
I.J. Information Engineering and Electronic Business, 2014, 3, 28-33
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2014.03.05

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

Theoretical Validation of Inheritance Metrics for

Object-Oriented Design against Briand’s Property

Kumar Rajnish
Birla Institute of Technology, Mesra, Ranchi-835215, Jharkhand, India

Email: krajnish@bitmesra.ac.in

Abstract—Many inheritance metrics can be found in the

literature, but most of those are validated theoretically by

using Weyuker’s property. Theoretical validation of

inheritance metrics using Briand’s property is rare in the

literature. This paper considers the metrics proposed by

Rajnish and Sandip and presents a theoretical validation

of the inheritance metrics using the Briand’s size and

length properties of an inheritance hierarchy. This paper

also gives the projection and viewpoint of the inheritance

metrics.

Index Terms—Object-Oriented, Inheritance Metrics,

Briand Properties, Complexity, Classes.

I. INTRODUCTION

Nowadays, the uses of Object-Oriented (OO) software

metrics have increased rapidly. So, software metrics is

the essential to measure the software quality factors. A

good software metrics should be validated for its use. In

order to provide mathematical rigour and an axiomatic

basis to metrics, necessary properties have been set forth

by Weyuker [1] and Briand [2] against which metric

proposals can be evaluated. Few of the inheritance

metrics have been validated using Briand properties.

Evaluation of metrics against Briand measurement

concepts provides insights into the characteristics and

defects of the metrics. Besides serving as a tool for

classification and understanding, property based

evaluation can also potentially lead to formulation of new

metrics. Sandip et al [3] [4] and Rajnish et al [5] [6]

proposed four Inheritance metrics and validated using

Weyuker properties. This paper shows the validation of

the metrics using Briand properties.

For OO systems, most of the inheritance metrics have

been validated theoretically by Krishna et al [7] and Joshi

et al [8] using Briand properties. Metrics exist for

measurement of inheritance at the higher levels of

abstraction in OO systems has been given in [3-6].

Rajnish had presents a new class complexity metric of an

OO program which is used to predict the

understandability of classes in software projects. Their

propose complexity metric is evaluated theoretically

against Weyuker’s properties to analyze the nature of

metric and empirically evaluated [9].

Various inheritance metrics have been proposed and

their reviews are available in the literature. Chidamber

and Kemerer [10] proposed the DIT metric, which is the

length of the longest path from a class to the root in the

inheritance hierarchy and the NOC metric, which is the

number of classes that directly inherit from a given class.

Henderson-Sellers [11] suggested the AID (average

inheritance depth) metric, which is the mean depth of

inheritance tree and is an extension of Chidamber and

Kemerer DIT. Li [12] suggested the NAC (number of

ancestor classes) metric to measure how many classes

may potentially affect the design of the class because of

inheritance and NDC (number of descendent classes)

metric to measure how many descendent classes the class

may affect because of inheritance. Li [12] also

theoretically validated Chidamber and Kemerer metrics

using a metric evaluation framework proposed by

Kitchenham et al [13] and discovered some of the

deficiencies of Chidamber and Kemerer metrics in the

evaluation process and proposed a new suite of OO

metrics that overcome these deficiencies. Tegarden et al.

[14] proposed the CLD (class-to-leaf depth) metric,

which is the maximum number of levels in the hierarchy

that are below the class and the NOA (number of ancestor)

metric, which is the number of classes that a given class

directly or indirectly inherits from. Lake and Cook [15]

suggested the NOP (number of parents) metric, which is

the number of classes that a given class directly inherits

from and the NOD (number of descendants) metric,

which is the number of classes that directly or indirectly

inherit from a class. Alshayeb et al [16] empirically

validated two different software processes. Agarwal et al

[17-18] described the approach of empirical study of OO

metrics and presented OO design metrics.

The rest of the paper is organized as follows. Section II

describes Briand’s length and size properties for

validating inheritance metrics. Inheritance metrics have

been taken for evaluation is described in section III.

