
I.J. Information Engineering and Electronic Business, 2013, 6, 33-39
Published Online December 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2013.06.04

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

A Meta Level Data Mining Approach to Predict

Software Reusability

Chetna Gupta

Jaypee Institute of Information Technology, Noida, India

E-mail: chetnagupta04@gmail.com

Megha Rathi

Jaypee Institute of Information Technology, Noida, India

E-mail: megha.rathi@jiit.ac.in

Abstract — Software repositories contain wealth of

information about software code, designs, execution

history, code and design changes, bug database,

software release and software evolution. To meet

increased pressure of releasing updated or new versions

of software systems due to changing requirements of

stakeholder, software are rarely built from scratch.

Software reusability is a primary attribute of software

quality which aims to create new software systems with

a likelihood of using existing software components to

add, modify or delete functionalities in order to adapt to

new requirements imposed by stakeholders. Software

reuse using software components or modules provide a

vehicle for planning and re-using already built software

components efficiently. In this paper, we propose a

framework for our approach to predict software

reusable components from existing software repository

on the basis of (1) stakeholders intention (requirement)

match and (2) similarity index count for better reuse

prediction. To effectively manage storage and retrieval

of relevant information we use concept of situational

method engineering to match and analyze the

information for reuse. We use Genetic algorithm, Rabin

Karp algorithm for feature selection and classification

and k-means clustering methods of data mining to

refine our results of prediction in order to better manage

and produce high quality software systems within

estimated time and cost.

Index Terms — Data mining, Software reuse,

requirements engineering, situational method

engineering, software reusability and prediction.

1. Introduction

Computers have become an integral part of today’s

life and this has led to development of sophisticated and

complex computer-based systems. This shift has shown

tremendous improvements in hardware performance,

architectures, storage capacity and other user-friendly

options in last five decades. This has revolutionized the

computing world as one can now design and use

software according to his/her own requirements and can

get better execution results in a quick time span.

Industrial data show that there has been an exponential

growth in the size of software systems for past 40 years

[1]. Thus, there is an increased pressure on software

engineers to manage and produce high quality software

system within estimated time and cost. In order to attain

the optimal software, programmers reuse the existing

software components or libraries, rather than

developing similar code from scratch [2]. Reusable

modules and components provide engineers the

confidence of increased probability of elimination of

bugs with prior testing when a change in

implementation is required.

Software reuse is a promising area for achieving

software productivity and software quality in this

evolutionary era. The main focus of software reusability

is on correctness and reliability which are the two

aspects of software quality. As a result it also helps in

reducing development time and cost.

For any software development Requirement

Engineering (RE) is crucial to develop effective

software systems by reducing software errors (by

translating imprecise, incomplete requirements into

complete, precise and formal specifications) at the early

stage of the development of software. Requirement

engineering (RE) according to [3] is "a sub discipline of

systems engineering and software engineering that is

concerned with determining the goals, functions, and

constraints of hardware and software systems." The

changes made in this level of software development life

cycle will ripple down the life cycle and will

accordingly affect design, coding and implementation.

Requirement analysis in RE aims to determine user

expectations (for new or modified system) by taking

into account possible conflicting requirements of the

various stakeholders. This helps in reducing repair cost

the chances of project cost overruns.

In recent past software reuse has gained light in

research community and has become important in

various aspects of software engineering techniques and

methods. In the field of RE documentation is important

for reuse in order to support accommodation of new or

modified features and release correct and reliable

software. Domains like data mining, machine learning,

34 A Meta Level Data Mining Approach to Predict Software Reusability

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

neural networks etc. are very useful in generating

relevant information for predicting software reusability.

The goal of this research is to present a framework

for tool development to predict software reusability

using well established techniques of data mining

(Genetic algorithm, Rabin Karp, k-means clustering).

The requirement engineering phase consists of

representation of stakeholder’s interest or requirement

as intention match. In order to predict reusable

components or modules we analyze meta-level

information extracted from stakeholder’s intention

(requirement) in subsequent stages. For storage and

retrieval of relevant information we use concept of

Situational Method Engineering (SME) [4] which

assumes existence of a method repository from where

method (s) of interest are retrieved, modified or

assembled into a new method that is subsequently

stored in repository.

