
I.J. Information Engineering and Electronic Business, 2016, 2, 1-13
Published Online March 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.02.01

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

Design Migration from Procedural to Object

Oriented Paradigm by Clustering Data Call Graph

Mohayeminul Islam, Tajkia Rahman Toma
Jantrik Technologies Limited, Dhaka 1213, Bangladesh

E-mail: mohayeminul.islam@jantrik.com, tajkia.toma@jantrik.com

Md. Selim
Department of Disaster Science and Management, University of Dhaka, Dhaka 1000, Bangladesh

E-mail: selim.iitdu@gmail.com

Alim Ul Gias, Shah Mostafa Khaled
Institute of Information Technology, University of Dhaka, Dhaka 1000, Bangladesh

E-mail: alim@du.ac.bd, khaled@du.ac.bd

Abstract—Management of legacy software and its code,

generally written in procedural languages, is often costly

and time-consuming. To help this management, a

migration from procedural to object oriented paradigm

could be a cost effective option. One approach for such

migration can be based on the underlying dependency

structure of the procedural source code. In this work, we

propose a new heuristic algorithm that utilizes such

structure for the design migration using agglomerative

hierarchical clustering. The dependency structure that has

been used involve functions, parameters and global data

of the procedural code. Given a procedural code, the

proposed approach produces candidate classes for an

object oriented design. The proposed algorithm was

tested against a database of procedural codes. The results

obtained have been empirically validated using Jaccard

similarity coefficient. It is observed that the proposed

method yields 75.6% similarity with respect to the ground

truth in the average case.

Index Terms—Design Migration, Agglomerative

Hierarchical Clustering, Code Analysis, Software

Maintenance, Reverse Engineering.

I. INTRODUCTION

Software maintenance and change management are

two of the ―never ending‖ continuous processes in

software development life cycle [1]. These processes

involve the activities necessary to modify or improve an

existing software product and requesting, planning,

implementing and evaluating changes to the software

system. The cost of such continuous processes largely

depend on the design of the software system. Poor design

may hinder the maintenance process by adding

complexity and requiring additional effort and cost to

mitigate those complexity.

The maintenance of legacy software [2, 3] often

becomes costly and difficult due to its development

paradigm. For an example, procedural programming was

highly popular in earlier decades of software

development and thus many legacy software were

developed using procedural languages. The inherent

limitations of procedural languages to deal with

complexity and manageability of large code base make it

troublesome to maintain such software [4, 5]. Moreover,

it is difficult to ensure quality attributes like reusability

[6], maintainability [7] and modularity [8] by using

procedural paradigm.

Object oriented programming languages, by their

design, provide better control on the code with proper use

of its basic properties: Polymorphism, Inheritance and

Encapsulation. For these reasons, migration to an object

oriented languages is sometimes expected. A manual

migration process can be very expensive in terms of cost

of development, resource and time [9]. For large software

system developed in procedural programming language,

an automatic migration to object oriented design can

effectively reduce this cost. This could be achieved by

reverse engineering which helps to analyze a system‘s

internal elements and its external behavior and creating a

structural view of the system.

One of the major challenge in any object oriented

design is to ensure Encapsulation. It is defined as the

bundling of data and functions that operates on the data

together in a single component [10]. Encapsulation

provides modularity in an object oriented design that

helps in better manageability. Thus, a reverse engineering

process of migrating procedural scheme to object oriented

one must cover the encapsulation property of classes. To

be more precise, it should properly define the class

membership for each of the data and functions in the

procedural code [11].

To solve the problem, we propose a heuristic approach

to migrate from procedural to object oriented design. Our

work has three major contributions: first, we represent a

procedural program as a special type of graph, Weighted

Data Call Graph, and apply Agglomerative hierarchical

clustering on the graph. Second, we define a new

2 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

similarity coefficient to measure similarity between nodes

of the graph. Third, we score each level of the hierarchy

by measuring cohesiveness [12], coupling [13] and

modularity. The clustering level that produces highest

score is considered to be the class design for the input

procedural program.

Our work has extended the traditional call graph and

defined the concept of the Data Call Graph (DCG). A call

graph is defined as a human readable graphical

representation of a program [14, 15, 16, 17]. In a call

graph, each of the functions in the program are

represented by a node. If a function calls another function,

there is an directed edge from the first function to the

later. In case of DCG, it includes data nodes along with

function nodes of call graph. A weight is set on the edge

of the DCG depending on the relationship represented by

the edge and thus a Weighted DCG (WDCG) is produced.

