to fit a smooth patch for ω  radius 
neighborhood of each point,  

( ) { },|| || , 0,...,i j j iNBHD p p p p j kω= − ≤ = , which 
works as follows.  

Build a covariance matrix B  of ( )iNBHD p , 

( )

( )( )
j i

T
j i j i

p NBDH p

B p o p o
∈

= − −∑ . 

where 

1
1 k

i jj
o pk =
= ∑ . 

Calculating the eigenvalues and their corresponding 
eigenvectors of B , a reference domain iH  is defined by 
eigenvectors which are corresponding to the biggest 
eigenvalue and the second biggest eigenvalue, 
respectively. The surface normal in  of iH  is set to be the 
eigenvector corresponding to the smallest eigenvalue, 
|| || 1in = . Then build a local coordinate system on iH , io  
is the origin and in  is the Z -axis.  

   
(a)                                     (b) 

   
(c)                                      (d) 

Figure 2.  Normals of Maxplanck model before adjustment and after 
adjustment.   (a) Normals before adjustment (b) Normals after 

adjustment (c) point cloud with unadjusted normals (d) points set with 
adjusted normals. 

The experiment shows that the Z -axes of local 
coordinate frames can point to the different sides of point 
set ‘surface’, see Figure 2(a). For the purpose of 
obtaining right valley-ridge information, consistently 
outward normal directions are adjusted by applying 
normal adjustment operation [10]. And each + Z  axis of 
local coordinate system has the same direction as the 
adjusted in , see Figure 2(b). Then ( )iNBHD p  is 
approximated with a local MLS polynomial ig  which 
satisfies (1). 

2

( )
min ,

j i

j g i
p NBHD p

p p n
∈

< − >∑                (1) 

gp is the projection of jp  onto ig  along in .  ig  is a 
polynomial in local coordinate ( , , , )i io u v n , i.e.  
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2 2 2( , ) , ( , ) [ , ]ig u v a bu cv duv eu fv u v h h= + + + + + ∈ −       
(2) 

Formula (1) can be changed to 
2

( )
min (( ) ( , ))

j i

j i i j j
p NBHD p

p o n g u v
∈

− ⋅ −∑         (3) 

here, ( , )j ju v is the representation of jp  about a local 
coordinate system in iH . For any point q  in iH , its 
projection on ig  can be calculated out as 

( , , ( , ))i q q q qo u v g u v+ .  
Since the resulted MLS approximation relies on the 

number of neighbor points used in local fitting, we set the 
fitting radius 2.0*ω κ= , where κ denote the average 
station distance of the point cloud.  

     
(a)                         (b)                          (c)  

Figure 3.  Point set  marked according to the value of principal 
curvatures. (a) Maximal principal curvatures.  (b) Minimal principal 

curvatures. (c) The biggish principal curvature values. 

B. Curvatures computation  
Since the local fitting ig  has been achieved, 

curvatures of each point ip  on point set surface can be 
calculated based on computing the first and second 
fundamental quality of the surface [8] [9]: L, M, N, E, F, 
G. The main curvatures of ip  are denoted as maxK , minK . 
Based on the analysis of the experiment results, we found 
that better results are achieved by using biggish principal 
curvature, see Figure 3.  

C. Potential feature points detection  

ik  is the biggish principal curvature of ip , τ  is a user 
defined threshold which related to the average absolute 
curvature of the whole point set. If 0ik <  and | |ik τ>  , 

ip  is added into valley-point set V  , if ik τ>  , ip  is 
added into ridge-point set R , see Figure 1(b).  

As a matter of convenience, we use F  representing 
V  or R  in the following paper.  

III. COMPUTING PRINCIPAL DIRECTION OF MINIMUM 
CURVATURE 

Based on the fundamental forms of fitting surface, the 
principal directions responding to maxK , minK can also be 
calculated as follows: 

max max max(( 1)*( ), )T N K G M K F= − − −  
       m in m in m in(( 1) * ( ), )T N K G M K F= − − − , 

 By computing the principal directions of each point in 
point set, curvature tensor on point set surface can be 

determined, as shown in Figure 4. Since maxT  and minT  
are everywhere orthogonal (expecting for umbilical 
region), it only needs to compute one of the curvature 
direction fields, and the other direction field can be 
achieved by computing its gradient field.  

In our feature curve extraction process, to speed up the 
whole procedure, only principal directions of detected 
potential feature points are calculated, as seen in Figure 1(c).  

