
I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

Published Online January 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.01.07

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

A Content Assist based Approach for Providing

Rationale of Method Change for Object Oriented

Programming

Amit S. Ami
Institute of Information Technology, University of Dhaka, Dhaka, 1200, Bangladesh

Email: amit.seal@iit.du.ac.bd

Md. Shariful Islam
Institute of Information Technology, University of Dhaka, Dhaka, 1200, Bangladesh

Email: shariful@iit.du.ac.bd

Abstract—Software engineering requires modification of

code during development and maintenance phase. During

modification, a difficult task is to understand rationale of

changed code. Present Integrated Development

Environments (IDEs) attempt to help this by providing

features integrated with different types of repositories.

However, these features still consume developer’s time as

he has to switch from editor to another window for this

purpose. Moreover, these features focus on elements

available in present version of code, thus increasing the

difficulty of finding rationale of an element removed or

modified earlier. Leveraging different sources for

providing information through code completion menus

has been shown to be valuable, even when compared to

standalone counterparts offering similar functionalities in

literature. Literature also shows that it is one of the most

used features for consuming information within IDE.

Based on that, we prepare an Eclipse plug-in and a

framework that allows providing reason of code change,

at method granularity, across versions through a new

code completion menu in IDE. These allow a software

engineer to gain insight about rationale of removed or

modified methods which are otherwise not available in

present version of code. Professional software engineers

participated in our empirical evaluation process and we

observed that more than 80% participants considered this

to be a useful approach for saving time and effort to

understand rationale of method change. Later, based on

their feedback, the plug-in and framework is modified to

incorporate chronological factors. We perform quasi

experimental evaluation with professional software

engineers. It is found that time required to find rationale

of method change is reduced to at least half compared to

usual amount of time required for all the software

engineers who participated in the quantitative evaluation.

Index Terms—Software engineering, Mining software

repositories, experimental software engineering.

I. INTRODUCTION

Software engineering consists of several phases

including software development and maintenance phase.

Throughout these phases, modification of code takes

place. There can be several reasons for code change, such

as re-factoring, dead code removal, introducing design

pattern, bug fix and new features. Code change can be

categorized to different levels of abstraction, such as

modifying, introducing or removing control logic,

method in classes, renaming of local variables, and

different types of re-factorings. Frequent changes were

found to be made at the method signature level and

control logic [1]. However, control logics work at fine

granular level and generally do not have any identifier

associated with it. Methods, however, are an integral part

of object oriented programming. Moreover, fine level

method signature changes require changing the method

call at all sites, therefore having more impact than any

other change kinds [2].

Even though there are many plug-ins and features to

assist the software engineers in different ways, they still

have to face different types of problems. At least 50%

software developers consider that finding out reason of a

code change is a difficult problem [3] [4]. It is because

the general process of finding out reasons requires going

through source code repositories and issue trackers.

―Issue‖ is a metaphor that represents bug, defect, ticket,

feature, etc. [5]. However, this approach consumes

developer's work hour, up to 50% of daily activity [6].

Going through commits generally takes a hit or miss

approach. However, going through this is unavoidable in

order to avoid collision between developers' activities.

Advanced development works, such as troubleshooting

unexpected code behaviors [7] and monitoring evolution

of code are dependent on understanding code changes as

well. Understanding rationale of a particular code

segment change requires answering the following three

questions:

 What part of code was changed?

 Why it was changed?

 Who changed it, in case further discussion is

required

50 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

Software engineer's need to understand code change

increases with time as the code base increases. If he does

not know when a code segment he is interested in was

changed, the task gets complicated. Even though it is

possible to get some idea about the changes that took

place through commit histories, the procedure of finding

related commit is time consuming. Moreover, this

requires the developer to switch focus from editor view of

IDE, thus distorting attention. This whole procedure is

depicted in Fig 1. Sometimes, a developer may look for a

code element that was removed in a previous version. To

the best of our knowledge, existing approaches do not

directly provide rationale of changed or removed

elements and requires detailed, time consuming

investigation utilizing version control tools.

There are several research works found in literature

which focused on establishing connection between

software artifacts [3], [8], [9], [10]. These aimed to assist

software engineer during development and maintenance

phase. Assistance is generally about finding that made the

change, when it was changed and what changed. Most of

these approaches provide assistance outside editor view

in IDE. Approaches that provide assistance in editor

focus on current version of code. However, few works in

literature aim to assist a developer understand rationale of

code change in editor.

