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Abstract—The paper considers multi-criteria dynamic 

decision process. We focus on the efficient realizations 

of the dynamic process which are characterized by non-

dominated values of the multi-period criteria function. 

The aim of the paper is to use the compromise 

hypersphere method to rank the efficient realizations. 

The presented method allows us to take into account the 

risk aversion of the decision maker. Moreover, we apply 

the presented theory in the market model taken from 

microeconomic theory. 

 

Index Terms—Dynamic programming, multi-criteria 

decision making, compromise hypersphere.  
 

I.  INTRODUCTION 

The paper presents a usage of compromise 

hypersphere in multi-criteria dynamic programming. The 

form of dynamic programming model is taken from the 

works by Sitarz [1] and [2]. The most recent 

contributions to dynamic programming in the view of the 

proposed approach are as follows. Bazgan et al. [3] 

present the approach of ordered structures in dynamic 

programming. Sitarz [4] shows a usage of dynamic 

programming into multiple knapsack problem. In [5] the 

stochastic dynamic programming on compact state 

spaces is discussed. Whereas the idea of compromise 

hypersphere comes from the work by Gass and Roy [6]. 

The source of the compromise hypersphere is the 

compromise programming presented in [7] and [8]. By 

using the presented method, we obtain the decision 

analysis tool in multi-criteria dynamic problems. The 

method consists of three steps. In step 1 we determine a 

set of efficient realizations in discrete dynamic 

programming model by using the forward algorithm. In 

step 2 we find the compromise hypersphere, which 

means a kind of compromise between the values of 

efficient realizations. In step 3 we build the ranking of 

efficient realization by using the compromise 

hypersphere. Moreover, by using the presented method 

we are able to take into account the risk aversion of the 

decision maker by choosing the parameter of the method. 

The general form of the presented model allows us to use 

it in many problems, particularly we apply the method in 

the market model. 

 

 

 

The paper consists of the following sections. Section 

II presents discrete dynamic programming model with 

forward algorithm for finding the efficient realizations. 

Section III introduces compromise hypersphere method 

with the proposition of risk aversion measure. Section IV 

shows an application of the proposed method in the 

market model. The paper is summarized in the final 

section V. 

 

II.  DYNAMIC DECISION PROCESS 

Discrete dynamic process is considered. The notation 

of this process is described in Table 1. 

A.  Period criteria functions 

Let P stand for the process. The period criteria 

function in the period t (t=1,T) is the function: 

 

ft:Rt ℝ
k
                                (1) 

 

where ℝn
 denotes the n-dimensional vector of real 

numbers. Next, we assume the following simplification 

of the notation: 

 

ft ( st, st+1 ) = ft ( (st, st+1) )                   (2) 

 

Below, we present the definitions of the multi-period 

criteria function by using the binary operator ◦, which 

links the period valeus. 

 

- Partial backward criteria function Ft


:Rt


(St)ℝ
k
: 

 

Ft


 =  ft  ◦  (ft-1 ◦ (… (fT-1  ◦  fT) …))             (3) 

 

- Partial forward criteria function Ft


:Rt


(St)ℝ
k
: 

 

Ft


 = ((…(f1  ◦  f2 )  …) ◦  ft-2 ) ◦  ft-1             (4) 

 

- Multi-period criteria function F:Rℝk
:  

 

F = ((…(f1  ◦  f2 ) ◦  …) ◦  fT-1 ) ◦  fT                       (5) 
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Table 1. Notation of dynamic process. 

Symbol Meaning Elements description 

T The number of stages t{1,,T} 

St 

The set of feasible states 

at the beginning of the 

stage t 

St 

Dt(st) 

The set of feasible 
decisions at the beginning 

of the stage t, in the state 

st 

dt(st) 

R 

Realizations of the 
process-  

 sequence of the 

succeeding states 

r=(s1,s2,.., sT,,sT+1) 

Rt 

The set of stage 

realizations at the 

beginning of the stage t 

rt = (st , st+1) 

Rt
(st) 

The set of partial 
realizations of the process 

beginning at the point t 
and the state st 

rt
(st) =(st,,sT+1) 

Rt
(st) 

The set of partial 

realizations of the process 
ending at the point t in the 

state st 

rt
(st) = (s1,, st) 

Rt
(St) 

The set of partial 
realizations beginning at 

the point t 
rt
(st):  stSt 

Rt
(St) 

The set of partial 

realizations ending at the 

point t 
rt
(st):   stSt 

P 
The process in which T, 
St, Dt(st) were defined 

 