The remainder of this paper is organized as follows:

next section presents related work. Section 3 describes

our proposed framework and methodology for

predicting reusable components followed by a

discussion on discussion on matching, retrieval,

verification, classification and clustering of

requirements and its meta-level information required to

predict software reusability with a similarity index

count using proposed framework in section 4 and

finally section 5 presents the conclusion.

2. Related Work

The concept of reuse was introduced to world in 1968

and academia got attracted to it in late 1970s which led

to a new way of designing and developing software

systems in less time and cost [5]. McClure[6] defines

software reuse as "process of creating software systems

and software projects deliverable from predefined or

prefabricated components or assets" whereas Yu[7]

defines software reuse as "software engineering

activities which focus on the identification of reusable

software for straight import, reconfiguration, and

adaptation for new computing system applications" and

Feeler[8] defines software reuse "is an engineering

activity that focuses on the recognition of

commonalities of systems within and across domains. It

consists of the creation of models with different

abstractions (ranging from code components to domain

models) and their use during the engineering of an

application. Thus, the focus is on the growth and

utilization of technology base."[9] presents an approach

which divides reuse activity into six steps performed at

each phase in preparation for the next phase. These

steps are: (a) problem analysis and identifying available

solutions for developing a reuse strategy (b) identifying

a solution structure for the problem following the reuse

plan (c) reconfiguring solution structure to improve

reuse at the next phase (d) acquiring, instantiating,

and/or modifying existing reusable components (e)

integrating reused and any newly developed

components into the products (f) evaluating the

products.

Several decades of study have acknowledged reuse as

a powerful and potential way of fighting software crisis

problem [10, 11, 12, 13, 14, 15, 16, 17]. Other studies

like [18, 19, 20, 21, 22, 23, 24] discuss how software

reuse can be helpful in improvements in software

quality and productivity. Reusability of a component

can be measured in two ways-qualitative and empirical.

The former approach relies on subjective value attached

to guidelines to which software system corresponds. [25]

is a manual process whereas latter takes into account

static software metrics that directly or indirectly

addresses the different attributes of reusability. Metrics

and tool presented in literature [26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37] identifies attributes, reusability

characteristics based on software quality and

productivity to evaluate software reusability. These

studies use tools, matrices and perform extermination

for their result predictions. Various studies on

reusability have conducted in past including [38, 39, 40,

41, 42, 43, 44, 45, 46, 47] and its research directions [48,

49] and on reusability in practice [18, 50, 51, 52].

Developers are exploring and adopting many of these

reuse approaches for advanced searching, matching, and

modeling tools [53].

3. Basic Terminology and Proposed Framework

We propose a framework that classifies the user

intention (requirement) and analyses data collected as a

result of classification for calculating similarity index

between already existing software components and

required components expresses as intention by user for

efficient reuse prediction. Intention here refers to the

requirement for which he/she wants to search software

repository for available software components for reuse.

This data can then be used by software engineer for

building software system matching user intention within

estimated cost and time. The whole idea is presented in

Fig. 1 below.

The proposed framework consists of five main

modules namely, stake holder’s intention, classifier,

analyzer, clusteror and categorizer. Out of these five

modules three marked with dark boundaries namely,

classifier, analyzer and clusteror are further divided into

sub modules. These inner sub modules are explained in

Fig. 2 (a) (b) and (c) respectively. Next section

discusses the working of proposed framework and steps

taken for predicting software reusability. The steps are

as follows:

Step 1: The user interacts with graphical user

interface to upload his/her intention. For this purpose

we plan to provide a web based interface for interaction

with the system. The classifier reads requirement stated

by user and first performs feature selection. We use

Genetic Algorithm (GA) [54] as feature selection

method to remove the irrelevant and redundant

information (features) from the data (inputted as

stakeholder’s requirement) to improve the performance

 A Meta Level Data Mining Approach to Predict Software Reusability 35

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

of proposed model for analyzing reusability. With the

help of GA we can identify and separate important

keywords from a sentence or phrase entered by user.

Working of GA is a four step process (a) attributes are

selected (b) a fitness function is computed (c) fitness is

evaluated and (d) reproduction. Once the keywords are

separated pattern matching is done in order to match the

keywords with existing keywords in repository.

We use Rabin Karp Algorithm [55] for this purpose.

