
I.J. Information Engineering and Electronic Business, 2015, 4, 31-38
Published Online July 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2015.04.05

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

Assessing the Behaviour of Web Services using

Finite States

Maheswari S
SCSE, VIT University, Chennai 600127 TN, India

Email: maheswari.s@vit.ac.in

Justus Selwyn
SCSE, VIT University, Chennai 600127 TN, India

Email: justus.s@vit.ac.in

Abstract—Web service are the technology of a choice

when developing business applications that needs to be

loosely coupled, platform independent and capable to

cross enterprise boundaries. The interactions that occur

between web services need to be captured because such

interactions would be very useful if captured using

appropriate structures and analyzed for various purposes

such as assessing the responsiveness of a web service to

complete peer‟s requests. Since the invocations of web

services (WS) are dynamic, the behaviour of the WS will

be dynamic depending on how the invocations discover,

and get serviced by WSs. For this reason if the states of

the behaviour of a WS can be captured and assessed, then

tuning the WS and its performance improvement can be

engineered at any stage. This work is presented in this

paper.

Index Terms—Web Services, Runtime Behaviour, Finite

States, SOA, Behaviour Capture.

I. INTRODUCTION

Web service provides a standard means of

communication between the different software

applications giving the ability to access different services

in a unified and in interoperable manner over the internet.

Each service can offer various options for quality

characteristics based on the technical specifications like

performance, availability, reliability, scalability and so on.

They are basically termed as contracts in the context of

web service applications which verifies the run time

behaviour of the systems [2]. Any Web application

requires interaction between the client and the server on

multiple occasions to retrieve and submit data.

This requires page submission or navigation. Using

Web Services, we can accomplish two things: avoid page

submits and provide the ability to consume Web services

[5]. Avoiding page refreshes enhances the browsing

experience for the end user by making pages load faster.

The web service behaviour enables client-side script to

invoke remote methods exposed by Web Services, or

other Web servers, that support the SOAP and Web

Services Description Language (WSDL). This behaviour

provides developers the opportunity to use and leverage

SOAP, without requiring expert knowledge of its

implementation [4]. The web service behaviour supports

the use of a wide variety of data types, including intrinsic

SOAP data types, arrays, objects, and XML data [2]. The

web service (WS) behaviour is implemented with an

HTML Component (HTC) file as an attached behaviour,

which can be used in Microsoft Internet Explorer 5 as

well as in later versions.

Service Oriented Architecture(SOA) : Web services

can be thought of as components that can be described ,

published, located and invoked over the internet and all

these activities take place in run time. The functional

architecture of web services is given in Fig. 1. In order

for web services to be able to work together these

principles are integrated to be service oriented

architecture (SOA) [7]. The SOA organizes the web

services into three basic roles:

 Service Provider

 Service Requester

 Service Registry

Fig. 1. Web Services Architecture

The four functional components of SOA are

 Service Implementation

 Publication

 Discovery

 Invocation

BIND

Service

Broker

Service

Requester

Service

Provider

Bind

Publish Find

32 Assessing the Behaviour of Web Services using Finite States

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

Service Implementation: There are two basic

approaches to building a web service: building from

scratch or provide a wrapper to an existing application or

service so that it exposes a web service interface.

Publication: The web service description document

written in WSDL where the document describes what the

web service will do where it can be found and how to

invoke it.

Discovery: Once the web service appears in registry

any application can discover the service and therefore

locate it.

Invocation: There are two steps in invoking the web

service i.e. by using a simple object access protocol

(SOAP) where the WSDL file downloaded contains the

information needed to create a client using SOAP or the

client creates a SOAP message describing what it wants

the remote web service to do.

A. Motivation

With the advent of technology internet is becoming an

essential component in every day‟s life. The day to day

activities which a common man needs like railway

reservations, airline reservations, e-commerce, e-

governance, e-learning and so many other services are

just a click away. However, in the pool of web services,

the invoker has not gained much clue to choose which,

when, and why web-service to get better serviced.