 

Next, we assume the notation  

 

Ft


(Rt


(St)) = {Ft


(Rt


(st)): stSt}            (6) 

 

Ft


(Rt


(St)) = {Ft


(Rt


(st)): stSt}            (7) 

 

F(R) = {F(r): rR}                         (8) 

B.  Efficient realizations 

Non-dominated vectors of the set Aℝk
 denoted as 

ND(A) are described in the following way: 

 

ND(A) ={aA: xA ax  x=a}            (9) 

 

The realization rR is called the efficient realization 

when   

 

F(r)  ND {F(R)}                        (10) 

 

The set of all efficient realizations is denoted as 

EFF(R).  

C.  Forward Algorithm 

The above terms launch a problem of finding all 

efficient realizations. The detailed description of the 

methods used for such problems may be found in the 

work by Trzaskalik and Sitarz [9]. Moreover, the work 

by Sitarz [10] presents the heuristic methods for such 

problems. Below, we present the forward algorithm from 

the work of Sitarz [11]: 

 

Step 1. Find 

 

ND{f1(R2


(s2)}, for all states s2S2. 

 

Step 2. Find 

 

ND{F2


(R3


(s3)}, for all states s3S3. 

 

using the values found in step 1 

 

ND{F2


(R3


(s3)} = ND{f2(s2, s3)◦ ND(f1(R2


(s2)) ): 

s3D2(s2)}                                                            (11) 

 

Step t, for t=3,, T. Analogically to step 2, find  

 

ND {Ft 


(Rt+1


(st+1)}, for all states st+1St+1. 

 

Step T+1. Find max {F(R)}  

 

ND {F(R)}=ND{ND FT+1


(rt+1


(sT+1)):sT+1ST+1}     (12) 

 

At the same time, we get efficient realizations EFF(R) 

which relate to the found maximal values. 

 

III.  COMPROMISE HYPERSPHERE METHOD 

The aim of the method is to rank the efficient 

realizations in discrete dynamic programming model. 

The main idea of the proposed method comes from the 

work by Gass and Roy [6]. The method consists of three 

steps. Step 1 presents an initial problem of decision 

making – finding a set of efficient realziations. In step 2 

we look for a hypersphere which we call a compromise 

hypersphere. In this case the word compromise means a 

surface of compromise over the values of nondominated 

extreme solutions. Thus, we look for the points which 

are closest to this surface. It means that the point closest 

to this surface is the best compromise solution. In step 3 

we built ranking of points by using distance to the 

compromise hypersphere. In detail, the method looks as 

follows: 

 

Step 1. Determine a set of efficient realizations in 

discrete dynamic programming model by using the 

forward algorithm presented in subsection II.C. We will 

denote these efficient realizations as: r
1
, r

2
, …, r

n
. 
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Step 2. Find a hypersphere with the centre y
0
ℝk

 and 

radius r0ℝ by solving the program  

  
0

0

1 0 0

0 0 2 2
,

min ,..., , (F(r ), ),..., (F(r ), )n k k n

q
r

l r r l l  y
y y     (13) 

 

where 

q[1, ] is parameter 
n

ql  is function belonging to the family of metrics 

s

rl :ℝs
ℝs

ℝ with the following form: 

 

1

1,...,

, [1, )
( , )

max ,

s
r

r
i is

ir

i i
i s

a b r
l

a b r






  

 
   



a b

                     (14) 

 

We will denote the optimal solution of (13) as 0
q

y , 

0

q

r  and the minimal value of the cost function as 

min(13)q . Moreover, wherever it does not cause notion 

misunderstanding, we will omit index q i.e. 0
y , 

0r  
and 

min(13) . 

 

Step 3. Find the ranking of the points r
1
, r

2
, …, r

n  
based 

on the distance from the previously found hypersphere in 

step 2, using values 

 
0

0 2 (F(r ), )k ir l y                           (15) 

 

We will particularly look for the point r
i
 closest to the 

hypersphere: 

 

0

0 2min (F(r ), )k i

i
r l y                    (16) 

 

We will denote the optimal solution of (16) as i , the 

optimal extreme point as r i
, and the minimal value of 

the cost function as min(16) . 

A.  Risk aversion measure – the choice of q 

The choice of the metric (the value of q) should go 

along with some preferences of the decision maker, 

which is described by Ballestero [12] who concludes his 

works by sentence: ―The greater risk aversion the greater 

q-metric to use. Metric q= corresponds to extremely 

high risk aversion‖. Thus the preferences of the decision 

maker can be incorporated in the presented method by 

choosing the parameter q – representation of the risk 

aversion.  