A clustering scheme should be applied to WDCG to

generate clusters which are candidate classes in the object

oriented design [18]. We have applied Agglomerative

hierarchical clustering [19, 20] on WDCG to find the

class design from procedural program. Agglomerative

clustering requires calculation of similarity between

nodes of the graph. There is a number of similarity

measures to calculate similarity between nodes of a graph.

However, none of them are applicable to weighted graphs.

Therefore, we have defined a Weighted Distance Matrix

(WDM) to measure similarity among nodes in a weighted

graph.

In the migration process we create a hierarchy of

clusters on the WDCG using Agglomerative clustering.

Then we search a level in the hierarchy that gives

maximum output to an objective function based on three

attributes of an object oriented design: coupling, cohesion

and modularity. That is, we followed the principle that a

design should be as modular as possible, the members of

a class should be highly co-related and any pair of classes

should be as decoupled as possible. These quality

attributes are widely accepted in the existing literature

[18, 21, 22, 23]. The clusters generated in this way give

clues to classes in the object oriented design.

We have performed an empirical evaluation of the

design migration process by calculating similarity

between output produced by our technique and manual

object oriented de- sign. The manual designs are prepared

and evaluated by a group of professional software

engineers from three Software Development Companies

(Jantrik Technologies Ltd. www.jantrik.com, Genweb2

www.genweb2.com, Therap (BD) Ltd.

www.therapservices.net). Five C programs of variable

size have been used in our evaluation and the similarity

was measured using Jaccard similarity coefficient. It has

been seen that in best case, the approach yielded 100%

similarity and in average case the similarity turned out to

be around 75.6%.

Rest of the paper is organized as follows: Section II

dis- cusses the state of the art on design migration. The

new terms that have been introduced in this work is

presented in Section.

III. Section IV discusses the design migration

methodology by clustering Weighted Data Call Graph.

Verification and validation of the proposal is presented in

Section V. Finally, the concluding remarks along with

future research direction is provided in Section VI.

II. RELATED WORKS

Since the evaluation of object oriented concept,

migration from procedural to object oriented paradigm

has been ad- dressed as a major research problem.

However, most of these works focus on code-level

migration, rather than addressing the migration in design

level. By code-level migration, we mean that a program is

simply translated from one language to another, whereas

we focus on migrating the design from one paradigm to

another. This section highlights some of those major

contributions in design migration.

Sneed et al. [24] introduced the concept of code to

design migration. The work converts a COBOL program

to an object oriented design document by capturing and

documenting the sequence of operations executed in a

COBOL system. The work identified different types of

objects like user interface objects, information objects,

file objects, view objects, etc. This work is only for

COBOL and does not generalize for all procedural

languages. They also developed a tool ‗ObjectRedoc‘

using C and MS-Access running under MS-Windows and

used it to help downsizing of mainframe legacy systems.

There has been work where researchers aim to

decompose a software system to subsystems to

understand its behavior [25]. Their work is based on

software clustering technique that uses both static and

dynamic information from the source code. Nevertheless,

their work does not provide any guideline to produce

classes for object oriented design. Works of similar

nature, in the context of software architecture recovery

and modularization, have been reviewed by Maqbool et al.

[26]. Their work analyzed the clustering process of

multiple clustering algorithms using multiple criteria and

showed how arbitrary decisions taken by these algorithms

effect the quality of the clusters.

Heroux et al. [27] presented the architectural

comparison of commercial software and scientific

research software. They found that commercial software

are written for the purpose of generating revenue where

the underlying algorithms and methodologies are mature.

On the other hand the scientific research software in

computational science and engineering disciplines are

developed for new algorithms and computational

capabilities which are less modular and largely unaware

of standard industry concepts and practices.

The work in [9] used relational database for

transforming object oriented design from procedural

system. The migration was done in two phases. Firstly,

object identification form procedural program and

secondly, translation of the old one into new object

oriented system. They implement three algorithms

presented in [28, 29] for identifying objects in procedural

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 3

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

software namely global based object identifier (gboi),

type based object identifier (tboi), receiver based object

identifier (rboi). These methods were applied to a 3000

line program written in C, and rboi performed better in

identifying classes. Khan et al. [30] compared procedural

programming with object oriented programming and

proposed a migration approach from procedural to object

oriented language. This approach bind object on the basis

of hierarchical dependency of classes instead of

clustering function together. This study focused on the

structural difference between the procedural and object

oriented programs and concluded that object oriented

programming increases software reliability and

modifiability by decoupling specification and

implementation, and allows software code to be

extensible, reusable and maintainable.