We aim to provide this information to developer in a

convenient way through the combination of a framework

and an IDE plug-in. To find the most attractive way of

providing information to developer, we conduct a survey

to find the most useful feature of IDE and how frequently

it was used [11]. Unsurprisingly, code completion, a

feature based on content assist came at top with 68%

votes as the most used feature of IDE. Version control

and debug received 23% and 5% vote respectively. 76%

participants voted that they use it very frequently during

development, as shown in Fig 2. This is consistent with the

survey by Murphy et al. [12] who observed that code

completion menu is one of the top six features used in

Eclipse IDE for consuming code specific information.

Features voted above code completion in his observation

were basic editing functionality whereas our survey

focused on features related to consuming information

specially provided through IDEs only.

We propose an approach of providing reason of code

change related information in the IDE through a separate

code completion menu. The framework allows extracting

information from source code and issue repositories. The

prototype plug-in provides information related to code

change to the developer on the fly. In case a relevant

issue id is not found, the plug-in provides what changes

took place and when it took place.

To determine whether our approach is useful for

developers, we implemented the framework and prepared

a plug-in for Eclipse IDE for Java [13]. The usefulness of

this approach is evaluated by professional software

engineers experienced in object oriented programming

using Eclipse IDE following empirical software

engineering guidelines. More than 80% software

engineers were found to be satisfied with its utility [14] in

qualitative evaluation and expressed their opinions. These

are described in our previous work in [15]. Based on their

feedback, the framework is modified and the plug-in is

improved to reduce information overflow, which are

described in this work. Additionally, our quantitative

evaluation of this approach is described in this work as

well.

We report the following contributions through this

paper:

Fig 1. General Process of finding rationale of code change

 A unique approach to help developer understand

code change from within IDE even when an item of

interest is not present in the current version of code

 An extensible framework that provides a guideline

to collect information across repositories and

provide code change related information through the

IDE

Both of which helps answer the what, why and who

changed a code segment as described earlier, thus

providing rationale of code change to software engineer.

We have discussed works which we found relevant in

Section II. In Section III and IV, we described the

framework requirements as well as the details about the

Framework. In Section V and VI, descriptions of

evaluation in qualitative and quantitative approach are

described respectively. Finally, our concluding remarks

and scope of future works are discussed in Section VII.

II. RELATED WORKS

Several works have been done to make understanding

code change easier for developers. Giving this type of

information requires mining software repositories. We

have considered research works that mine software

repositories to assist developers understand code change

or find artifacts related to code change as related work.

Lee et al. [9] first introduced the idea about adding

temporal dimension in code completion. The proposed

idea was that code changes can be shown through code

completion. They also allowed users to go to the previous

versions of code through temporal code navigation.

However, it focused on the code changes only, rather than

the reasons of code change.

 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming 51

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

Venolia [8] created Bridge framework, that aims to

establish connections between software artifacts by

means of textual allusions and preparing a graph based

system. However, it did not focus on providing reasons of

code change to developer.

Although not focused on providing reason of code

change to developer, Codetrail by Goldman et al. [16]

established connection between IDE and artifacts such as

documentation, bug fixes and error descriptions available

in web.

Fig 2. Frequency of using auto complete feature in IDE

Begel et al. [3] created CodeBook framework that

mined software repositories relying on the concept of

Bridge Framework.

They aimed to solve several problems of software

engineers, which included helping, understand why a

recent change was made. However, it focused on present

version of code. Hipikat is a recommender like system by

Čubranić et al. [17] [18]. It mined software artifacts

across different repositories to give access to project

memory and recommends artifacts. Their approach

involved querying the Hipikat system from the IDE and

then explore through artifacts.

Rastkar et al. [10] proposed that reason of code change

can be found by summarizing multiple documents which

are related to the change. They proposed that machine

learning can be used to identify appropriate sentences in

documents.

Deep Intellisense by Holmes et al. [6] utilized Bridge

framework. They provided the ―how and how‖ of code

change to developers. Their approach consisted of three

views about code items that offered history, people and

event related information in the IDE.

Voinea et al. [19] worked on representing code history

visually through lines as well as the contribution by

individuals for CVS version control management system.

It required the developer to move away from the editor

and focus on separate software to find out what happened

over the versions.

Local History [20], a facility provided by IntelliJ Idea

allows navigating through different versions of personal

code changes from within the IDE, while pointing out the

additions, removals, and modifications. It also helps by

putting labels on each version. However, it is not for

version controlled source code repositories and shifts

attention of developer from the active editor part of IDE.