By using the above theory, we can formulate the 

following comments to setting parameter q: 

 

- q=1 corresponds to extremely low risk aversion, 

- q= corresponds to extremely high risk aversion, 

- q(1, ) corresponds to risk aversion between low 

and high. 

 

The above scale, [1, ], can be hard to use in practice. 

Thus, we propose to transform interval [1, ] to interval 

[0, 1] by a given bijection f, for example by f(q)= 

(2/)∙arctan(q1). After using such a transformation f, 

the decision maker gives a value from interval [0,1] to 

describe his risk aversion in the following way: 

 

- f(q)=0 corresponds to extremely low risk aversion, 

- f(q)=1 corresponds to extremely high risk aversion, 

- f(q)(0, 1) corresponds to risk aversion between 

low and high. 

 

IV.  APPLICATION IN THE MARKET MODEL 

The form of the problem is inspired by the work of 

Ekeland [13]. We should add that the problem assumes 

indivisibility of goods available on the market, whereas 

in the mentioned work, the value of the goods is 

described by any nonnegative real number. 

The presented problem refers to the theory of demand 

that describes the economic market, in which there is a 

group of participants (hereafter referred to as consumers). 

You can purchase a certain amount of goods on the 

market. Generally, the consumers aim to reach the 

greatest satisfaction from the purchase of goods. The 

satisfaction is described with the help of the utility 

function value. The aim of the problem below is to find 

such a distribution of goods among the consumers. 

Below, we present the detailed description of the 

problem. 

n – the number of goods on the market. Particular 

goods will be denoted by the letter i, that is i{1,,n}. 

We assume that the goods are indivisible which means 

that each commodity appears in a value belonging to the 

set ℕ= {0, 1, 2,}. 

m – the number of consumers. Particular consumers 

will be denoted by the letter k, that is k{1,,m}. 

i - value of i
th

 commodity available on the market, i 

ℕ, for i{1,,n}. 

 = (1, , n) – joint value of goods available on 

the market. 

uk:ℕ
n
ℝ - utility function of k

th
 consumer (describes 

the preferences of k
th

 consumer depending on the value 

of the possessed goods).  

Feasible allocations are the vectors  

 

x=(x1
1
, …, xn

1
, …., x1

k
, …, xn

k
,.. x1

m
, …, xn

m
)ℕnm    

(17) 

 

which satisfy the condition: 

 

i{1,…,n}     i

m

1k

k

i Ωx 


                     (18) 
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Feasible allocations describe the ways of distribution 

of goods among the consumers and they will be written 

down also as (xi
k
: i=1,.., n;  k=1,...,m).  

 

The components x1
k
, …, xn

k 
denote values of proper 

goods which are assigned to the k
th

 consumer. For 

example, x2
5
 means the number of the second 

commodity assigned to the fifth consumer.  

A – the set of all feasible allocations. 

Each feasible allocation x=(x1
1
, …, xn

1
, ..., x1

k
, …, 

xn
k
,….. x1

m
, …, xn

m
) is connected with the vector u(x): 

 

u(x) = (u1(x1
1
, …, xn

1
),…, um(x1

m
, …, xn

m
))       (19) 

 

Vector u(x) gives the values of the utility function of 

all consumers. 

Pareto Optimal allocations are the vectors 

 

y=(y1
1
, …, yn

1
, ....., y1

m
, …, yn

m
) A          (20) 

 

which satisfy the following condition: 

 

u(y)  ND {u(x): xA}                   (21) 

 

A.  Numerical example  

The following numerical example is taken from work 

by Sitarz [1]. We consider a model with the following 

data: 

 

● there are 3 consumers on the market, i.e. m=3, 

● there are 3 commodities to distribute, i.e. n=3, 

● there are 2 of each commodity, i.e. 1=2=3=2. 

 

The utility functions of the particular consumers have 

the form: 

 

● u1(x1, x2, x3) = x1 + 2x2 + 3x3 

● u2(x1, x2, x3) = x1x2x3 

● u3(x1, x2, x3) = 3x1 + x2 + x3 

 

B.  Construction of the process 

We have 6 periods: 

 

T = n(m-1) = 32=6 

 

Feasible states 

 

S1=s, 

 

We find the remaining feasible states by using the 

formula: 

 

St = {0, 1,..., ⌊(t-2):(m-1)⌋ +1}. 