Section IV describes viewpoint and projection of

inheritance metrics presented by Rajnish and Sandip.

Section V provides theoretical validation of inheritance

metrics against Briand’s properties. Section VI presents

Conclusion and Future work respectively.

II. BRIAND’S SIZE AND LENGTH PROPERTY

A. Size Properties

Size metrics are commonly found in OO approaches.

Sizes are not bounded, and they are computed as positive

integers. The three size properties namely non-negativity,

 Theoretical Validation of Inheritance Metrics for Object-Oriented Design against Briand’s Property 29

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

presence of null value and module additivity as outlined

by Briand et al. [2] are summarized in Table 1.

B. Length Properties

Length of a system is seen as size of the shortest path

between two extremes of the system. Length is therefore

Table 1. Size Properties of Briand

Property Description

S1 (Non-negativity) The size of a system is nonnegative.

S2 (Null value) The size of a system is 0 if the set of
elements which constitute the system

is empty.

S3(Module Additivity) The size of a system cannot be more
than the sum of the sizes of its

modules. In the case of disjoint

modules, the size of a system is equal
to the sum of the sizes of the modules.

not the same as size, since it captures the size from the

point of view of the extreme limits, whereas, size in

general captures the measured as a whole. Lines of Code

and CLD are examples of size and length metrics

respectively. The length properties observed by Briand et

al. [1] are summarized in Table 2.

Length properties L1 and L2 are the same as S1 and S2

respectively. Size metrics satisfy non-increasing

monotonicity (L3) and non-decreasing monotonicity

property (L4), since adding relationships between the

elements within a module or between the elements of

different modules in the system does not change the count

of the entities already present in the system. However, the

considered size metrics do not satisfy module merger (L5)

because the size metrics are sum oriented and not

comparison oriented. Thus, it can be observed that

metrics satisfying sum oriented size property S3 do not

satisfy comparison oriented length property L5.

Table 2. Length Properties of Briand

Property Description

L1 (Non-negativity) The length of a system is nonnegative.

L2 (Null value) The length of a system is 0 if the set of

elements which constitute the system is empty.

L3(Non Increasing

Monotonicity)

Adding relationships between the elements of a

module m in a system does not increase the

length of the system.

L4 (Non Decreasing

Monotonicity)

A system having modules m1 and m2 such that

they are represented by separate connected

components in the system. Adding
relationships from elements of m1 to elements

of m2 does not decrease the length of system.

L5 (Merger) The length of a system made of union of two
disjoint modules m1 and m2 is equal to the

maximum of the lengths of m1 and m2.

III. INHERITANCE METRICS FOR EVALUATION

This section presents the brief description of Depth of

Inheritance Tree of a Class (DITC) metric and Class

Inheritance Tree (CIT) metric presented by Rajnish et al.

[5-6]

AND ICC (Inheritance Complexity of Class), and

ICT (Inheritance Complexity of Tree) presented by

Sandip et al. [3-4] for evaluation.

A. Depth of Inheritance Tree Class (DITC) Metric

The metric DITC for class inheritance hierarchy is

measured in terms of sum of the attributes (Private,

Protected, public and inherited) and Methods (Private,

Protected, public and inherited) at each level [6]. The

DITC metric of a class at each level is calculated as:

  iCIT C  (1)

Where,

LEVi = Attribute (Ci) + Method (Ci)

Ci = A class in the i
th

level of class inheritance

hierarchy.

Attribute (Ci) = Count the total number of protected,

private, public and inherited attributes within a class in

the class inheritance hierarchy at each level.

Method (Ci) = Count the total number of protected,

private, public and inherited methods within a class in the

class inheritance hierarchy at each level.

L = Total height in the class inheritance hierarchy i.e.

the maximum distance from the last node (last level in the

class inheritance hierarchy) to the root node (first level in

the class inheritance hierarchy), ignoring any shorter

paths in case of multiple inheritance is used.