Yao et al. [21] worked with CVS repositories used by

open source community at that time. A system was

provided which allowed searching through different

source code versions extracted from CVS comments.

They mainly focused on providing service about this

information to developers.

LSDiff, which represented logical structural difference,

was proposed by Kim et al. [7] This allowed inferring

system changes by abstracting a program as code

elements consisting of methods, fields and structural

dependencies between these.

Version Editor (VE) by Atkins et al. [22], introduced

the concept of giving information related to each line in

source file which helped developer know when that line

was created, who created as well as why it was created.

To evaluate our approach of providing reason of code

change through IDE, we provide information related to

code change. To achieve this, a customized database is

required which will contain the required information to

be displayed in the IDE through the prototype plug-in.

Collecting these data and providing these in the form of

useful information requires the preparation of a

framework. Collecting these data and providing these in

the form of useful information requires the preparation of

a framework. We have prepared a set of requirements that

the framework should fulfil and discussed this in Section

III.

III. FRAMEWORK REQUIREMENTS

A framework that can seamlessly provide issue based

reasoning of code change has to be connected with source

code version control and issue repository (or repositories).

A series of considerations are required in order to make it

an extensible framework.

The framework mines software repositories to establish

relation between code changes, code repository as well as

the issue repository. The mining process should be fast

and light enough to be setup and executed quickly. This

requires mining to take place only from useful resources

or entities. This also requires establishing relation with

the related entities in other repositories. It should be

flexible to support different types of repositories. It

should be extensible, so that anyone can extend the

framework and change the mining process for gathering

more information. Moreover, the mining process should

take place only when new changes are available in code

repository.

How the framework will expose itself is also

dependent on whom it is being exposed to. For example,

IDE users might seek reasons of code change while

understanding code change of closed source libraries. The

framework should provide a public interface in such

cases based on configuration. This would allow the

library users to know reason of code change while

sensitive information is encapsulated.

The means of providing information should be easy,

fast and simple to avoid making the user go through extra

52 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

steps. Information provided to the user should be

adequate enough to give him an understanding of code

change that took place. Moreover, it should be provided

in a compact format. It should satisfy user's need or at

least give him a starting point to search for further details.

Lastly, the information should be made available to

user in real time. If a user has to wait for information to

pop-up because data is not ready on the fly, the work

flow of the user will be hampered. This should not

happen, because we aim to assist during development

process by reducing the time required to find reasons of

code change.

Fig 3. Framework for IBRICC

Fig 4. Framework schema for IBRICC

Based on the discussion above, we prepare a

customized framework which allows us to mine

repositories and populate the database with information in

our desired format. The framework we have prepared,

Issue Based Reasoning in Code Completion (IBRICC), is

detailed in the following Section IV.

IV. IBRICC FRAMEWORK

IBRICC consists of several components, including a

set of crawlers and plug-in. The components are utilized

to populate the framework’s own database with

information related to changes made to source codes. The

data stored in database can be made available by

providing a service. We have used the service to provide

a local standalone database; using SQLite3 [23] engine,

in order to provide information to user in real time. An

overall architecture of the framework is provided in Fig3.

A. Source Code Repository Crawler

The source code repository crawler crawls the

repository in several stages. This can be done by

analyzing the source code repository database, or by

utilizing source code repository API (Application

Programming Interface). At first stage, it goes through

the current version of code repository in order to find

current source code files available. Additionally, it scans

through these files in order to find the classes in those

source files. This information is stored in database. At the

second stage, it goes through the commit histories

available of each file in order to find commits associated

with each class. This allows relating the commit ids with

the files, including composite changes, i.e. same commit

ID relating to multiple source files. For example, the

following code segment gives output to the commits

previously made for the file name provided to it.

git log --oneline Lexer.java
be0d6b3 clean up equals/hashcode for Interval
(Coverity)
a7a2050 rm dead code (Coverity)

These data, establishing relation between commits and

classes are stored in database. In order to find associated

issues, a set containing all commit IDs related to all

source files is analyzed along with commit descriptions

associated with it. Commit descriptions are analyzed

utilizing rule based approach in order to identify issue

related terms, such as Bug #12345, Fixes #1234, Issue

#12345 etc. The found issue IDs are tagged with the

related commit IDs. For example, the given code segment

can be used to find description of a particular commit.

git show -s ---format=%B 7049972
escape \r \n \t in lexical error messages.
Fixes antlr/antlr4#75

Finally, each commit ID related to available source

files are utilized in order to find the different versions of

the source files. Text based differential tools, such as git

show, are used to identify textual changes introduced per

commit per source file, which is based on string matching

[24].

git show 7049972 Lexer.java
- public String getCharErrorDisplay(int c)
+ public String getErrorDisplay(String s)

As shown, differential tools can be configured to

identify only the changed portion of text through versions.