The method of finding object-like feature in code

presented in [29] is based on global data or data type.

They define class as a set of data, type and function. First

method considers only the global variable and represent a

program as a graph based on the use of variable in a

routine. If a variable is used by a function, then they are

connected by an edge. Each of the connected components

in the generated graph are considered individual classes.

This highly optimistic method is very likely to generate

large classes with many responsibilities.

Van Deursen et al. [20] presented clustering with

concept analysis for identifying objects in legacy code.

This object identification approach uses clustering and

concept analysis separately and result is merged together

to overcome the shortfall of clustering technique. The

method uses concept analysis to determine number of

classes and uses Agglomerative clustering to identify

classes. The proposed identification technique was

applied to a real life legacy COBOL system to evaluate

performance. However, their work focuses on code

translation, rather than addressing the migration in design

level.

A framework for migrating procedural code to object

oriented platforms is presented in [21]. This framework

generates Abstract Syntax Tree and then this tree is

translated in to extensible markup language (XML). This

XML is analyzed for identifying class based on the global

data and variables. The work focus on minimizing

coupling and maximizing cohesion. The method was

applied at the IBM Center for Advanced Studies of IBM

Toronto Lab for C to C++ migration. This framework can

also be used to identify reusable components. The work

in [31] recognized the maintenance and evolution of large

software as difficult. To make such software

understandable, they used directed graphs to represent

software modules and their dependencies. This

representation, although hides a lot of details, might be

complex and therefore, partitioning closely related

modules into clusters was considered as a suitable

approach to comprehend the complex design. They

presented a genetic algorithm based clustering technique

to identify the modularity of a procedural system. They

success- fully applied this approach in Mini-Tunis [32]

software and validated by comparing with the original

documented design. In 2011 Dineshkumar et al. [19]

presented an empirical approach to migrate from

structured program to object oriented design. They

introduced a new technique for code to design migration,

which creates Agglomerative cluster using Jaccard

distance matrices. They initialized the relationship

between variables and functions of the structured

program using Jaccard distance measure that leads to

grouping or clustering. They represented the result in

UML and conducted a comprehensive industrial survey to

evaluate the accuracy of their proposal. Their use of

Jaccard distance as a measure of distance between

clusters considers all types of relationships to be equally

contributing to the distance between the clusters. In 2013

Siddik et al. [18] modeled structured to object oriented

design migration as a optimal graph clustering problem.

However, this model was realized to be computationally

hard. The work presents eight heuristic algorithms based

on Monte Carlo and Greedy approaches and formulated

the κ-index for measuring the quality of a cluster.

Clustering coefficient (Ψ) and characteristic path length

(χ) were also used for assessing the quality. This

approach only considers functions to be potential member

of class ignoring variables and constants. They used high

coupling, low cohesion and large number of objects as

the objective.

The work of Siddik et al. [18] was extended by Selim

et al. [33] and Siddik et al. [34]. Selim et al. [33]

presented a genetic algorithm for finding optimal

clustering of call graph with an objective to maximize the

number of intra-cluster edge and minimize inter-cluster

edge. This work outperforms the previous work [18] of

Greedy and Monte Carlo by 40% and by 49.5%

respectively. Siddik et al. [34] also extended their

previous work [18] and proposed two variations of local

search heuristic. Selim et al. proposed an extension over

this work based on variable neighborhood search [35].

However, these works ignore variables and constants of

the procedural code as decision parameters for

determining class.

The review shows that only a few of the works directly

proposed a method that focus on migrating procedural

design to detailed object oriented design. Those

approaches do not yet solve design migration problem.

To overcome the limitations in the existing literature, we

propose a new heuristic approach to migrate a procedural

design to an object oriented design, which considers

functions, global data and parameters of the procedural

code as a basis for the intended reverse engineering.

III. PROPOSED TERMINOLOGIES

In this section we propose the terminologies, notations

and equations to support the design migration technique.

We propose a new type of graph, Weighted Data Call

Graph (WDCG), to represent a procedural program. To

compute similarity between two nodes of WDCG, we

introduce a new similarity measure called Weighted

Distance Matrix (WDM). Moreover, we propose a data

4 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

structure, Entity Map that incorporates certain weights

along with Entity Set [19] to calculate the value of WDM.