To answer these questions, the invoking application or

the end-user has to have a better knowledge on the

behaviour of the web-service, in terms of its performance,

functionality, its states and the final quality of service

output [7], [8]. In order to provide the invoker with better

knowledge about the web-service, we have to provide it‟s

behaviour patterns. Thus we landed up in this work, to

capture the runtime behaviour of web-services.

This is possible because, in various scenarios a web-

service may behave differently according to its nature of

invocation, and will exhibit external behaviour states

under each scenario of invocation [5]. These external

behaviours are captured using the Finite State Machine

principles, and are named as different states, based on its

status quo, waiting, execution, completion states [18].

Hence this work on capturing the runtime behaviour of

web-services.

B. Outline of the Work

Section II discusses the behaviour analysis of the web

service (WS) in relevance to the states. In section III the

architecture for capturing the behaviour of the WS is

proposed and some results of preliminary experiments

conducted. Section IV presents main experimental work

and the results, following the conclusion and future

works in section V.

II. BEHAVIOUR ANALYSIS

The captured behaviour of web servicers (WS) are

used in many ways of analysis to build better strategies in

WS design, tuning, and improved functionalities and

performances [6]. The analysis we have opted is to build

a knowledgebase (KB) of WS‟s behaviour patterns with

respect to time, infrastructure and resource utilization.

The KB is then subject to interpret to take decisions or a

feedback providing repository for opting to choose a WS.

There are four different kinds of behaviour in web

services

 Service behaviours enable the customization of the

entire service‟s run-time including the service host

base [9].

 Endpoint behaviours enable the customization of

service endpoints and their associated endpoint

dispatcher [11].

 Contract behaviours enables the customization of

both the client run time and dispatch run time in

the client and service applications [14].

 An operation behaviour enables the customization

of the client operation and dispatch operation

classes again on the client and the service [6].

 Behaviour compatibility in web services can lead

to the termination of a web services composition if

they are not detected before the actual execution

[11].

These categories of behaviours address the aspects of

WS from the WS developers‟ perception, from the

service providers‟ perception and from the invoking

application/service‟s perception. In this work we have

opted to

 Propose set of States and its Transitions for Web

Services and the checks that each state undertakes

 Conduct preliminary experiments to understand

the timer state, which will help assess the

behaviour of WS with respect to time

 Conduct a case-study, and evaluate the dynamic

behavioural states of each invocation

The dynamic behaviour of Web services regarding the

development of new services and constantly changing

existing ones require a continuous evaluation process,

leading to capture web service information with respect

to their quality and performance evaluation [18], [19].

III. CAPTURING THE BEHAVIOUR USING FSM

In this work we have tried to identify the various

aspects of a web service and categorizes these

requirements into various states, which will be finite [1].

Based on the basic SOA, we have opted to propose

different states of a web-service (WS) and its transition

events and check. Using these states a state transition

diagram can be prepared which helps us to find the

various normal and the alternate flows while running a

web application [9]. Thus the knowledge inferred from

the above run time behaviour of the model can be treated

as an intermediary before executing further applications.

A. Proposed System Architecture

 Assessing the Behaviour of Web Services using Finite States 33

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

The overall objective of this work is to capture the

behaviour of a WS and take that to a knowledgebase,

which can infer dynamic decisions on the credibility and

performance related issues of a WS. Fig. 2., shows the

proposed system.

Fig. 2. Capturing the WS behaviour for a Knowledgebase

Module 1: In this module a sample web service has

been developed using dotNet programming language.

The demo application created is an e-commerce web site

which allows a customer to login while entering the web

site.

We have also tried to invoke different web-services

from different service providers. Invoking them and

analyzing their behaviour based on the timer state is an

attempt to assess the run-time behaviour of WS. The

preliminary experiments on WS with Timer State are

presented in sub-section B.