This can be further analyzed to classify changes

introduced. As shown in previous code snippet, we have

used git show to identify a method declaration modified

in a particular commit. Change details, including previous

and committed version of code segments, related commit

id and related classes are stored in database.

B. Issue Repository Crawler

 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming 53

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

As mentioned in Section IV - A, the issues IDs are

identified in advance. Based on the project setup, these

issue IDs are classified. The task of Issue Repository

crawler is to gather data about those issue IDs. Gathering

data can take place by directly communicating the

repository database or by utilizing the issue repository

API. For example, the following code snippet in Python

utilizes PyGithub library [25] in order to gain issue

details from https://github.com/issues by

specifying an issue ID. In the following code snippet, a

particular GitHub [26] repository is defined in

constants.git_repo.

G_INSTANCE = github.Github()
REPO = G_INSTANCE.get_repo(constants.git_repo)
github_issue = REPO.get_issue (issue_id)

Fig 5. Prototype plug-in in Eclipse displaying rationale of method change

Table 1: Statistics Found through Framework Implementation

Repository Modified

Methods

Removed

Methods

Found

Issues

SQLite

DB Size

Antlr4 1132 2419 53 942KB

K-9 661 7049 29 1.3MB

JUnit 2796 281 117 4.3MB

C. Database

The database is used to store information related to

changes, classes found from latest version of available

source files as well as the commit descriptions. Five

schemas, as shown in Fig.4, are used to store the required

information.

classcommit schema holds information related to the

commits available for a class by relating unique commit

IDs with classes.

commitdescription schema contains commit related

details, i.e. the unique commit ID, description related to it.

If any issue ID is found from commit description, its

descriptions as well as title are stored as well.

methodchange schema contains data methods changed,

i.e. removed or modified through commits and tags these

along with the classnames.

issuedescription schema holds information related to

issues found by analyzing commit descriptions. For each

issue id found, relevant issue description and issue title is

collected and stored.

files This schema is not directly related to the

framework in the sense that it is not required providing

rationale of code change to software engineer. However,

this is necessary for listing the necessary source files and

their paths for executing the mining process.

With a combination of these four schemas, it is

possible to point out every method change in source files

throughout different versions and provide relevant

information to user on the fly.

D. IDE Plug-in

To evaluate our approach, we have prepared a plug-in

for Eclipse IDE. Its purpose is to provide information

related to rationale of code change through code

completion, covering method changes. This should not be

directly mixed with normal code completion. Otherwise,

a user may have to scroll through a large number of code

completion proposals and code change related proposals.

The information is provided through a separate code

completion menu. As a result, a user can see reason of

code change only when he intends to. Next, user should

be made aware that method changes are of two types,

removal and modification. Therefore, the code

completion items should be differentiated visually. One

indicator is used to indicate the methods which are

changed in a commit and the other one is to indicate

methods which are removed through a commit, as shown

in Fi 5. Therefore, the information provided through the

plug-in are as follows:

 List of methods removed or modified in the class

 If a method is modified, the modified method which

is introduced in its place

 Commit ID for each method change item

 Commit description related to commit ID

 Issue id, if found from the commit description

 Issue title, if issue ID was found item Issue

description, if description of issue ID is available

 Issue description, if description of issue ID is

available

User is able to gain rationale of method change in

several approaches. These approaches allow the user to

54 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

gain information about their method of interest without

risking information overload.

 Generic Approach

In this approach, user simply invokes the plug-in

within the IDE and the plug-in shows list of available

modified methods to user in the IDE.

 Keyword based Filtering Approach

In this approach; user specifies a keyword when

invoking the plug-in, for example, a portion of the

modified method he is searching rationale for. The plug-

in filters the information automatically and displays

information within the IDE accordingly.

Fig 6. Plug-in Evaluation through Survey

 Chronological Filtering based Approach

Since it is possible that user is interested in a method

signature that is no longer present in the current version

of code, as it was renamed or modified in any other

approach - user can filter the data of generic approach

using a time range. The plug-in automatically filters the

information of the generic approach and provides

information accordingly on the fly.

 Keyword and Chronological Filtering based

Approach

This approach is a combination of the keyword based

filtering approach and chronological filtering based

approach.