 

Thus  

 

S2 = S3 = 1 = 2. 

S4 = S5 = 2 = 2. 

S6 = S7 = 3 = 2. 

 

Feasible decisions 

for t {1, 3, 5} and stSt 

 

Dt(st) = St+1= {0, 1, 2}. 

 

for t{2, 4, 6} 

 

Dt(0) = {0}, Dt(0) = {0, 1},  Dt(0) = {0, 1, 2} 

 

C.  Values of the period criteria function 

● Case I, for t{2, 4, 6}  

Table 2 shows the values of the stage criteria 

functions in this case. 

 

● Case II, for t{1, 3, 5} 

Table 3 shows the values of the stage criteria function 

in this case. 

The graph of the described multi-period decision 

process is shown in figure 1, we have given only the 

chosen values of the criteria function, whereas we have 

given all feasible states and decisions 

D.  Pareto-optimal allocations 

Now, we will generate Pareto Optimal allocations. We 

will find them by solving the DP problem (figure 2). We 

will use the algorithm from subsection II.C. The 

calculations are illustrated in table 4. Simultaneously, 

together with the values obtained in the last row of table 

4, we obtain 16 Pareto Optimal allocations. Below, all 

maximal values of the utility function, together with the 

relevant allocations are presented in table 5. 

E.  Compromise hypersphere method 

We will conduct the method described in section III. 

 

Step 1. Pareto Optimal allocations mean the efficient 

realizations of the considered dynamic process. Thus, the 

efficient realizations (obtained earlier in subsection 4.3) 

have the following notation: r
1
, r

2
, …, r

16
. 

 

Step 2. Decision maker chooses the parameter q as the 

representation of his risk aversion following the rule: 

The greater risk aversion the greater q. In this case we 

consider q=2.  
 

The optimal values of the objective function of the 

problem (13) are as follows: 

 
2min(13) = 0.473                      (22) 

 

Step 3. On the basis of the distance to the previously 

found hypersphere we  obtain  ranking presented in table 

6.  
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Table 2. Values of the period criteria function w for t{2, 4, 6}. 

ft(st, st+1) 
t 

2 4 6 

(st, st+1) 

(2,2) (0,0,6) (0,0,2) (0,0,2) 

(2,1) (0,1,3) (0,1,1) (0,1,1) 

(2,0) (0,2,0) (0,2,0) (0,2,0) 

(1,1) (0,0,3) (0,0,1) (0,0,1) 

(1,0) (0,1,0) (0,1,0) (0,1,0) 

(0,0) (0,0,0) (0,0,0) (0,0,0) 

Table 3. Values of the period criteria function w for t{1, 3, 5}. 

ft(st, st+1) 
t 

1 3 5 

(st, st+1) 

(s,2) (0,1,0) - - 

(s,1) (1,1,0) - - 

(s,0) (2,1,0) - - 

(2,2) - (0,1,0) (0,1,0) 

(2,1) - (2,1,0) (3,1,0) 

(2,0) - (4,1,0) (6,1,0) 

(1,2) - (0,1,0) (0,1,0) 

(1,1) - (2,1,0) (3,1,0) 

(1,0) - (4,1,0) (6,1,0) 

(0,2) - (0,1,0) (0,1,0) 

(0,1) - (2,1,0) (3,1,0) 

(0,0) - (4,1,0) (6,1,0) 

Table 4. Calculations obtained with the help of the algorithm from subsection 2.3. 

t ND{Ft
(Rt

(0)} ND{Ft
(Rt

(1)} ND{Ft
(Rt

(2)} 

1 (2,1,0) (1,1,0) (0,1,0) 

2  (2,0,0), (1,1,0), (0,2,0) (1,0,3), (0,1,3) (0,0,6) 

3 
(6,0,0), (5,1,0), (4,2,0), 

 (5,0,3), (4,1,3),  (4,0,6) 

(4,0,0), (3,1,0), (2,2,0), 

 (3,0,3), (2,1,3), (2,0,6) 

(2,0,0), (1,1,0), (0,2,0) , 

(1,0,3), (0,1,3),  (0,0,6)  

4 
(6,0,0), (5,0,3),  (4,0,6), (3,1,0), (2,2,0) (2,1,3), 

(1,2,0), (0,4,0) (0,2,3)   
(4,0,1), (3,0,4),  (2,0,7) 
(1,1,1), (0,2,1) (0,1,4),  

(2,0,2), (1,0,5),  
(0,1,5),  (0,0,8) 