      
     (a)                                                      (b) 

Figure 4.  Principal directions maxT , minT estimated on point set 

surface. (a) Maximal principal directions. (b) Minimal principal 
directions. 

IV.  SMOOTHING THE FEATURE POINTS 

The feature points are smoothed by projecting them 
onto their principal axis of neighborhoods, so the over all 
smoothing performance is determined by the 
neighborhood sizeδ , as seen in Figure 5. In order to 
obtain stable smoothing effect, adaptive neighborhood 
growth scheme, which based on a statistical analysis of 
point distributions on the approximate plane, is adopted 
[5].  

For each potential feature point ip F∈ , the 
covariance matrix C of the neighborhood  

( ) { | (|| || , 0,..., )}i j j iNBHD p p p p j kδ= − ≤ =  
is computed,  

1 1( ,..., ) ( ,..., )T
k kC p p p p p p p p= − − ⋅ − −  

where  

1

1 k
jj

p p
k =

= ∑ . 

Calculate the eigenvalues and their corresponding 
eigenvectors, let 0 1 2λ λ λ≥ ≥ , then 0V , 1V , 2V  are 
corresponding eigenvectors of 0 1 2, ,λ λ λ . Project feature 
points onto the plane defined by two eigenvectors 

0V , 1V and p . Then the projected points are translated 
into the local coordinate, and the projected points are 
interpreted in terms of a distribution of two random 
variables, X and Y , which can be analyzed by cross-
correlation coefficient defined by  

cov( , )
( ) ( )XY

X Y
D X D Y

ρ =  
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where, XYρ has value between -1 and +1 representing the 
degree of linear dependence between X and Y , meaning 
that the points in ( )iNBHD p are distributed along a 
feature line.   
δ  will be increased if the cross-correlation coefficient  

ρ  over points in δ  neighborhood is not sufficiently 
large enough, for our models we use 0.6ρ ≥ . If δ  is 
bigger than a predefined threshold, the point ip  will be 
abandoned as outlier or noise.  

 
Figure 5.  Smoothing result in different neighborhood size [5] [11]. 

After getting a suitableδ , the principle axis of new 
( )iNBHD p  is obtained by employing PCA operation, and 

then a smoothed point ip& is yielded by projecting ip  
onto the principle axis.  

The smoothed points are added into the point set of  
( )F S .   

V.  FEATURE POLYLINE PROPAGATION 

Feature polylines of valleys or ridges are respectively 
generated by growing them along the maximal principal 
curvature directions of ( )V S  and minimal principal 
curvature directions of ( )R S . 

A.  Growing  of a feature curve 
For a new line of feature curve, seed point is traced in 

each principal direction D  as:  
max max min min{ , } { , }D T T or T T∈ − −  

Suppose 1{ ,...., }nL l l=  be the current generating 
curve, where kl  is the k-th sample point. The new point 
on current curve is generated as:  

1 1k k kl l s d− −= + ⋅    
where s  indicates a user-specified step size, and 1kd −  is 
the principal direction of 1kl − . Since kl  probably not 
exactly belongs to the point set surface, it needs to be 
optimized. The neighbor points in radius r  are collected 
and the barycenter cp  is computed. Arranging the 
concerned principal directions of neighbor points as the 
same sign with the direction vector of 1kl − , the principal 
direction of cp  is computed as the unity vector of the 
neighbor’s, which normalized and denoted as cT . Then 

kl  is set to be the barycenter cp and its principal 
directions is set to be cT .  
      Once the new updated sampled point is obtained, the 
neighbors of the previous sampled point in radius s  are 
tagged and will not be concerned in the following tracing 
operation. However, for the starting seed point, not all its 
neighbors in radius are tagged, but only the points in the 

semi-sphere of the current tracing direction, as shown in 
Figure. 6.  
 

 

(a) (b)

Figure 6.  The lines of curvature tracing process. The Purple point is the 
starting seed, the blue point is the new sampled point, and the red point is 
the optimized new sampled point. When a new sampled point is detected, 

the neighborhoods of the previous sampled point are flagged.  (a) The 
tracing process in one direction of the seed point. (b) The tracing process 

in the other direction of the seed point. 

Each current feature curve stops, if any one of the 
following conditions is satisfied:  

(1)  If the neighbors of current sampled point in radius 
r  has been tagged.  

(2)  If a feature line reaches the boundary of the point 
set, i.e., there are no neighbors of the current sampled 
point in radius r .  