V. LAB EVALUATION

Based on user study in a controlled, off-line

environment, the evaluation focused on experience by

software engineers while utilizing the plug-in in IDE to

find out rationale of method change. Several open source

repositories from GitHub were utilized. The users were

not familiar with changes that took place previously.

Evaluation process involved utilizing the plug-in, asking

open ended questions, survey and discussion between

authors, participants.

A. Study Setup

Three GitHub Java repositories were utilized for

evaluation. The repositories we have chosen for analysis

were:

1. Antlr4, Another Tool for Language Recognition

version 4 [27]

2. Storm, a real time distributed computing system

[28]

3. k-9, an advanced mail client for Android [29]

These open source repositories are highly active in

GitHub open source repository, where open source

programmers are contributing from different parts of the

world for over two years. Eclipse IDE for Java

Developers was prepared with the pulled in git

repositories. The prototype plug-in was installed in

Eclipse IDE. Each project contained one SQLite database

prepared in advance using the IBRICC framework.

A. Participants and Data

The collected repositories consists a total of 844 source

files, 12788 commits. Details about information gathered

through the Framework of individual repositories are

provided in Table 1.

We recruited the participants from software

engineering firms as well as graduate software engineers

from IIT, University of Dhaka through mailing lists and

personal communication. Of the twelve voluntary

participants, 50% were professional software engineers

and 50% were exceptional students accomplished in

software engineering competitions. The later group had at

least six months of professional software engineering

experience in software firms. All of them were

experienced with Java programming language, Eclipse

IDE for Java Developers, version control and object

oriented programming concepts. The mix of professional

and graduate students allowed us to evaluate the plugin

from both experienced and novice programmer's point of

view.
B. Result

Compared to number of total commits, the number of

commits that can be used to identify changes in files

available in current version is comparatively lower. This

is observed for several reasons.

 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming 55

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

 Files are removed throughout versions. Because

source files from the latest version only was

considered, some files which contained changes

through commits were not crawled.

 Commits are used to make changes in non-source

code files, such as readme, log and version. This

also increased the number of commits.

 Developers often commit unrelated or loosely

related code changes in a single transaction, thus

reducing the number of commits correctly

associated with issues [30].

Again, it is observed that there are few issues

compared to number of commits that covers all source

code versions. This is due to the reason that issues are

crawled using regular expression based filters searching

for `#' in commit description. Additionally, GitHub

repository contributors often include enough information

through commit description due to the lack of integration

of a separate issue repository, thus reducing its number.

Table 2: Quantitative Evaluation of IBRICC

Developer Avg. Time – 1 Avg. Time - 2 Avg. Commits

1 45 5 3

2 204 15 8

3 125 20 5

4 224 15 8

5 87 20 6

Before evaluation, the participants were introduced to

the plug-in and its usage in a thirty minute interactive

session. They asked questions about the framework and

whether it could be extended to support other types of

repositories. In all their plug-in invocation, at least what,

and who related information was provided. In some cases,

information extracted from issue repository was not

available, however - that was due to lack of textual

allusion in commit description. Some common interview

questions from software engineers are:

1. How is the plug-in displaying this information?

Software engineers were curious to know the

techniques used behind the tool, whether it was collecting

and providing information on the fly or were showing

information from a predetermined storage.

2. Can I reduce or order the number of items in code

completion?

The prototype plug-in considered all the changes made

from the start of project. Users may or may not be

interested in older changes. Therefore, they asked

whether it was possible to filter or order code completion

items.

3. Is this applicable for distributed VCS only?

Distributed VCS features local version of code

repository, thus helping to do faster commits and merging.

Software engineers were curious about the performance

and configurations necessary for applying the framework

in a centralized version control system scenario.

During the over forty minute evaluation, software

engineers were interviewed after spending their time

going through the projects from GitHub repositories,

commit histories and utilizing the IDE plug-in.

Participants randomly choose source code files and

invoked the special code completion feature to gain

insight about changed method definitions. They were

asked to give feedback based on Utility, Response Time

and User Interface in a scale of 1 to 5, where greater

value means better. The survey results are depicted in Fig

6.

VI. QUASI EXPERIMENTAL EVALUATION

To further evaluate the approach of providing rationale

of code change in the IDE, we conduct quasi experiment

with the help of six professional software engineers

following the Rapid Application Development model of

software engineering. The aim of the experiment is to

initiate an environment as close to work environment as

possible and measuring the performance benefits by

utilizing the framework and the plug-in in the software

engineering process.