B. Class Inheritance Tree (CIT) Metric

The metric CIT is used to measure the class inheritance

tree [6]. The primary purpose of this metric is to measure

how class is inherited by multiple classes and how class

inherits multiple classes at any level in the inheritance

tree. CIT is defined as follows:

 (2)

Where Ci is the class at the i
th

 level in the inheritance

tree.

CIN (Ci) = 1 if Ci is inherits multiple classes in the

inheritance tree.

= 0, otherwise.

COUT (Ci) = 1 if Ci is inherited by multiple classes in

the inheritance tree.

= 0, otherwise.

C. Inheritance Complexity of Class (ICC)

The metric ICC is given in [3] and is calculated as

follows:

 (3)

30 Theoretical Validation of Inheritance Metrics for Object-Oriented Design against Briand’s Property

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

(C)
1

NoofclassesinheriteddirectlybyCi
IF i

NoofclassesinheriteddirectlybyCi




Where, Inheritance Complexity of Class (ICC) is the

metric value of a class of an inheritance tree.

Ci= Classes at the i
th

 level in an inheritance tree.

A (Ci) = Count the number of attributes (protected,

private, public and inherited attributes) at each level in an

inheritance tree.

M (Ci) = Count the number of methods (protected,

private, public and inherited attributes) at each level in an

inheritance tree.

D. Inheritance Complexity of Tree (ICT)

The metric ICT is given in [4] and is calculated as

follows:

(C) (C) (C)
(C)

A IFM i i i
ICT i

N

 
 (4)

Where

N = Total number of classes in an inheritance tree.

IV. VIEWPOINTS AND PROJECTIONS

The notion of viewpoints and projections was first

introduced in [8] to aid classification of metrics.

Viewpoint is the base at which the measurement is

carried out and projections shows direction of interaction

between the viewpoint and the portion of the program

that is related to the measurement. Projections can be

outward, inward or gross projections. At the end of this

paper in Appendix A, shows the viewpoints and

projections of other inheritance metrics presented by

Krishna et al [7] and selected four metrics as mentioned

in Section III. All these four metrics generates value for

each class at each level, so view point of each metric is

class level. But each class links to its parent classes in

DITC, so it has outwards projection. CIT metric is related

to its parent classes and child classes, so it has gross

projection. ICC and ICT metrics depends on all the

classes in the system, so it is system viewpoint.

V. THEORETICAL VALIDATION AGAINST BRIAND’S

PROPERTY

A. Properties S1, S2, L1 and L2

From the definition, it can be noted that for each metric

there must be one positive or zero value. So, all the four

metrics that have been described above is satisfied by

Briand’s size property S1, S2 and length property L1, L2.

B. Properties S3 and L5

Fig.1: (a) Two disjoint module (b) After joining C1 and C4

Fig. 1 shows two disjoint modules, one have three

levels (C1 is in first level and C3 is in third level) and

another have two levels (C4 is in first level and C5 is in

second level). After merging C1 and C4, the class C1+C4

is in first level and C3 is in third level. Suppose every

class has one method and one attribute.

DITC (C1) = 2*1 = 2

DITC (C4) =2*1=2

DITC (C1+C4) =4*1=4

DITC (C1) + DITC (C4) = 2 + 2 = 4 = DIT (C1+C4)

So, DITC metric satisfies size property S3 and does not

satisfy L5.

CIT (C1) = 0, because C1 does not inherits multiple

classes and it also does not inherited by multiple classes.

CIT (C4) = 0, because C4 does not inherits multiple

classes and it also does not inherited by multiple classes.

CIT (C1 + C4) = 1, because C1 + C4 does not inherits

multiple classes but it is inherited by multiple classes C2

and C5.

So, CIT metric doesn’t satisfy property S3 and also not

satisfy L5.

IF (C1) = 1/2 = 0.5, IF (C4) = 1/1=1 and IF (C1+C4)

= 2/2 =1

ICC (C1) = 1+1+ 0.5=2.5

ICC (C4) = 1+1+ 1=3

ICC (C1+C4) = 2+2+1 =5

So, ICC is not satisfied S3 and not satisfy L5.