Module 2: In this module, the run-time behaviour of

the web-service is captured as collections of “state

transitions”. Each transitions are represented as states

using FSM principles, which helped us to derive the

necessary inferences.

Module 3: Using the Case Study we have taken in

Module 1, the runtime behaviour is analyzed and

concluded on inferences – which can help us determine

the nature, performance and quality of the web-service

under consideration. The case-study we have taken is an

online banking portal.

Fig.3. Web-Services and SOA Layer

B. State Transition Diagram

Capturing web service behaviour: Web services are

basically loose coupled system which is used for dynamic

binding of services. Therefore for efficient run time

execution it is necessary to identify both the normal and

alternate flows. Hence we have used state transition

diagrams which represent the various states for

generalised web applications.

Fig.4. Behaviour State Transition Diagram

D: Discovered State:

The service provider publishes the web service (WS) in

the UDDI registry. The service requester requests the

service broker for the specified web service. The service

broker responds to the client request with the details of

the web service and the URL of the WS using WSDL file,

if available in the UDDI. The requestor then binds to the

service provider with the model key and the URL given

by the broker.

Once the WS is bounded to the requester, and goes to

the „D‟ state. This is the first state, where the WS has

made its presence in the UDDI registry in the web.

SP: Service Provider Monitoring Agent

Fig. 5. Service Provider Monitoring

The server machine responds to the client machine

with a response code. The state maintains the code of the

server response and identifies the action accordingly. The

agent checks with the hardware requirements of the client.

The agent verifies the network speed of the system. After

successful completion of check-1 through check-3, the

WS goes to the next state, Invoked.

I: Invoked State

Once the Check 3 is passed, the state of the web-

service is changed to Invoked state. The invoke state has

the following check states as show in Table 1. Check to

see whether a specific, relevant method is invoked, and

proceed for input parameters checking, availability of

cache memory allocated for this invoked service/method

are sequentially made. If check 4 fails, then the WS is

pushed to the previous state SP. The flow of sub-states in

SOA Layer

Web-services

34 Assessing the Behaviour of Web Services using Finite States

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

„I‟ invoked state is sequential when these checks return to

be true.

If check-7 fails, WS goes to the „H‟ state, and if check-

8 fails, WS goes to „SP‟ state, otherwise, after check-9,

WS goes to „R‟ the running state.

Fig. 6. Invoked state cycle

R: Running State

Fig.7. Running State of a WS

Table 1. Web-service State Checks

Check 1 Check for the hardware requirements

Check 2 Check for the network speed

Check 3 Check for the client system error

Check 4 Check for the method invoked

Check 5 Check for the input parameters

Check 6 Check the technologies used

Check 7 Internal cache memory

Check 8 Check for the conversation id if any

Check 9 Check for the idempotent links if any

A web-service is said to be in a running state when has

become a running instance after passing out all the nine

checks that are given in table 1.Once the task gets

finished it goes to the halt state (H). The WS goes to the

TF state if it encounters any runtime technical failures.

This running state uses the resources allotted to it for

execution. While in execution if a web-service runs of

resources, memory out-run, network not-found, or invalid

input parameters- then the web-service goes to TF state,

and returns the control to the calling function or page

TF: Technical Fault State

A running instance of WS may get into the technical

faults (TF) state because of the following reasons:

 Client Crashes

 Timer Expiry

 Session Expired

 Server Fails

 Input/Output Stream exceptions

 Kill Command

T: Timer State

Each of the state is connected to a timer to find out the

time spent on the state and the transition time of a

particular state to another state. The time spent by a WS

in each state is calculated and assessed for any

bottlenecks that might lead to any performance issues.

The transition time between states indicates the

intermediate requirements of the WS to complete its task.

The total time taken = time spent on the state + the

transition time between the states.

Time spent on the state: this includes execution time +

invoking other services/resources

Timer state is kept at the end because it gives the

results of the time taken by the WS to complete its

functions right from invocation to termination.