The two parameters ( s  and r ) used in the tracing 
process are both related to the average station distance of 
the points cloud κ . Our experiments indicate that 

κ*2.1=s  and κ*8.0=r lead to good results.    

B.  Lines of valleys and ridges extracton  
The feature curves of valleys and ridges are extracted 

independently. And the sampled points of feature curves 
are separately added into the point set ( )R L and ( )V L . 
Since the ridges and valleys turn into each other as 
surface orientation is changed, without loss of generality, 
only the lines of ridge curves are considered, which are 
extracted by performing the following steps:  

(1)  All points in ( )R S  are added into a priority queue, 
the points with higher ratio between maximal principal 
curvature and minimal principal curvature are assigned 
higher priority.  

(2) Pop a new seed point ip  from the priority queue 
and add it into ( )R L  as 0l . Then a tracing procedure is 
separately started from 0l  in two different directions minT , 

minT− .  
(3) During the tracing process, for each new sampled 

point 1kl + , if none of the stopping conditions are satisfied, 
the new sampled point 1kl +  is added into ( )R L . And then 
the local neighbors of the previous sampled point kl in 
radius s  are flagged and removed from the priority 
queue. Otherwise, the tracing operator of the current 
direction needs to be stopped.  

By repeating steps (2) and (3) until the priority queue 
is empty, the feature curves of ridges are obtained, as 
shown in Figure 1(f).  
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The feature curves of valleys can be calculated based 
on the same scheme as tracing feature curves of ridges.  

 C.  Optimization of Feature Curves 
Then gaps between polylines which are caused by poor 

sample quality are completed by connecting each end-
point of feature polyline to other feature points within the 
cone formed by the tangent vector T  at the end-point and 
a predefined aperture angle μ  [5].  

Finally, we smooth polylines by applying uniformity 
scheme on interior points for 1 or 2 passes. Given a 
feature polyline 0{ ,..., }kR q q= , firstly fix 0q  and 2q , 
then do the following work on the plane which defined 
by 0 1 2( , , )q q q : move 1q  to the vertical of the line 
segment 0 2( , )q q  with no change of the area of 
triangle 0 1 2, ,q q qΔ . Repeat this until all internal vertices 
are adjusted, see Figure 7.  

  

Figure 7.  Smoothing feature polylines; fix the end-points of the 
polylines and adjust the internal vertices with restriction that the area of 
any triangle enclosed by three contiguous points keeping invariant on 

their own defined plane. 

 As seen in Figure 8, the valley and ridge feature 
curves are extracted from Sper-dragon models.  

   

Figure 8.  Valley-ridge feature curves on Sper-dragon model, blue lines 
denote valleys and red lines denote ridge curves.  

VI.  EXPERIMENTS RESULTS 

The performance of the proposed method to its run 
time efficiency and robustness to noise is discussed in 
this section. The proposed algorithm carried out on a 
2.7GHz AMD Athlon 2.7GHz processor with 2GB 
memory.  

A.  Run Time Efficiency 
 Since the experimental data used in our algorithm are 

raw point clouds without any normals and connection 
information, the preprocessing operators including 
normal computation and orientation arrangements are 
essential parts of the feature curve extraction. The 
moving least squares surface fitting is a fundamental 
operation for detecting potential feature points and 
computing principal directions of each feature points. 
Smoothing potential feature points and generating feature 
curves are the last two key procedures for the proposed 
algorithm.  

As shown in Table I, we technically divide the whole 
running time of the algorithm into four parts: (1) cost for 
pre-processing including normal calculation and average 
station distance. (2) Cost for MLS fitting, curvature 
estimation, and also includes the cost of detecting 
potential feature points. (3) Smoothing feature points, and 
feature curve propagation and completion. The 
experiments indicate that the most time-consuming part 
of our implementation is the preprocessing (1) and MLS 
surface fitting (2). Since the time required to construct the 
polylines of feature curves is determined by the number 
of potential feature points in point cloud, the cost of (3) 
increase when models have complicated details.  

B.  Robustness  to Noise 
To validate the robustness of the extraction of feature 

curve in handing noisy point sets, three sets of noisy data 
are generated by adding Gaussian noise with different 
amplitudes of standard deviations (i.e. 0.0001 and 0.001) 
to each point cloud model. Table II shows that an 
increase in the noise level leads to a slight increase in the 
computational costs, which can be explained by the fact 
that, for models with higher noise level, the same 
curvature threshold and MLS radius leads more potential 
feature points, which consequently increase the cost of 
(3). The graphic illustrations in Figure 9 also indicate that 
the proposed algorithm is very stable against noise.   