It is an efficient string matching algorithm which can

readily search for instances of sentences from the given

source material, ignoring details such as case and

punctuation. A practical application of Rabin Karp is

detecting plagiarism. The results produced by this

method more accurate than other existing methods. This

classification is made on the basis of keywords already

stored in the database. Here, we are using the concept of

situational method engineering [4] which assumes

existence of a method repository from where method(s)

of interest are retrieved, modified or assembled into a

new method that is subsequently stored in repository.

The user can express his/her requirement in the form of

a sentence or phrase. This pattern matching classifier

will help in minimizing the requirement only to

important words and not phrases like “the”, “is”,

“wants”, “I”, “we”, “use” etc. The classification results

produced are stored in database-1 as shown in Fig. 1

below.

Step 2: In the next step analyzer processes data

obtained from classification stored in database-1.

Analyzer here works as a two stage process. In the first

step it searches relevant keywords obtained as input

from step 1 into software repository using various

permutation and combinations which will be helpful in

searching appropriate module for reuse.

In other words, it considers synonyms for searching.

The list of possible synonyms is maintained in central

software repository. The information sharing between

proposed framework and central repository is depicted

repository. Fig. 3 explains abstract view of central

in Fig. 4. In the second step it performs matching

between proposed requirement and existing software

modules. We are taking into consideration the criteria

for minimum matching to take place as 40% which we

are calling as passing criteria. The analyzer stores this

matched information along with percentage of passing

criteria in the form of table stored in database-2. The

example table is presented in Table-1 below:

Step 3: Next step is to perform clustering on the

basis of percentage match obtained from analyzer. We

use k-means [56] to group the similar data into clusters

the advantage of using k-means is that, it is faster with a

large number of variables and produces tighter clusters.

In this phase all those modules which are similar in

nature will be clubbed together. After clustering of

similar modules similarity index count (SIC) is

computed using [57]. Higher value of SIC indicates

more similarity with the expresses requirement and

lower value indicates less similarity. The modules with

low SIC value are not rejected rather they are also

recommended after recommending modules with higher

SIC count to software engineer to find and choose the

correct matched modules. This is done so that if some

functionality is missing from higher SIC indexed

modules than the same can be looked in lower indexed

value modules. This will help in maximum reusability.

This information is stored in the form of table in

database-3. The sample view of this table is presented

in Table-2 below. Finally software engineer is going to

read Table-2 and will decide and pick those components

which match to the user’s intention the most. Thus,

using this approach software engineer can decide from

the pool of data what to choose based on stake holder’s

intention match and similarity index count.

Figure 1. Framework for software component reusability model

Stake holder’s Intention

Classifier

Analyzer

Clusteror

Graphical User

 Interface

interacts

reads

reads

stores

reads

reads

reads

stores

DB3

DB1

User

(software engineer)

DB2 stores

36 A Meta Level Data Mining Approach to Predict Software Reusability

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

Figure 2(a). Detailed view of Classifier

Figure 2(b). Detailed view of Analyzer Figure 2(c). Detailed view of Clusteror

Figure 3. Abstract view of central software repository

4. Tool Sketch for Proposed Approach

We considered the issue of providing tool support for

our proposed approach. The nature of this support is

sketched in Fig. 4. As illustrated there are three small

databases and one central software repository. These

databases are connected with each other for efficient

retrieval and storage of required information. Database-

3 interacts with central repository for searching possible

match modules along with percentage of match and

with database-1 to know the requirement for searching

and matching. Database-2 interacts with database-3 for

clustering and calculating similarity index values for

processed information stored in database-3 and with

editor to display the results for effective analysis of

reusability of software components. The results of the

query are shown in the form of table (Table-2 depicts

the sample view of same). Database-1 on the other hand

interacts with query handler to fetch the stake holder’s

intention for processing.