C. Preliminary Experiments

Some preliminary experiments were conducted to

validate the Timer State (T). The results authenticate that

the Time (t) spent by the WS will have a say on its

behaviour on the time complexity. However, calculating

time complexity is out-of-scope of this work, and we

tried to check the „time taken‟ as a whole factor.

We considered to invoke four difference Web-services

(WS), and invoked them in 10 iterations, with different

sets of input. We could see differences in the time taken

for each iteration. The WSs are from two different service

provider “webservicex.net” and “servicerepository.com”.

The details of the WSs are:

WS1: Currency Converter

WS2: Calculator

WS3: Temperature Converter

WS4: Stock Quote

Table 2. Currency Converter: Webservicex.net

Iteration Description
Server

Response

Time taken in

millisecs

1 USD-INR 61.6499 14469

2 EUR-USD 1.1602 9496

3 INR-UAH 0.2569 1300

4 WST-USD 0.4064 968

5 BZD-BRL 1.3035 877

6 KPW-USD 0.0011 914

7 NAD-LBP 130.9939 880

8 LBP-EUR 0.0006 1216

9 ZAR-INR 5.3342 6145

10 TWD-ZAR 0.3677 10803

Average Time taken for this webservice: 4706 ms

T

 Assessing the Behaviour of Web Services using Finite States 35

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

Table 3. Calculator: ServiceRepository.com

Iteration

Web service

input (Two

numbers)

Webservice

Output

Time taken in

millisecs

1 74,43 117 809

2 39,63 102 927

3 32,59 91 974

4 26,64 90 743

5 54,47 101 630

6 28,98 126 620

7 43,52 95 533

8 21,80 101 849

9 68,59 127 686

10 64,25 89 844

Average Time taken for this webservice:761 ms

These services are invoked from two different service

providers Webservicex.com and ServiceRepository.com

The experiments objective is to calculate the time spent

by the service to serve the request. We invoked each of

the services separately in 10 iterations with different

inputs each time. Each iteration recorded different time

duration in milliseconds spent by the web-service in

finishing the tasks. The results are shown in Tables 2,

Table 3, Table 4, and Table 5.

Table 4. Stock Quote: Webservicex.net

Iteratio

n

Quote

Input
Webservice Output

Time taken

in millisecs

1 A
A-Last: 38.16;1/21/20154:02pm;Change: +0.23;Open: 37.75;High: 38.41;Low: 37.68;Volume: 2721609; Mrk:

12.796B; Prev.Close: 37.93;Perc Change: +0.61%; Ann Range: 35.6223 - 43.2833; Earns: 1.4925.46; Company:

Agilent Technolog

939

2 N

N-Last: 105.01;1/21/20154:02pm; Change: -0.55;Open: 104.96;High: 106.75;Low: 104.21; Volume: 394269;Mrk:

8.058B;Prev.Close: 105.56;Perc Change: -0.52%;Ann Range: 69.48 - 120.77;Earns: -1.254;P-E: N/A;Company:
Netsuite Inc Comm

1006

3 Y

Y -Last: 445.47;1/21/20154:01pm;Change: -1.61;Open: 447.78;High: 451.97;Low: 442.19; Volume: 54071;Mrk:

7.174B;Prev.Close: 447.08;Perc Change: -0.36%;Ann Range: 361.01 - 482.00;Earns: 45.0019.93;Company:
Alleghany Corpora

983

4 O

O -Last: 52.75;1/21/20154:02pm ;Change: +0.01;Open: 52.60;High: 52.96;Low: 52.27; Volume: 2117414;Mrk:

11.747B;Prev.Close: 52.74;Perc Change: +0.02%;Ann Range: 39.25 - 53.12;Earns: 0.98353.65;Company: Realty
Income Cor

989

5 P

P -Last: 15.68;1/21/20154:00pm;Change: +0.01;Open: 15.64;High: 15.95;Low: 15.47; Volume: 4078252;Mrk:

3.263B;Prev.Close: 15.67;Perc Change: +0.06%;Ann Range: 15.26 - 40.44;Earns: -0.111;P-E: N/A;Company:

Pandora Media

938

6 Q

Q-Last: 59.78;1/21/20154:05pm;Change: -0.17;Open: 59.86;High: 60.64;Low: 59.57;Volume: 755245;Mrk:

17.640B;Prev.Close: 59.95;Perc Change: -0.28%;Ann Range: 45.25 - 60.79;Earns: 2.574;P-E: 23.29;Company:

Quintiles Transna

1001

7 X

X-Last: 22.06;1/21/20154:00pm;Change: +0.48;Open: 21.54;High: 22.42;Low: 21.42;Volume: 7711010;Mrk:

3.209B;Prev.Close: 21.58;Perc Change: +2.22%;Ann Range: 21.39 - 46.55;Earns: 0.669;P-E: 32.26;Company:

United States Ste

909

8 G
G-Last: 20.50;1/21/20154:00pm;Change: -0.07;Open: 20.55;High: 20.56;Low: 20.33;Volume: 565391;Mrk:

4.440B;Prev.Close: 20.57;Perc Change: -0.34%;Ann Range: 13.68 - 20.61; Earns: 0.85;P-E: 24.20;Company:

Genpact Limited C

903

9 C
C-Last: 47.74;1/21/20154:00pm;Change: +0.48;Open: 47.35;High: 48.23;Low: 47.15;Volume: 22873308;Mrk:
144.6B;Prev.Close: 47.26;Perc Change: +1.02%;Ann Range: 45.18 - 56.95;Earns: 2.911;P-E: 6.24;Company:

Citigroup

1204

10 B

B-Last: 35.88;1/21/20154:02pm;Change: +0.48;Open: 35.44;High: 36.04;Low: 35.05;Volume: 205579;Mrk:

1.954B;Prev.Close: 35.40;Perc Change: +1.36%;Ann Range: 29.47 – 30.01;Earns: 2.041;P-E: 17.34;Company:
Barnes Group

977

Average Time taken for this webservice: 984 ms

Table 5. Temperature Conversion: ServiceRepository.com

Iterati

on

Webservice Input

in Celcius

Webservice

Output in

Fahrenheit

Time taken

in millisecs

1 50 122 1405

2 63 145.4 940

3 95 203 922

4 20 68 956

5 60 140 959

6 58 136.4 918

7 41 105.8 970

8 82 179.6 1356

9 43 109.4 957

10 39 102.2 910

Average Time taken for this webservice:1029 ms

These results show that the total time taken by a WS

includes the identified states D-SP-I-R-H states shown in

Fig. 4. Taken a WS the time values remains consistent

with

IV. CASE STUDY AND EXPERIMENTAL RESULTS

Services in the bank: A bank named “Altius Bank” has

created an online banking system for providing better

services to the customers without having to be physically

present in the bank. Altius Bank is a full-fledged financial

service provider founded by first generation professional

entrepreneurs. Altius strives to excel in investment

banking, debt synchronization which uses Soap based

services and encompasses WS-Reliable messaging and

36 Assessing the Behaviour of Web Services using Finite States

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

WS-security.

This bank has implemented all its services using SOAP

based web services for NEFT and RTGS interbank fund

transfer.

User Registration: The user registration has been

implemented in such a way that username and ID are

associated with a unique PAN card number. A successful

registration would create a unique account for the

customer.

A. Application of the States in the Case Study

Step 1.

Discovered State:

Input: Request to the UDDI server to get details for

Altius Bank.

Step 2

SP- Service provider monitoring check

Table 6. List of HTTP response codes

400 Bad file request

401 Unauthorised

403 Forbidden Access/Denied

404 File Not Found

408 Request timed out

500 Internal error

501 Net implemented

502 Service Temporarily Overloaded

503 Service unavailable

Input : a mouse click on the link if the discovered state

is successful.