IF (C1) =1/2=0.5, IF (C4) = 1/1=1 and IF (C1+C4) =

2/2 =1

ICT (C1) = (1+1+ 0.5)/3=0.833

ICT (C4) = (1+1+ 1)/2=0.67

ICT (C1+C4) = (2+2+1)/4 =1.25

So, ICT is not satisfied S3 and not satisfy L5.

C. Property L3

A class viewpoint metric satisfies property L3, as the

metric does not use the relations among the methods and

attributes. Adding new relations among the methods and

attributes does not change the metric value. So, all the

four inheritance metrics (DITC, CIT, ICC, and ICT)

satisfied property L3.

 C3

C2

C1

C5

C4

C3

C2

C1+C4

C5

 Theoretical Validation of Inheritance Metrics for Object-Oriented Design against Briand’s Property 31

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

D. Property L4

Consider Fig.2 that is slightly different from Fig. 1.

The difference is that add one relationship between C1

and C4 in place of merging of C1 and C4.

DITC does not depend on relationship between two

modules. So, DITC satisfy L4.

Fig.2: Two disjoint module and after adding relation between two
disjoint connected modules

CIT (C1) = 0, when C1 and C4 are in different

connected component.

But CIT (C1) = 1, when add relationship between C1

and C4. So, relationship may increase CIT value but

never decrease.

IF (C1) =1/2=0.5, IF (C4) = 1/1=1 in different

connected component, and IF (C1) = 2/3 =0.67

Before adding relationship ICC (C1) = 1+1+ 0.5=2.5

After adding relationship ICC (C1) = 1+1+0.67 =2.67

So, relationship may increase ICC value but never

decrease.

Before adding relationship ICT (C1) = (1+1+

0.5)/3=0.833

After adding relationship ICT (C1) = (1+1+0.67)/5

=0.534

So, ICT is not satisfied L4.

VI. CONCLUSION AND FUTURE SCOPE

In this paper an attempt has been made to present a

theoretical evaluation on Inheritance Metrics proposed by

Rajnish et al [5-6] and Sandip et al [3-4] satisfy necessary

properties of Briand et al [2]. At the end of this paper in

Appendix B, summarizes the results found in this paper

and another related paper [7]. The results show that DITC,

CIT ICC, ICT metrics satisfies the necessary properties

given by [2]. From Table 4 it is observed that out of 21

inheritance metrics, no metric satisfy all properties and all

metric satisfy the property S1, L1, S2, L2, and L3. Only

Specialization Ratio and ICT do not satisfy L4. So S1, L1,

S2, L2, L3 and L4 are the necessary properties to validate

an inheritance metric. Four system viewpoint metrics

(ICC, ICT, Specialization Ratio, and Reuse Ratio) does

not satisfy property S3 and L5. Fourteen metrics out of

21 (around 66%) satisfy property S3 and only 2 metric

satisfy property S5. In general, this firmly belief that 67%

of the considered metrics are satisfied Briand’s size

property and 9% metrics are satisfied Briand’s length

property. Only system view point metrics except CIT are

not satisfied by Briand property. So class view point

metric is always satisfying the Briand property. All other

metrics have to be revised to comply with the Briand [2]

properties. Otherwise, use of these metrics as inheritance

indicators is questionable.

The future scope focuses on some fundamental issues:

(1) the work also points at a need for further work on the

scope of existing validation properties and also on

measurement concepts that are relatively less explored. (2)

Empirically explore the relationships between the

theoretical and empirical validation results.

ACKNOWLEDGMENT

The author would like to thanks the anonymous

reviewers for their valuable comments and suggestions.

REFERENCES

[1] E. J. Weyuker, ―Evaluating Software Complexity

Measures‖, IEEE Trans. on Software Engineering, Vol.14,

pp.1357-1365, 1998.

[2] L. C. Briand, S. Morasca, and V. R. Basili. ―Property-

based software engineering measurement.‖ IEEE Trans.on

Software Eng., Vol.22, No. 1, 1996, pp.68-86.