A. Participants

The six participants are professional software

engineers with graduation degrees from software

engineering institute and working in various software

engineering firms with a minimum of one year of

experience. All of them are interviewed to ensure that

they are familiar with and follows or utilizes proper

object oriented concepts, distributed version control

system and collaborative software engineering. Through

interview, we ensure that the participants are familiar

with:

 Eclipse IDE

 Git Version Control System

 Issue repository system in GitHub

 Git version control integration facilities in Eclipse

 Object Oriented Concepts and programming

facilities of Java Programming Language

B. Lab Setup

The experiment followed the within subjects model to

avoid biasness in performance comparison of software

engineers. The experiment takes place for a total of 126

work hours. The participants are asked to create an

inventory management system and are given specific

requirements about the management system. They are

also given instructions to follow de facto standards of

commit rules, which are:

 Making commits for small, individual changes in

source files

 Before making changes in another person’s code,

56 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

raising an issue in the issue repository when

necessary

 Referring to issue ids in case a commit fixes it

 Provide adequate information in commit description

and issue description, if an issue is made

Each participant uses their personal computers and

installed Eclipse, Git version control system in their

preferred operating systems, i.e. Windows or Ubuntu.

The participants setup a free, open source GitHub

repository under an organization for the project to

collaborate between themselves. Each participant decided

to work on distinct components of the system after

discussing between themselves.

To introduce code changes, we ask participants to

review each other’s components at code level. Based on

the system design documents prepared beforehand by

them, we asked them to make any changes necessary for

ensuring that proper object oriented concepts are being

followed. After this, we identified the changes made in

the signature level of code and separated these to two

groups. We asked software engineers to check their own

components after the changes are made. The software

engineers are not informed about the changes made and is

asked to identify the changes. After identification, we ask

them to analyze and understand half of the changes they

considered confusing by the usual procedure of utilizing

version control tools offered by the Eclipse IDE and Git

tools. The whole procedure of understanding each change

is timed for each software engineer. For the rest of the

changes, we ask them to understand changes by utilizing

the plug-in after the dataset is extracted by mining

software repositories using the framework. They are

given a brief introduction about the plug-in and a

practical demonstration of its usage in a separate project

to avoid learning curve related time consumption.

C. Measurements

Because of the limited scope of the quasi experimental

software project, as well as strict following of standard

software engineering guidelines, precision and recall rate

of the framework become very high. Instead, to evaluate

the proposed approach, performance of software

engineers in terms of time consumption while

understanding code change is measured. During

measurement, out of the six software engineers, result of

one software engineer is discarded as there was no

significant code change that raised confusion. For the

other five software engineers, the average time for

understanding code change in usual approach (Avg. Time

- 1), the average time for understanding code change

utilizing the framework (Avg. Time - 2) and the average

number of commits the developer had to analyze (Avg.

Commits) are provided in Table 2.

D. Discussion

As mentioned previously, the quasi experiment was

strictly done to compare performance of software

engineers in terms of time while finding rationale of code

change within the IDE between the usual procedure and

while being facilitated by the framework. Moreover, the

duration of the project was rather short, around 126 work

hours, which resulted in a rather short amount of

development. The mining approach is based on static

code analysis and textual analysis, which is shown to be

less effective by Herzig et al [30] for older software

projects which does not follow the atomic commit

convention. However, this evaluation gives us the notion

that with the utilization of framework, the time consumed

to browse through different commits just to find a

particular code change and its rationale can be drastically

reduced.

VII. CONCLUSION AND FUTURE WORK

 In this paper we have introduced the concept of

providing reasons of code change through code

completion along with code changes across versions.

Software engineers require knowledge about code change

- what, when and why the code changed. Our proposed

approach aims to answer these questions right within the

editor view of IDE. We have conducted a survey and

found that code completion is the appropriate approach to

provide this type of information. We have implemented

the framework and a plug-in to gain feedback from

software engineers. From evaluation, it was found to be

very useful in terms of utility and response time. The

evaluation of framework included analyzing source code

repositories to see whether it was possible to establish

relations between different types of repositories and

display a summarized result. It was found that simply

utilizing regular expression to find reasons of code

change from commit descriptions may not return enough

results. However, the main contribution of our paper was

to provide the ―what, when and why‖ related information

of method change to software engineer within the IDE.

Through evaluation by experienced software engineers,

we found that our approach is useful from a software

engineer's perspective and can save valuable time. One of

the feedbacks that we consider significant is that it should

allow software engineers to navigate to the details of

changes from the IDE.