These concepts are elaborated in the following

subsections.

A. Weighted Data Call Graph

Call graph is a widely used representation for program

analysis. A number of related works have used this

representation for their design migration techniques [18],

[34]. Although very useful, call graph limits the program

representation only to functions or classes; however, the

variables and the constants of a program are also

important members of the design. We extend call graph

to Data Call Graph (DCG) where variables and constants

are also represented by nodes. We do not identify

variable and constant separately and use the term data to

mean any of them. In a DCG there are two types of nodes:

Function Node: Node to represent functions. We

ignore the system functions and external library functions

because they are out of the scope of design migration.

Only the functions defined in the program to migrate are

considered.

Data Node: Node to represent data. Like the Function

Node, we exclude the system data and external library

data and include only the data declared within the

program to migrate. Data nodes include constants,

variables, pointers and dynamically created variables.

There are four types of edges in DCG:

Self-Edge: Every element is connected to itself by a

self-edge. Because self-edge exists for all elements, we

do not show those in DCG.

Call Edge: When a function calls another function,

there is a call edge from the first function to the second.

Call edge is identical to the edges in call graph.

Read Edge: There is a read edge from function f to data

d if and only if d is read in f. Reading may occur by

reading a global variable or reading a variable passed as

argument to the function.

Write Edge: There is a write edge from function f to

data d if and only if d is written in f. Writing may occur

by writing a global variable or writing a variable passed

by a pointer or reference to the function.

All types of relationships between a pair of elements

cannot be considered equal, therefore we put weight on

the edges of DCG depending on the relationship of

represented by the edge. We call the resultant graph a

Weighted Data Call Graph (WDCG). The weights are not

absolute but relative. That means, the value of the weight

of different type of edges are not important, but the ratio

among them are important. We have considered weight of

self-edge to always be 1 and assigned weight to call

edge, read edge and write edge from a predefined set of

weights.

A sample DCG for a C program named Pebble

Dropping (bitbucket.org/mohayemin/designmigration/

raw/default/ExperimentalData) is presented in Figure 1.

This example has been used throughout this paper to

illustrate different aspects of our work. The program has

9 functions and 6 global variables. Therefore the DCG

has 9 function nodes and 6 data nodes. Different edges

representing function calls and read/write operations are

also shown in Figure 1.

Fig.1. Data Call Graph of the Pebble Dropping Program Showing All

Types of Nodes and Edges

B. Entity Map

The notion of Entity Map is similar to entity set [19]

which is used to calculate similarity between two

programming elements. The similarity is used in

Agglomerative clustering technique. However, we cannot

use entity set directly because it works only with

unweighted relationship between programming elements.

Therefore, we extend entity set and define entity map.

Before discussing entity map, we formally define entity

set as follows:

The entity set of a function f, (Ef) is defined as,

 * +

 * + * +

i.e., entity set of a function includes the functions it

calls, data accessed by the function and the function itself.

The entity set of data d, (Ed) is defined as,

 * + * +

i.e., entity set of a data includes the functions that

access that data and the data itself.

Therefore for the DCG in Figure 1

 *
 +

 * +

hvh_choice

verification assign

introduction

box delay

hvc_choice

move main

computers_move

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 5

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

While elements of entity set are programming elements

(function or data), elements of entity map are ordered

pairs where first entry is a programming element and the

second entry is a number representing weight of the

relationship.

Entity map of an element contains the element itself

paired with self-weight (ws). In addition, entity map of

a function contains the set of pair of the function it

calls and call weight (wc), the set of pair of the data it

writes and write weight (ww), and the set of pair

variables it reads and read weight (wr). Entity map of a

data contains the set of pair of the function which writes

the variable and ww, and the set of pair of function

which reads the variable and wr . Formally entity map

of function f,

 *()+ *() +

 *() +
 *() +

 *()+
 *() +
 *() +

Therefore in the DCG in Figure 1

 *() () ()
 () ()

 () () () () ()+

 *() () ()
 ()+

Entity map of a programming element is actually a

binary relation, where domain is the programming

elements and co-domain is real number. The elements of

entity map are called weighted entry. For entity map, we

define the following terms:

Merged Entity Map: In an entity map weighted entries

() () () can be replaced by the single

weighted entry (∑

). This operation is called merge

and if we merge all possible merge-able weighted entries

in Q and the result is entity map L, we call L is merge of

Q. Merge of Q is denoted by M(Q).
Element Set: Element Set of an entity map is the set of

the programming elements in the entity map. Element Set

of an entity map Q is denoted by E(Q).
Weight Sum: Weight Sum of a entity map is the sum of

weights of the entity map. Weight sum of an entity map Q
is denoted by S(Q).