 

TABLE I.   
THE RUN TIME PERFORMANCE OF THE PROPOSED ALGORITHM WHICH COMPUTED WITH 2.0ω κ= , 16τ = . [κ =AVERAGE STATION DISTANCE, 

ω=MLS RADIUS, τ = CURVATURE THRESHOLD FOR DETECTING FEATURE POINTS] 

Model Scale 
[Point] 

 κ
[10-2]

Feature
Points

Run time (ms) 
(1) (2) (3) Total 

Maxplanck 25445 1.6130 5771 1046 625 204 1875 
Bunny 35947 1.7479 4434 1437 860 156 2453 
Venus 134359 0.9094 25215 5141 3359 1688 10188 

Balljoint 137073 0.6924 46911 1985 3718 4954 10657 
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TABLE II.   
 THE RUN TIME PERFORMANCE OF THE PROPOSED ALGORITHM PERFORMING ON DIFFERENT MODELS AT VARYING NOISE LEVELS WITH 

2.0ω κ=  , 16τ = . [κ =AVERAGE STATION DISTANCE, ω=MLS RADIUS, τ = CURVATURE THRESHOLD FOR DETECTING FEATURE POINTS] 

Model Scale 
[Point] 

Noise  κ
[10-2]

ω
[κ ]

τ Feature
Points

Run time (ms) 
(1) (2) (3) Total 

Maxplanck 25445 
0.0001 1.6134 2.0 16 5803 1047 625 234 1906 
0.0005 1.6131 2.0 16 5972 1047 625 235 1907 
0.001 1.6113 2.0 16 6597 1047 609 281 1937 

Bunny 35947 
0.0001 1.7468 2.0 16 4452 1438 859 141 2438 
0.0005 1.7455 2.0 16 4508 1438 859 141 2438 
0.001 1.7426 2.0 16 4802 1438 859 172 2469 

Venus  134359 
0.0001 0.9090 2.0 16 25274 5094 3359 1641 10094 
0.0005 0.9094 2.0 16 30153 5125 3344 2359 10828 
0.001 0.9063 2.0 16 30153 5125 3328 2407 10860 

 

          

          
(a) 0.0                                    (b) 0.0001                                     (c) 0.0005                                     (d) 0.001 

Figure 9.  The feature curves extracted on bunny models witch is added with different level of Gaussian noise. Blue lines denote valleys and red lines 
denote ridges. The bunny models with different noise are color marked according to the biggish principal curvatures on the top line. The feature 

curves are respectively depicted on the bottom line. (a) Models with no noise. (b) Models with Gaussian noise of 0.0001. (c) Models with Gaussian 
noise of 0.0005. (d) Models with Gaussian noise of 0.001. 

                
(a)                                       (b)                                         (c)                                          (d) 

Figure 10.  Multi-level valley-ridges curves extraction on Venus models, where blue lines indicate valleys and red lines indicated ridges. (a) Venus 
model colored according to the biggish principal curvatures. (b) Features computed with curvature threshold 16τ = . (c) 13τ = . (d) 10τ = . 
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C. Multi-resolution Extraction and  Error analysis 
Multi-resolution valley-ridge features are achieved by 

applying different radius in local surface fitting, and 
using different curvature threshold in valley-ridge point 
detection. As seen in Figure 10, multi-resolution feature 
curves are achieved on Venus models computed with 

2.0ω κ=  and with varying curvature threshold of 
16τ = , 13τ = , 10τ = . 

The valley-ridge feature points extracted by our 
algorithm may not be the points in point set, but the 
points projected onto the local MLS fit, so the error of 
our implication is the error of MLS surface fitting [12].  

VII. CONCLUTION AND FUTURE WORKS 

This paper present a new algorithm for extracting 
valley-ridge curves from raw point cloud, the 
experiments indicate that the proposed algorithm 
produces viable results on irregular point clouds (see 
Figure 1) and point data with different level of noise(see 
Figure 8, 9) in high efficiency, and meanwhile, the multi-
resolution feature curve can also be achieved (see Figure 
10).  

As future work, we plan on improving the computing 
efficiency of detecting potential feature points, and 
investigating the smoothing and sampling methods to 
preserve both sharp features and smooth features.   
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