Operations : It will check for the following response

codes if the server didn‟t respond

Output: Choose the list of services you want to avail.

Table 7. Checks for Invoked State

Check 1 Internet access enabled with 128 bit browser.

OS -Win Xp,Vista,7,Mac OS
Processor-Pentium or equivalent processor

Check 2 The network speed should be 56.6kbps

Check 3 Client system error

Check 4 Check the method invoked e.g. createAccountRequest()

method is used while creating an account

Check 5 Check for the input parameters i.e to enter the user details
while creating an application

Check 6 Not needed in all applications

Check 7  In order to use internet banking services we need to

enable the java script.
 To access some parts of the website it is necessary

to install an adobe flash player.
 For printing PDF documents the system needs to

have adobe reader installed.

 Session cookies are security features one of the
information used to ensure that some part of the

information is confidential.
 SSL(secure socket layer) must be enabled.

check 8 Checking the internal cache configurations and a

minimum 512MB RAM is required.

Step 3

This invoked state tries to establish a proxy connection

with the bank server. Once the request is accepted the

invoking agent checks whether the client system is

compatible with the application requirements.

Output: Once the metrics are checked the service is

ready to be invoked. In this case the user tries to invoke

the create account service and the interbank fund transfer.

Step 4

R: Running State

Input: Call createAccountMethod()

 Enter User Details.

 Create Account

Step 5

TF: Technical Fault state

Input : logout=true

For several other reasons a running instance can come

to halting state. Some of them are:

 For security reasons access to internet banking has

been interrupted.

 Request could not be completed because of server

problems.

 Site can be slow sometimes if too many users are

trying to access the the site at the same time.

 If the client card number is entered incorrectly.

 Make sure that the client is logged in properly.

 Session timed out.

 Successful finished the running instance.

B. Inter Bank Funds Transfer

The funds that is transferred between the banks is

through ACH-NEFT/RTGS. The method that implements

the interbank transfer service is

transferFundsInterBank().When the operation is invoked

by the user the bank checks for the available balance and

invokes the initiate Transfer() web services. Now when

the bank invokes the execute Transfer() web service. This

happens for NEFT transfers which will enable the target

bank to know that the transfer of funds process is initiated.

As the parameters are passed on to this method contains

the details of the transferee the target bank after doing

due diligence will return the status of the funds transfer.

D SP I

 D

D SP

I R

I R H

 Assessing the Behaviour of Web Services using Finite States 37

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

If there are issues at this point of the transaction the

system records this as “failed transaction”. Subsequently

when the update_status() is invoked with the status as

“success” the balance is updated in the respective account.

Requests Req1, Req2 upto Reqn, are trying to invoke the

fund transfer WS of Aliuis Bank. Fig. 9 shows the cluster

of requests waiting, and possible behaviour paths the WS

would take. We created test requests to the WS to transfer

fund to our own account and two other accounts of our

colleagues of different banks, and found out each request

service have different behaviour patterns.

Fig. 9. Requestors for Fund Transfer Services

Req1 := D – SP – I – R – H

Req2 := D – SP – T F

Req3 := D – SP – I – Req3

Req4 := D – SP – I – R – H – TF

Req5:= D – SP – I – R – TF

Req6 := D – TF

Req7:= D – SP – I – TF

Req8:= D – SP – I – R – Req8

Each of the transaction at different states is tied to a

timer state through which we were able to estimate the

time spent (in secs) by the WS on that state.