[3] S. Mal and K. Rajnish. ―Applicability of Weyuker’s

Property 9 to Inheritance Metric‖, International Journal of

Computer Applications, Vol. 66, No.12. pp. 21-26,

Published by Foundation of Computer Science, New York,

USA, March 2013.

[4] S. Mal and K. Rajnish ―New Quality Inheritance Metrics

for Object-Oriented Design‖ International Journal of

Software Engineering and Its Applications, Vol. 7, No. 6,

pp. 185-200, Scopus (Elsevier) ISSN: 1738-9984, 2013

[5] K.Rajnish and Y. Singh. ―An Empirical and Analytical

View of New Inheritance Metric for Object-Oriented

Design‖, International Journal of Computer Applications,

Vol. 65, No.12, pp. 44-50, Published by Foundation of

Computer Science, New York, USA, March 2013.

[6] K. Rajnish and V. Bhattacherjee, ―Class Inheritance

Metrics-An Analytical and Empirical Approach‖,

INFOCOMP-Journal of Computer Science, Federal

University of Lavras, Brazil, Vol. 7, No.3, pp. 25-34, 2008.

[7] G. S. Krishna, R. K. Joshi. ―Inheritance Metrics: What do

they Measure‖MASPEGHI '10 Proceedings of the 4th

Workshop on Mechanisms for Specialization,

Generalization and inheritance.

doi>10.1145/1929999.1930000. Published by ACM.

[8] P. Joshi and R. K. Joshi. ―Microscopic coupling metrics for

refactoring‖, Proceedings of the Conference on Software

Maintenance and Reengineering, pp.145-152, 2006.

[9] K. Rajnish. ―Class Complexity Metric to predict

Understanability‖, International Journal of Information

Enginering and Electronic Business, MECS Publishers,

Vol. 6, No. 1, pp. 69-76, 2014.

[10] S.R. Chidamber and C.F. Kemerer, ―A Metric Suite for

Object-Oriented Design‖, IEEE Trans. on Software

Engineering, Vol. 20, No. 6, pp.476-493, 1994.

[11] B. Henderson-Sellers “Object Oriented Metrics: Measures

of Complexity”, Prentice Hall PTR: Englewood Cliffs NJ,

1996.

[12] W. Li,‖ Another metric suite for object-oriented

programming‖, The Journal of Systems and Software Vol.

44, No. 2, pp.155-162, 1998.

[13] B. Kitchenham, S.L. Pfleeger, and N.E. Fenton, ―Towards

a framework for software measurement validation‖, IEEE

Trans. On Software Engineering, Vol. 21, No. 12, pp. 929-

 C3

C2

C1

C5

C4

C3

C2

C1

C4

C

5

32 Theoretical Validation of Inheritance Metrics for Object-Oriented Design against Briand’s Property

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

944, 1995.

[14] P.D Tegarden, S.D. Sheetz, and D.E. Monarchi, ―A

software complexity model of OO Systems‖, Decision

Support Systems, Vol. 13, No. 3, pp. 241–262, 1995.

[15] A. Lake, C. Cook, ―Use of factor analysis to develop OOP

software complexity metrics‖, Proceedings of the Annual

Oregon Workshop on Software Metrics, Silver Falls OR.

Oregon Center for Advanced Technology, April 10–12,

1994.

[16] M. Alshayeb and W. Li, ―An Empirical Validation of

Object-Oriented Metrics in Two Different Iterative

Software Processes‖, IEEE Trans. on Software

Engineering, Vol. 29, No. 11, pp. 1043-1049, 2003.

[17] K.K Agarwal, Y. Singh, A. Kaur and R. Malhotra

"Empirical Study of Object Oriented Metrics", Journal of

Object Technology, vol. 5, no. 8, Nov. – Dec. 2006, pp.

149 –173.

[18] K.K Agarwal, Y. Singh, A. Kaur and R. Malhotra,

"Software Design Metrics for Object Oriented Software",

Journal of Object Technology, vol. 6, no. 1, Jan. – Feb.