TABLE 1. SAMPLE VIEW OF RESULTS OBTAINED

FROM ANALYZER

TABLE 2. SAMPLE VIEW OF RESULT COMPUTATION

FOR CLUSTEROR

Synonyms

Line of code

Language Architecture

Class diagrams

Select Attribute

Patter Matching

Feature Selection

Computer Fitness

function

Fitness evaluation

Reproduction

Classifier

Searching

Matching

Analyzer

Searching

Matching

Analyzer

Intention to

match
Possible matches

Percentage

of match

Portfolio

management

Investment

management
80%

 Portfolio manager 55%

 …. …

Clusters
Module

Numbers

Similarity Index

Count

Cluster 1 M1, M4, M5 80%

Cluster 2 M2, M3 74%

….. … …

Cluster n Mn, Mn+2 @%

 A Meta Level Data Mining Approach to Predict Software Reusability 37

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

After analysis, the user can choose the components

he wishes to use and can update the central repository

with new software module any time after finishing the

task through editor interface. The reason for storing this

information is to use it for future use (re-use). The

software engineer can at any time access this

information for further analysis.

Figure 4. Tool sketch for proposed Approach

5. Conclusion

This matching and analysis capability to compute

similarity (with index count) within software modules

and components can be helpful to reduce developer’s

effort. This approach can be helpful in identifying those

parts of the software that can be further reused thereby

significantly reducing effort, cost and time. We are

currently in process of implementing the proposed tool.

So far, web enabled interface, classifier and analyzer

has been completed and we are now looking to

implement clusteror.

References

[1] Humphrey W S. The Future of Software

Engineering: I [R]. Watts New Column, News at

SEI, 2001, 4(1).

[2] Krishna T M., Vasumathi D. A Study of Mining

Software Engineering Data and Software Testing

[J]. Emerging Trends in Computing and

Information Sciences, 2011, 2(11): 598-603.

[3] Laplante P A. What Every Engineer Should Know

about Software Engineering [M]. Taylor & Francis

Group, Boca Rotan, FL, 2007.

[4] Harmsen, F., Brinkkemper, S., Han, J L O.

Situational Method Engineering for Information

System Project Approaches [C]. In: Proceedings

of the IFIP WG8.1 Working Conference on

Methods and Associated Tools for the Information

Systems Life Cycle (IFIP ’94), September 1994,

169-194.

[5] Gomes P., Bento C. A Case Similarity Metric for

Software Reuse And Design [J]. Artificial

Intelligence for Engineering Design, Analysis and

Manufacturing, 2001, 15(1.1): 21-35.

[6] McClure C. Software Reuse Techniques [M].

Prentic-Hall, Inc., 1997.

[7] Yu D. A view on Three R’s (3Rs): Reuse, Re-

engineering, and Reverse Engineering [C].

Software Engineering Notes, July 1991, 16(3):69.

[8] Feiler P H. Reengineering: an engineering

problem [R]. Software Engineering Institute,

Carnegie Mellon University: Special Report, 1993.

[9] Kyo K C., Sholom C., Robert H., James P.,

Spencer P A. A Reuse-Based Software

Development Methodology [R]. Application of

Revisable Software Components Project Special

Report, 1992.

[10] Smith E., AI-Yasiri A., Merabti M. A Multi-

Tiered Classification Scheme for Component

Retrieval [C]. In: Proceedings 24th Euromicro

Conference, August 1998, 2:882 -889.

[11] Basili V R. Software Development: A Paradigm

for the Future [C]. In: Proceedings of Computer

Software and Applications Conference

(COMPAC'89), September 1989, 471-485.

[12] Basili V R., Rombach H. D. The TAME Project:

Towards Improvement-Oriented Software

Environments [J]. IEEE Transaction on Software

Engineering, 1988, 14(6): 758-771.

[13] Boehm B W., Ross R. Theory-W Software Project

Management: Principles and Examples [J]. IEEE

Transaction on Software Engineering, 1989, 15(7):

902-916.

[14] Boehm B W. A Spiral Model of Software

Development and Enhancement [J] Computer,

1988, 21 (5):61 -72.

Editor

Matched %

Possible matched

modules

Clusters

Central

Repository

SIC values

Database 2

Database 1

Database 3

Query

Handler

Classification results

38 A Meta Level Data Mining Approach to Predict Software Reusability

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

[15] Griss M L. Software Reuse: From Library to

Factory [J]. IBM Systems Journal, 1993,

32(4):548-566.

[16] Poulin, Yglesias K. Experiences with a faceted

Classification Scheme in a Large Reusable

Software Library (RSL) [C]. In: Proceedings 7th

Annual International Computer Software and

Applications Conference (COMPSAC '93), 1993,

90-99.