Weighted Intersection (): Weighted Intersection is

an operation of two or more entity maps where the result

of the operation is an entity map R for which ()

if and only if and () where is the

intersection of element set of the operands and is union

of all operands. Weighted intersection of two entity maps

 and is denoted by .

Weighted Union (): Weighted Union is an operation

of two or more entity maps where the result of the

operation is an entity map for which () if and

only if () where is union of all operands.

Weighted union of two entity maps and is denoted

by .

C. Weighted Distance Matrix

Before defining the concept of Weighted Distance

Matrix (WDM), we need to define Weighted Similarity

Coefficient (WSC). WSC is a variant of Jaccard

Similarity Coefficient which is a widely used similarity

measure in hierarchical graph cluster analysis. We cannot

directly use this coefficient because of the weights on the

edges of WDCG. Therefore, we define WSC whose

semantics is similar to that of Jaccard‘s coefficient.

Jaccard Similarity between two finite sets A and B is

defined as:

 ()
| |

| |

We define Weighted Similarity Coefficient (WSC)

between two entity maps A and B as follows:

 ()
 ()

 ()

WSC hold the following properties:

Range: The value of () is between 0 and 1.

Inclusive the value is 0 when is empty and the

value is 1 when = . For all other cases,

the value is in between 0 and 1.

Symmetry: WSC is symmetric, i.e., for any two entity

map A and B,

 () ()

We can use the notion of WSC to calculate the

weighted distance between two entity maps A and B. It

can be formally defined as,

 ()
 ()

 ()
 (1)

Weighted distance holds the properties of WSC. The

conditions range property is reversed, i.e., 1 when

 is empty and 0 when = .

A Weighted Distance Matrix (WDM) X can be

calculated for a set of entity maps where

for each entry X(i, j) represents the weighted distance

between and . Formally,

 () ()

WDM holds the following properties:

Squareness: Each column and each row of a WDM

represent one and only one entity map. Therefore number

of rows and number of columns are equal to number of

entity maps.

Symmetry: In a WDM M, () () and

 () (). According to Symmetric property

6 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

of weighted distance, right side of the two equalities are

equal. Therefore () () which means M is

symmetric.

Hollow Matrix: () represents the distance from an

element to itself which is zero. Therefore, () is 0 for

all distance matrix M making it a Hollow matrix [36].

IV. DESIGN MIGRATION

In this section we present the proposed design

migration method. The migration process is done in three

main steps. In the first step we generate a WDCG from a

procedural program. The next builds a hierarchical cluster

tree of the WDCG using Agglomerative clustering

technique. In the last step, we define an objective

function and find a level in the hierarchy that maximizes

the objective function. This optimal clustering is the

object oriented design where each cluster of this

clustering is a candidate class. The steps are illustrated in

Figure 2 and are elaborated in the subsequent sections.

A. Weighted Data Call Graph Generation

This step takes a procedural program and produces a

Weighted Data Call Graph for the program.

We have discussed about the elements of WDCG in

Section III.A. Common graph representations like

adjacency matrix, adjacency list, incidence matrix and

incidence list do not support different type of nodes.

Therefore, we have defined a technique to represent

WDCG. The technique is a context free grammar [37]

with the following rules:

Keyword: There are five keywords: ?function, ?data, calls,

reads and writes. The first two keywords are declaration

keywords and others are relation keywords.

Identifier: Identifiers can be words except the

keywords and may contain any characters except

whitespace characters. Also, identifiers cannot start with

a question mark (?).

Statement: The statements are separated with

semicolon (;). There are two types of statement:

 Declaration Statement: Declaration statements

are used to state which elements are present in the

WDCG. One statement declares exactly one

element. Declaration Statement starts with one of

the declaration keywords and then an identifier. If

the declaration keyword is? unction, then the

identifier is name of a function and if it is ?data the

identifier is name of a data.

 Relation Statement: A relational statement

indicates relationship between two elements.