In conclusion, providing reasons of code change

through code completion menu along with removed or

modified elements in code is an unexplored field we need

to turn our attention to. When properly utilized, it can

save time during software development and maintenance

phase by helping software engineers understand code

change from within the IDE without interrupting their

work flow.

ACKNOWLEDGMENT

This paper is based upon work supported by the

fellowship from ICT Division, Ministry of Posts,

Telecommunications and Information Technology,

Bangladesh.

REFERENCES

 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming 57

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

[1] Steve Counsell, Youssef Hassoun, Roger Johnson, Keith

Mannock, and Emilia Mendes, "Trends in Java Code

Changes: The Key to Identification of Refactorings?," in

Proceedings of the 2Nd International Conference on

Principles and Practice of Programming in Java, New

York, NY, USA, 2003, pp. 45-48.

http://dl.acm.org/citation.cfm?id=957289.957305.

[2] Sunghun Kim, E. James Whitehead, and Jennifer Bevan,

"Analysis of Signature Change Patterns," SIGSOFT Softw.

Eng. Notes, vol. 30, no. 4, pp. 1-5, may 2005.

http://doi.acm.org/10.1145/1082983.1083154.

[3] Andrew Begel, Yit Phang Khoo, and Thomas

Zimmermann, "Codebook: discovering and exploiting

relationships in software repositories," in Proceedings of

the 32nd ACM/IEEE International Conference on

Software Engineering - Volume 1, 2010, pp. 125-134.

http://doi.acm.org/10.1145/1806799.1806821.

[4] Thomas D. LaToza, Gina Venolia, and Robert DeLine,

"Maintaining mental models: a study of developer work

habits," in Proceedings of the 28th international

conference on Software engineering, 2006, pp. 492-501.

http://doi.acm.org/10.1145/1134285.1134355.

[5] Reid Holmes Olga Baysal and Michael W. Godfrey,

"Situational Awareness: Personalizing Issue Tracking

Systems," in Proceedings of the 2013 International

Conference on Software Engineering, 2013.

[6] Reid Holmes and Andrew Begel, "Deep intellisense: a

tool for rehydrating evaporated information," in

Proceedings of the 2008 international working conference

on Mining software repositories, New York, NY, USA,

2008, pp. 23-26.

http://doi.acm.org/10.1145/1370750.1370755.

[7] Miryung Kim and David Notkin, "Discovering and

representing systematic code changes," in Proceedings of

the 31st International Conference on Software

Engineering, Washington, DC, USA, 2009, pp. 309-319.

http://dx.doi.org/10.1109/ICSE.2009.5070531.

[8] Gina Venolia, "Textual Allusions to Artifacts in Software-

Related Repositories," in Proceedings of the 2006

international workshop on Mining software repositories,

2006, pp. 151-154..

http://doi.acm.org/10.1145/1137983.1138018.

[9] Yun Young Lee, Sam Harwell, Sarfraz Khurshid, and

Darko Marinov, "Temporal code completion and

navigation," in Proceedings of the 2013 International

Conference on Software Engineering, 2013, pp. 1181-

1184. http://dl.acm.org/citation.cfm?id=2486788.2486956.

[10] Survey on IDE (Responses), http://goo.gl/78Ye5G.

[11] Sarah Rastkar and Gail C. Murphy, "Why did this code

change?," in Proceedings of the 2013 International

Conference on Software Engineering, 2013, pp. 1193-

1196. http://dl.acm.org/citation.cfm?id=2486788.2486959.

[12] Gail C. Murphy, Mik Kersten, and Leah Findlater, "How

Are Java Software Developers Using the Eclipse IDE?,"

IEEE Softw., vol. 23, no. 4, pp. 76-83, #jul# 2006.

http://dx.doi.org/10.1109/MS.2006.105.

[13] Eclipse IDE for Java Developers,

http://www.eclipse.org/downloads/packages/eclipse-ide-

java-developers/keplerr.

[14] Survey on Eclipse Plugin of Issue based Reason of Code

Change (Responses), http://goo.gl/9Dq8yr.

[15] Amit Seal Ami and Md. Shafirul Islam, "An Efficient

Approach for Providing Rationale of Method Change for

Object Oriented Programming," in International

Conference on Informatics, Electronics Vision (ICIEV),

Dhaka, 2014, pp. 1-6.

[16] Max Goldman and Robert C. Miller, "Codetrail:

Connecting source code and web resources," J. Vis. Lang.

Comput., vol. 20, no. 4, pp. 223-235, #aug# 2009.

http://dx.doi.org/10.1016/j.jvlc.2009.04.003.