2007, pp. 121 – 138.

Author Profile

Dr. Kumar Rajnish is an Assistant

Professor in the Department of

Information Technology at Birla

Institute of Technology, Mesra, Ranchi,

Jharkahnd, India. He received his PhD

in Engineering from BIT Mesra,

Ranchi, Jharkhand, India in the year of

2009. He received his Master of

Computer Application Degree from

MMM Engineering College, Gorakhpur, State of Uttar Pradesh,

India. He received his B.Sc Mathematics (Honours) from

Ranchi College Ranchi, India in the year 1998. He has 30

International and National Research Publications. His Research

area is Object-Oriented Metrics, Object-Oriented Software

Engineering, Software Quality Metrics, Software Cost

Estimation, Programming Languages, and Database System.

APPENDIX A METRICS WITH THEIR VIEWPOINTS AND PROJECTIONS

Metric Definition Viewpoint Projection

LOC Lines of Code Program Internal

NOC Number of Concrete Classes defined in a system Class Internal

NOM Number of Methods defined in a class Class Internal

NOA Number of Attributes defined in a class Class Internal

SIZE2 NOM+NOA Class Internal

NOK Number of occurrences of a keywords in a program Program Internal

NOAOP Number of occurrences of a arithmetic operators in a program Program Internal

Class-Leaf Depth

(CLD)

Length of the path from the class to farthest leaf class Nested Inward

Reuse Ratio (RR) No. of superclasses / total no. of classes System Internal

Specialization Ratio

(SR)

No. of subclasses/ no. of super-classes System Internal

DIT Depth of Inheritance of a class Class Nested Outward

NOC Number of Children is the number of immediate subclasses

subordinated to a class

Class Nested Inward

Fandown Number of subclasses of a class Class Nested Inward

Fanup Number of super classes of a class Class Nested Inward

NIA Number of Inherited Attributes in a class Class Nested Outward

NIM Number of Inherited Methods in a class Class Nested Outward

NoVM Number of Overridden Methods in a class

Class Nested Gross

DITC Mentioned in Section III Class Outward

CIT Mentioned in Section III Class Gross

ICC Mentioned in Section III System Internal

ICT Mentioned in Section III System Internal

 Theoretical Validation of Inheritance Metrics for Object-Oriented Design against Briand’s Property 33

Copyright © 2014 MECS I.J. Information Engineering and Electronic Business, 2014, 3, 28-33

APPENDIX B THEORETICAL VALIDATION RESULTS OF INHERITANCE METRICS AGAINST BRIAND’S SIZE AND LENGTH PROPERTY [√: METRICS

SATISFIES PROPERTIES ×: METRICS DOES NOT SATISFY PROPERTIES]

How to cite this paper: Kumar Rajnish,"Theoretical Validation of Inheritance Metrics for Object-Oriented Design

against Briand's Property", IJIEEB, vol.6, no.3, pp.28-33, 2014. DOI: 10.5815/ijieeb.2014.03.05

Metric S1, L1 S2, L2 S3 L3 L4 L5

LOC √ √ √ √ √ ×

NOC √ √ √ √ √ ×

NOM √ √ √ √ √ ×

NOA √ √ √ √ √ ×

SIZE2 √ √ √ √ √ ×

NOK √ √ √ √ √ ×

NOAOP √ √ √ √ √ ×

Class-Leaf Depth (CLD) √ √ × √ √ √

Reuse Ratio (RR) √ √ × √ √ ×

Specialization Ratio (SR) √ √ × √ × ×

DIT √ √ × √ √ √

NOC √ √ √ √ √ ×

Fandown √ √ √ √ √ ×

Fanup √ √ √ √ √ ×

NIA √ √ √ √ √ ×

NIM √ √ √ √ √ ×

NoVM √ √ √ √ √ ×

DITC √ √ √ √ √ ×

CIT √ √ × √ √ ×

ICC √ √ × √ √ ×

ICT √ √ × √ × ×