[17] Succi G., Benedicenti L, Vernazza T. Analysis of

the Effects of Software Reuse on Customer

Satisfaction in an RPG Environment [J]. IEEE

Transaction on Software Engineering, 2001, 27(5):

473-479.

[18] Boehm, B. Managing Software Productivity and

Reuse [J]. Computer, 1999, 32(9):111 - 113.

[19] Frakes W B., Fox C J. Quality Improvement Using

a Software Reuse Failure Modes Model [J]. IEEE

Transaction on Software Engineering, 1996, 22(4):

274-279.

[20] Griss M L., Wosser M. Making reuse work at

Hewlett-Packard [J]. IEEE Software, 1995,

12(I):105 - 107.

[21] Lim W. Effects of Reuse on Quality, Productivity,

and Economics [J]. IEEE Software, 1994, II (5):

23-30.

[22] Meyer B. The Reusability Challenge [J]. IEEE

Computer, 1996, 29(2): 76 -78.

[23] Mili H., Mili F., Mil A. Reusing software: issues

and research directions [J]. IEEE Transaction on

Software Engineering, 1995, 21(6):528 - 562.

[24] Gill N S. Importance of Software Component

Characterization for Better Software Reusability

[C].In: Proceeding of ACM SIGSOFT Software

Engineering Notes, 2006, 31(I):1-3.

[25] Jeffrey S. Poulin. Measuring Software Reusability

[C]. In: Proceedings of the Third International

Conference on Software Reuse, November 1994.

[26] Prieto-Diaz, Ruben, Freeman P. Classifying

software for Reusability [J]. IEEE Software, 1987,

4(1):6-16.

[27] Selby, Richard W. Quantitative Studies of

Software Reuse [J]. Software Reusability, 1989, II:

213-233.

[28] Chen, Deng-Jyi, Lee P J. On the Study of Software

Reuse Using Reusable C++ Components [J].

Journal of Systems Software, 1993, 20(1):19-36.

[29] Caldiera, Gianluigi, Victor R. Basili. Identifying

and Qualifying Reusable Software Components [J].

IEEE Software, 1991, 24(2): 61-70.

[30] Karlsson, Even-Andre, Sindre G., Stalhane T.

Techniques for Making More Reusable

Components [R]. REBOOT Technical Report,

1992.

[31] Hislop, Gregory W. Using Existing Software in a

Software Reuse Initiative [A]. In; Proceedings of

The Sixth Annual Workshop on Software Reuse,

Owego, New York, 1993.

[32] Boetticher G., Srinivas K., Eichmann D. A Neural

Net-based Approach to Software Metrics [C]. In:

Proceedings of the 5th International Conference on

Software Engineering and Knowledge Engineering,

June 1993, 271-274.

[33] Torres, William R., Samadzadeh M H. Software

Reuse and Information Theory Based Metrics [C].

In: Proceedings of Symposium on Applied

Computing, Kansas City, April 1991, 437-46.

[34] Mayobre, Guillermo. Using Code Reusability

Analysis to Identify Reusable Components from

the Software Related to an Application Domain

[A]. In: Proceedings of Fourth Annual Workshop

on Software Reuse, Reston, 1991, 18-22.

[35] NATO. Standard for Management of a Reusable

Software Component Library [R]. NATO

Communications and Information Systems

Agency, 1991.

[36] RAPID. RAPID Center Standards for Reusable

Software [R]. U.S. Army Information Systems

Engineering Command, 1990.

[37] Piper, Joanne C., Wanda L. Barner. The RAPID

Center Reusable Components (RSCs) Certification

Process [R]. U.S. Army Information Systems

Software Development Center.

[38] Morisio M., Ezran M., Tully C. Success and

Failure Factors in Software Reuse [J]. IEEE

Transaction on Software Engineering, 2002, 28(4):

340-357.

[39] Bockle G, Lements P., McGregor J D., Muthig D.,

Schmid K. Calculating ROI for Software Product

Lines [J]. IEEE Software, 2004, 21(3):23-31.

[40] Deelstra S., Sinnema M., Nijhuis J. Bosch J.

COSV AM: A Technique for Assessing Software

Variability in Software Product Families [C]. In:

Proceedings 20th IEEE International Conference

on Software Maintenance, Sept 2004, 458-462.

[41] Bosch J., Juristo N. Designing Software

Architectures for Usability [C]. In: Proceedings

25th International Conference on Software

Engineering, May 2003, 757-758.