[17] Davor Čubranić and Gail C. Murphy, "Hipikat:

recommending pertinent software development artifacts,"

in Proceedings of the 25th International Conference on

Software Engineering, Washington, DC, USA, 2003, pp.

408-418. http://dl.acm.org/citation.cfm?id=776816.

776866.

[18] Davor Cubranic, Gail C. Murphy, Janice Singer, and

Kellogg S. Booth, "Hipikat: A Project Memory for

Software Development," IEEE Trans. Softw. Eng., vol. 31,

no. 6, pp. 446-465, 2005.

http://dx.doi.org/10.1109/TSE.2005.71.

[19] Lucian Voinea, Alex Telea, and Jarke J. van Wijk,

"CVSscan: visualization of code evolution," in

Proceedings of the 2005 ACM symposium on Software

visualization, 2005, pp. 47-56.

http://doi.acm.org/10.1145/1056018.1056025.

[20] IntelliJ IDEA : Local History - protect your code from any

accidental losses or modifications, even if made by other

outside applications.

[21] Andrew Y. Yao, "CVSSearch: Searching through Source

Code using CVS Comments," in Proceedings of the IEEE

International Conference on Software Maintenance

(ICSM'01), Washington, DC, USA, 2001, pp. 364--.

http://dx.doi.org/10.1109/ICSM.2001.972749.

[22] David L. Atkins, "Version sensitive editing: Change

history as a programming tool," in ECOOP 98, SCM-8,

LNCS 1439, 1998, pp. 146-157.

[23] SQLite Home Page, http://www.sqlite.org/.

[24] Miryung Kim and David Notkin, "Program element

matching for multi-version program analyses," in

Proceedings of the 2006 international workshop on

Mining software repositories, New York, NY, USA, 2006,

pp. 58-64. http://doi.acm.org/10.1145/1137983.1137999.

[25] PyGitHub 1.18.0: Python Package Index,

https://pypi.python.org/pypi/PyGithub/1.18.0.

[26] GitHub, https://github.com/.

[27] antlr/antlr4, http://github.com/antlr/antlr4.

[28] nathanmarz/storm, http://github.com/nathanmarz/storm.

[29] k9mail/k-9, http://github.com/k9mail/k-9.

[30] Kim Herzig and Andreas Zeller, "The Impact of Tangled

Code Changes," in Proceedings of the 10th Working

Conference on Mining Software Repositories, Piscataway,

NJ, USA, 2013, pp. 121-130.

http://dl.acm.org/citation.cfm?id=2487085.2487113.

Authors’ Profiles

Amit S. Ami received his B.Sc. in

Information Technology (software

engineering) from the Institute of

Information Technology, University of

Dhaka, Bangladesh in year 2012. He

received his M.Sc. in Software

Engineering from the same university in

year 2014.

His research interests include

experimental software engineering,

mobile application engineering and testing, and mining software

repositories. He has also worked on wireless mesh networks,

wireless routing protocols, cloud computing and human

58 A Content Assist based Approach for Providing Rationale of Method Change for Object Oriented Programming

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 1, 49-58

computer interaction. He has worked in software industries for a

year, was a Microsoft Student Partner and ACM Student

Member. He also worked as an organizer with Google

Developer Group, Bangladesh and Mozilla Bangladesh. He

joined as a lecturer at Institute of Information Technology,

University of Dhaka in year 2014 and is currently working there.

Md. Shariful Islam received his B.Sc.

and M.Sc. degree in Computer Science

from the University of Dhaka,

Bangladesh, in the year 2000 and 2002,

respectively. He completed his M.S

degree in Information Technology from

the Royal Institute of Technology

(KTH), Sweden, in 2005. He obtained

his Ph.D. degree in Computer

Engineering from Kyung Hee University, South Korea in

February, 2011.

He is now working as an Associate Professor in the Institute

of Information Technology (IIT), University of Dhaka,

Bangladesh. His current research interests include the design of

routing protocols, metrics and MAC protocols for wireless mesh

networks. He also worked on security issues related to Wireless

AdHoc and Mesh Networks. He has published a good number

of research papers in international conferences and journals.

Mr. Islam is a member of IEEE and KICS.

Manuscript received July 13, 2014; revised November 11, 2014;

accepted October 25, 2014.

How to cite this paper: Amit S. Ami, Shariful Islam,"A Content Assist based Approach for Providing Rationale of

Method Change for Object Oriented Programming", IJIEEB, vol.7, no.1, pp.49-58, 2015. DOI:

10.5815/ijieeb.2015.01.07