Table 8. Time Spent on Each State

Req D SP I R H TF Total

1 0.034 0.011 0.025 0.326 0.004 - 0.4

2 0.012 1.000 - - - 0.008 1.02

3 0.085 0.762 0.054 - - - 0.901

4 0.031 0.043 0.013 0.413 0.006 1.000 1.506

5 0.172 0.078 0.041 0.082 - 1.000 1.373

6 1.000 - - - - 0.007 1.007

7 0.052 0.037 1.000 - - 0.009 1.098

8 0.047 0.025 0.083 0.316 - - 0.471

A simple experiment conducted on the time spent by

each request on the WS in each of the states has given

some insights into the run-time behaviour of the WS of

Altius Bank‟s Fund Transfer. We had the set the timer

expiry to 1.000s

Observations: Whenever there was an error through

TF or due to some other reasons, the timer expires and

the WS moves on to the next state omitting the

transaction details. In Req2, from SP to TF state, total

time spent is 1.02, but with failed fund transfer. Req1 and

Req4 has successful fund transfer with total amount spent

0.400 and 1.506 secs respectively. Other WS have failed

due to TF or have returned back to the caller application

due to some recursive events.

This initial work on capturing the runtime behaviour of

the WS using Finite States has helped us to assess the

time spent by WS is different for different requests or

calls. Similarly other runtime attributes can also be

estimated and a knowledgebase could be created on this,

so as to decide which type of requests will be preferred

by the calling applications.

V. CONCLUSION

Web services are everywhere, and their dynamisms are

tremendous. Every call to WS results in various landing

pages with success messages or failure/error messages.

Which WS is preferred for my call? This can be answered

by knowing the behaviour of web-services in detail. In

this work we have proposed an architecture on capturing

the run-time behaviour of a WS, and this answers which

WS to prefer based on the organization‟s requirement

[17]. A finite set of states are identified which depicts the

behaviour of the WS during runtime. The state transition

part is also validated using the Fund Transfer WS of

Altius Bank. We conducted small experiments to find out

the time spent by the WS on each of the states. Though

the results are simple, it is convincing that this work will

direct us to carry out more empirical works in this area.

ACKNOWLEDGMENT

The author wish to thank the SMEs in Entapp

Solutions for giving us space to conduct the experiments

and thank the management of VIT University who helped

to carry out this base research work

REFERENCES

[1] R. Alur, “Timed Automata”, In Proceedings of the 11th

International Conference on Computer Aided

Verification(CAV‟99), Vol. 1633 of LNCS, pages 8–22.

Springer-Verlag ”, 1999.

[2] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti,

“Run-time Monitoring of Instances and Classes of Web

Service Compositions”, In ICWS ‟06: Proceedings of the

IEEE International Conference on Web Services, pp. 63-

71, 2006.

[3] Dainela Remenska, Tim A.C Willemse,Kees

Verstoep,Jeff Templon, “Using Model Checking To

Analyze The System Behaviour of the LHC Grid”,

International IEEE/ACM Symposia on Cluster, Cloud and

Grid Computing, pp.335-343, 2012.

[4] Hamidi Yahyaoui, Zakaria Maamar, Erbin Lim, Phillipe

Thiran, “Towards A Community Based Social Network

Driven Framework For Web Services”, Future

Generation Computer Systems, Vol. 29, No. 6, Pages

1363–1377, August 2013.

[5] Jocelyn Simmonds Et. Al., “Runtime Monitoring of Web

Service Conversations”, IEEE Transactions on Services

Computing, Vol. 2, No. 3, July-Sept, 2009

[6] Jocelyn Simmonds, Shoham Ben-David, Marsha Chechik.

“Monitoring and Recovery of Web Services”, The Smart

Internet, LNCS 6400, pp. 250-288, 2010.

38 Assessing the Behaviour of Web Services using Finite States

Copyright © 2015 MECS I.J. Information Engineering and Electronic Business, 2015, 4, 31-38

[7] Jocelyn Simmonds, “Dynamic Analysis of Web Services”,

Doctoral Thesis, University of Toroto, 2011.

[8] M. Kanmani, I. Suhaimi, K. Mojtaba, M. Keyvan, and T.

Sayed Gholam Hassan, "An Evaluation of Process

Mediation Approaches in Web Services", Proceedings of

the 12th International Conference on Information

Integration and Web-based Applications & Services, Paris,

France, ACM pp. 48-55, 2010.