Relation statement starts with an identifier then a

relation keyword then another identifier. The

identifier are names of elements declared before

the current statement. A calls relation statement has

two function elements linked with a calls keyword

that indicated the left function calls the right

function. A reads/writes relation statement starts

with a function element and then the keyword

reads/writes and then a data element. This statement

indicates that the function reads or writes the data.

The WDCG notation of the Pebble Dropping Program

is illustrated in Listing 1. In the listing, initially all the

functions of the code are declared. The next section

includes all the data declarations. Finally the relation

statements are provided.

Fig.2. Overall Process for Proposed Design Migration.

Listing 1. WDCG notation for Pebble Dropping program

?function main;

?function assign;

?function hvc_choice;

?function hvh_choice;

?function verification;

?function introduction;

?function box;

?function computers_move;

?function delay;

?data a;

?data b;

?data c;

?data d;

?data e;

?data move;

main writes a;

main writes b;

main writes c;

main writes d;

main writes e;

main writes e;

main calls hvc_choice;

main calls hvh_choice;

main calls delay;

main calls introduction;

assign writes a;

assign writes b;

assign writes c;

assign writes d;

assign writes e;

assign reads a;

assign reads b;

assign reads c;

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 7

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

assign reads d;

assign reads e;

hvc_choice calls assign;

hvc_choice calls verification;

hvc_choice calls delay;

hvc_choice calls introduction;

hvc_choice calls computers_move;

hvc_choice calls box;

hvh_choice calls assign;

hvh_choice calls verification;

hvh_choice calls delay;

hvh_choice calls introduction;

hvh_choice calls box;

verification reads move;

box reads move;

computers_move reads move;

B. Cluster Analysis

Although significant works have been done on non-

hierarchical clustering techniques [38, 39, 40],

hierarchical techniques [41, 42] are more appropriate in

our case as it gives the opportunity to choose the

clustering that gives the best result of a predefined

function. Moreover, non-hierarchical techniques usually

Algorithm 1 Build Cluster Hierarchy

Input: Г the set of programming elements

1: function BuildClusterHierarchy(Г)

2: currentClusters ← Г
3: hierarchy ← {currentClusters }

4: while size of currentClusters > 1 do

5: ()

 ()
6:

 (* +) *{ }+

7:
 * +

8: end while

9: return
10: end function

11: function ClosestClusterPair(clusters)

12:

13:

14:

15: For each do

16: For each do

17: () ► See Equation 1

18: If then

19:

20:
21:

22:
23: End for

24: End for

25: * +

26: Return
27: End function

require information like number of clusters, cluster size,

etc. [43] which are not available in our context. We have

implemented a classical Agglomerative hierarchical

clustering [19, 20] technique for generating clusters from

WDCG. For the distance measure, we have used

weighted distance measure described in Section III.C.

In our implementation we find one level of hierarchy at

a time, starting from each nodes in different clusters to all

nodes in one cluster. If we have n nodes, there will be

n hierarchies. In each iteration, we find the closest pair

of clusters, then create the new level by removing the pair

from current level and adding the pair after merging. The

iteration stops when the current level has only one cluster,

i.e., all nodes are in one single cluster. These steps are

presented in Algorithm 1.

The function will return a

hierarchy of clusters given a set of programming

elements. The function finds the

closest pair in a set of clusters. The closeness is measured

by weighted distance function defined in Equation 1.

 function has one loop that runs

n=|Г| times and invokes with

 inside the loop. Function

 has a two level nested loop, each of

the loops runs m=| | times. Therefore

the worst case run-time complexity is ().
Figure 3 shows the Agglomerative clustering steps

with a set of predefined weights over the

 program. We assume that self-weight

is 1, call weight is 0.1, read weight is 0.2 and write

weight is 0.4. The numbers in the small circular nodes

indicate the step number, that is, in which step two

clusters were merged. These node also indicate a cluster

composed of two other clusters from each of which there

is an edge to this node. In the very beginning verification

and move are the closest pairs and they merge into 1. In

the next step main and assign are closest, therefore they

merge into 2. The process continues until all clusters

merge into 14.

Fig.3. Step by Step Clustering.

C. Identifying the Desired Clusters

Each of the levels in a cluster hierarchy are candidates

for being the object oriented design. We measure the

quality of a level by three quality attributes of a class:

high cohesion, low coupling and high granularity [18, 23].