[42] Bosch J. Architecture-Centric Software

Engineering [C]. In: Proceedings 24th

International Conference on Software Engineering,

May 2002, 681-682.

[43] Bosch J. Software Product Lines: Organizational

Alternatives [C]. In: Proceedings 23rd

International Conference on Software Engineering,

May 2001, 91-100.

[44] Bosch J. Design and Use of Industrial Software

Architectures [C]. In: Proceedings Conference on

Technology of Object-Oriented Languages and

Systems, June 1999, 404-404.

[45] Coplien J., Hoffman D., Weiss D. Commonality

and Variability in Software Engineering [J]. IEEE

Software, 1998, 15(6): 37-45.

[46] Esteva J C. Automatic Identification of Reusable

Components [A]. In: Proceedings of 7th

International Workshop Computer-Aided Software

Engineering, Toronto, 1995, 80-87.

[47] Klein J., Price B., Weiss D. Industrial-Strength

Software Product-Line Engineering [C]. In:

 A Meta Level Data Mining Approach to Predict Software Reusability 39

Copyright © 2013 MECS I.J. Information Engineering and Electronic Business, 2013, 6, 33-39

Proceedings 25th International Conf. Software

Engineering, May 2003, 751-752.

[48] Devanbu P T., Perry D E., Poulin J S. Guest

Editors Introduction: Next Generation Software

Reuse [J]. IEEE Transaction on Software

Engineering, 2000, 26(5):423-424.

[49] Frakes W B., Kang K. Software Reuse Research:

Status and Future [J]. IEEE Transaction on

Software Engineering, 2005, 31(7): 529 - 536.

[50] Tomer A., Goldin L., Kuflik T., Kimchi E.,

Schach S R. Evaluating Software Reuse

Alternatives: A Model and its Application to an

Industrial Case Study [J]. IEEE Transaction on

Software Engineering, 2004, 30(9):601-612.

[51] Rothenberger M A., Dooley K J., Kulkarni U R.,

Nada N. Strategies for Software Reuse: A

Principal Component Analysis of Reuse Practices

[J]. IEEE Transaction on Software Engineering,

2003, 29(9): 825-837.

[52] Lee N Y., Litecky C R. An Empirical Study of

Software Reuse with Special Attention to Ada [J].

IEEE Transaction on Software Engineering, 1997,

23(9): 537-549.

[53] Kazman R, Abowd G., Bass L., Clements P.

Scenario-Based Analysis of Software Architecture

[J]. IEEE Software, 1996, 13(6): 47-55.

[54] Lanzi P L., P. di Milano. Fast Feature Selection

with Genetic Algorithms: A Filter Approach [C].

In: Proceedings of IEEE International Conference

on Evolutionary Computation, April 1997, 537-

540.

[55] http://en.wikipedia.org/wiki/Rabin–

Karp_algorithm.

[56] Kanungo T., Mount D. M., Netanyahu N. S.,

Piatko C. D., Silverman Wu A. Y. An Efficient k-

Means Clustering Algorithm: Analysis and

Implementation [J]. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2002, 24(7):

881 – 892.

[57] Goldberg M K. Hayvanovych M., Ismail M. M.

Measuring Similarity between Sets of Overlapping

Clusters [C]. In: Proceedings of the 2010 IEEE

Second International Conference on Social

Computing (SOCIALCOM '10), 2010, 303-308.

Authors’ Profiles

Chetna Gupta: She is Assistant

Professor at Jaypee Institute of

Information Technology, India. She

obtained her Doctorate in the area of

Software Testing. She also holds a

Masters of Technology and a

Bachelor of Engineering degree in

Computer Science and Engineering.

Her areas of interest are Software Engineering,

Requirement Engineering, Software Testing, Software

Project Management, Data Structures, Data Mining and

Web Applications. She has many publications in

international journals and conferences to her credit.

Megha Rathi: She is Assistant

Professor (Grade II) at Jaypee

Institute of Information Technology,

India. She holds a Masters of

Technology and a Bachelor of

Engineering degree in Computer

Science and Engineering. Currently

she is pursuing her PhD in Computer Science and

Engineering. Her areas of interest are Database systems,

Software Engineering, Software Testing and Artificial

Intelligence.