[9] Alessio El At., “Runtime Monitoring of contract regulated

web services”, Fundamenta Informaticae XXI, pp. 1001-

1017, 2009

[10] Xi Chen, Zibin Zheng, Qi Yu, and Michael R. Lyu, “Web

Service Recommendation via Exploiting Location and

QoS Information”, Ieee Transactions on Parallel and

Distributed Systems, Vol. 25, No. 7, July 2014

[11] Guobing Zou, Qiang Lu, Yixin Chen, Ruoyun Huang,

You Xu, and Yang Xiang, “QoS-Aware Dynamic

Composition of Web Services Using Numerical Temporal

Planning”, IEEE Transactions on Services Computing,

Vol. 7, No. 1, January-March 2014.

[12] Zibin Zheng, Yilei Zhang, and Michael R. Lyu,

“Investigating QoS of Real-World Web Services”, IEEE

Transactions on Services Computing, Vol. 7, No. 1,

January-March 2014.

[13] Udhav S. Lahane,K.N.Shedge, “A Review of Web

Service Recommendation Systems”, International

Journal of Science and Research (IJSR), Volume 3, Issue

11, November 2014.

[14] Zibin Zheng, Hao Ma, Michael R. Lyu, and Irwin King,

“Collaborative Web Service QoS Prediction via

Neighborhood Integrated Matrix Factorization”, IEEE

Transactions on Services Computing, Vol. 6, No. 3, July-

September 2013.

[15] L. Barakat, S. Miles, and M. Luck, „„Efficient

Correlation-Aware Service Selection”, in Proc. IEEE 19th

International Conference on Web Services, pp. 1-8, 2012,

[16] G. Kang, J. Liu, M. Tang, X. Liu, B. Cao, and Y. Xu,

“AWSR:Active Web Service Recommendation Based on

Usage History”,in Proc. IEEE 19th International

Conference on Web Services, pp. 186-193, 2012.

[17] Saida Boukhedouma, Mourad Oussalah, Zaia Alimazighi,

Dalila Tamzalit, "Service Based Cooperation Patterns to

Support Flexible Inter-Organizational Workflows",

International Journal Information Technology and

Computer Science, Vol. 6, No. 4, pp. 1-18, 2014.

[18] Tarek S. Sobh, Medhat Fakhry, "Evaluating Web Services

Functionality and Performance", International Journal

Information Technology and Computer Science, Vol. 6,

No. 5, pp. 18-27, 2014.

[19] Abhishek Kumar, Manindra Singh, "An Empirical Study

on Testing of SOA based Services", International Journal

Information Technology and Computer Science, Vol. 7,

No. 1, pp.54-66, 2015.

Authors’ Profiles

Maheswari S is a fulltime Assistant

Professor in the School of Computing

Sciences and Engineering at VIT

University. She is pursuing her PhD in

the areas of Web-services, Semantic Web,

and Knowledge-based Web-services.

With a post-graduate in Computer

Technology, she is specialized in Web-

Technologies and Service Oriented Architecture. She is a

member of ACM-India professional association.

Justus Selwyn is a Doctorate in Computer

Science specialized in Object-Relational

Modeling and Knowledge Engineering.

His areas of research include Software

Engineering, Knowledge Engineering,

Object-Relational Modeling and

Knowledge based System Design.

He has been into academic & industrial

research and has published several of his research work results

in International Journals and presented some of them in

International Conferences – including SwSTE in Israel and

DASMA in Germany.

He is a member of IEEE, ISTE, IAENG professional

associations. Presently he is working as Associate Professor at

VIT University, Chennai, and chairs the Software Engineering

Research Group of the University. He has collaborative

consultancy works on system design and development with

software companies.

How to cite this paper: Maheswari S, Justus Selwyn,"Assessing the Behaviour of Web Services using Finite States",

IJIEEB, vol.7, no.4, pp.31-38, 2015. DOI: 10.5815/ijieeb.2015.04.05