5 
(12,0,0), (11,0,3), (10,0,6), (9,1,0), (8,2,0) (8,1,3), 

(7,2,0), (6,4,0) (6,2,3), (8,0,7),  (6,1,5),  (6,0,8) 

(9,0,0), (8,0,3), (7,0,6), (6,1,0), 

(5,2,0), (5,1,3), (4,2,0), (3,4,0), 
(3,2,3),  (5,0,7) (3,1,5),  (3,0,8) 

(6,0,0), (5,0,3),(4,0,6), (3,1,0), 

(2,2,0) (2,1,3), (1,2,0), (0,4,0) , 
(0,2,3),  (2,0,7),  (0,1,5),  (0,0,8) 

6 

(12,0,0), (11,0,3), (10,0,6),  (8,0,7),  (6,0,8), (6,1, 

0), (5,2,0)  (5,1,3), (3,4,0) (3,2,3),  (3,1,5),  

(0,8,0),  (0,4,3),  (0,0,8),  (0,2,4),  

(9,0,1), (8,0,4),  (7,0,7) 
 (5,0,8), (3,0,9) 

(6,0,2), (5,0,5),  (4,0,8) 
 (2,0,9),  (0,0,10) 

ND F(R) 
(12,0,0), (11,0,3), (10,0,6), (8,0,7), (6,0,8), (6,1, 0), (5,2,0), (5,1,3), (3,4,0) (3,2,3), (3,1,5), (0,8,0) (0,4,3), 

(0,2,4),(3,0,9), (0,0,10) 

Table 5. Values of the utility function, together with the relevant Pareto Optimal allocations. 

(u1, u2, u3) Pareto optimal allocation 

 

(u1, u2, u3) Pareto optimal allocation  

(12, 0 ,0 ) r1 =(2,2,2, 0,0,0, 0,0,0) (3, 4, 0) r9 = (0,0,1, 2,2,1, 0,0,0) 

(11, 0, 3) r2 = (1,2,2, 0,0,0, 1,0,0) (3, 2, 3) r10 = (0,0,1, 1,2,1, 1,0,0) 

(10, 0, 6) r3 = (0,2,2,  0,0,0, 2,0,0) (3, 1, 5) r11 = (0,1,1, 1,1,1, 1,0,0) 

(8, 0, 7) r4 = (0,1,2, 0,0,0, 2,1,0) (0, 8, 0) r12 = (0,0,0, 2,2,2, 0,0,0) 

(6, 0, 8) r5 = (0,0,2, 0,0,0, 2,2,0) (0, 4, 3) r13 = (0,0,0, 1,1,2, 1,0,0) 

(6, 1, 0) r6 = (1,1,1, 1,1,1, 0,0,0) (0, 2, 4) r14 = (0,0,0, 1,1,2, 1,1,0) 

(5, 2, 0) r7 = (0,1,1, 2,1,1, 0,0,0) (3, 0, 9) r15 = (0,0,1, 0,0,0, 2,2,1) 

(5, 1, 3) r8 = (0,1,1, 1,1,1, 1,0,0)  (0, 0, 10) r16 = (0,2,2, 0,0,0, 2,2,2) 
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Fig. 1. The graph of the decision process with chosen values of period criteria functions. 

Table 6: Ranking obtained by using compromise hypersphere method 

1. r7 

2. r2 

3. r11 

4. r13 

5. r1 

6. r3 

7. r8 

8. r14 

9. r5 

10. r10 

11. r16 

12. r6 

13. r15 

14. r9 

15. r4 

16. r12 

 

V.  SUMMARY 

We considered a multi-criteria dynamic process with a 

finite number of periods, states and decision variables. 

To obtain the efficient realizations, we used the forward 

algorithm presented in subsection II.C. Next step was to 

rank the obtained efficient realizations, which was made 

by using the compromise hypersphere method described 

in section III. Such general approach allowed us to apply 

the presented model to many multi-period, multi-criteria 

decision making problems. The exemplary area of 

applications of the presented dynamic model was the 

market model described by Elkeland [8]. We used the 

market model to illustrate the application of the 

presented theory. Further research and problems to solve 

are as follows: 

 

- Using other structures to describe the preferences 

of decision maker: interval coefficients, fuzzy 

numbers or stochastic orders, 

- Introducing interactive version of the compromise 

hypersphere method, 

- Comparison with other methods based on 

compromise programming, for example with 

methods from work by Opricovic and Tzeng [14]. 

- Applying the sensitivity analysis of the obtained 

ranking, [15]. 
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