For this purpose we define an objective function that is

verification move main assign

computers_move 1 2 e

box

3 4 a

hvh_choice

5 7 b

hvc_choice delay

6 8 d

11
9 c

12

10
introduction

13

14

8 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

evaluated against each of the levels. The level that

optimizes the objective function is selected as the object

oriented design.

Siddik et al. mathematically formulated the problem in

[18] as follows:

Let G(V,E) be the underlying undirected graph of a call

graph. The nodes in same cluster are labeled with same

number and nodes in different clusters are labeled

differently. V and E be the set of vertices and edges

respectively. We define variables l, x, y and z as follows:

 *

 *

 *

 *

The work in [18] formulated the problem as:

 ∑

 ∑

 ∑| |

 (2)

Subject to:

∑

∑

 ⋃

Here indicates if vertex v is head of a cluster,

therefore ∑ is the number of clusters. The objective

function presented in Equation (2) maximizes intra-

cluster edges, minimizes inter-cluster edge and

maximizes number of clusters. The objective function is

not normalized. We can perform comparison between

clustering on same graph, however, we cannot compare

between clusters of different graphs. That means, given a

graph, we can determine the best clustering, but cannot

state how good this particular clustering is. Because of

these limitations, we use a modified version of this

objective function.

We call our objective function the Omega function or

simply Omega (Ω). Let G(V, E) is the underlying

undirected graph of a clustered WDCG. The nodes in

same cluster are labeled with same number and nodes in

different clusters are labeled with different numbers. The

labels start from 1 and ends to number of clusters. We

define the following variables for this graph:

 *

 *

 *

The variables are normalized as following

variables for graph ():

| |

∑

∑

Where is defined as,

We call variables , and cluster density, intra-

cluster edge density and inter-cluster edge density

respectively. indicates number of clusters per vertex.

 Indicates ratio of intra-cluster edge with respect to

total number of edges and indicates ratio of inter-

cluster edge with respect to total number of edges.

Cluster density corresponds to modularity, intra-cluster

edge density corresponds to cohesion and inter-cluster

edge density corresponds to coupling of clusters

respectively. As these clusters represent the classes in the

object oriented design, we want that the design should be

as modular as possible, highly cohesive and loosely

coupled. Based on these we define our objective

function :

 () (3)

Maximizing the values of and and minimizing

value of will maximize . However, maximizing

minimizes and maximizes . When each vertices are

in different clusters, has its maximum value, which is

1. In this case all the edges are inter-cluster which results

 to be 0 and to be 1. is minimum when all

clusters are in same cluster. In this case has its

maximum value 1 and has minimum value 0.

Mathematically:

When applying Agglomerative clustering on the

WDCG, clustering of each step is a candidate object

oriented design. We apply the objective function on

clustering of each of the steps. The step that produces the

maximum value of is considered to be the optimized

clustering.

D. Properties of Obtained Classes

Each of the clusters in the optimized clustering

corresponds to a class in the object oriented design. In

addition to the function and data membership, we can

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 9

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

derive has-a relationships among the classes. When a

cluster has a inter-cluster edge to another cluster, the

class corresponding to the second cluster belongs to the

class corresponding to the second cluster, i.e., the first

class has the second class. Moreover, we can also

identify access levels of the members of a class. If there

is one or more inter-cluster edge incident to a member of

a class, the member is public. It is private otherwise.

For the Pebble Dropping program, step 10 from the

Figure 3 produces the maximum value of . Figure 4

shows the class diagram for clusters this step. There has a

relationship within the classes and the access level are

also shown in the class diagram. The class design

proposed by a group of professional software engineers is

shown in Figure 5. We call this design the expected class

design. It is seen that though the number of classes in the

diagrams are not equal, the larger classes are nearly

identical.

V. EVALUATION

We have implemented the proposed procedural to

object oriented design migration technique and performed

an empirical evaluation. In this section we present the

evaluation process and analyze the result.

A. Experimental Setup

We have analyzed the result with five C programs.

Some of the data for the evaluation process are collected

from academic projects of Institute of Information

Fig.4. Produced Class Design of Pebble Dropping Program

Technology, University of Dhaka and the others are

collected from online repositories. The data set are of

different size having varying number of programming

elements. Size of the individual data set are given in

Table 1. The scheme was implemented in Java platform

and the source code is hosted on Bitbucket

()

project hosting service.

Four engineers helped us in the evaluation process.

Among them two are software engineers having three

years of experience. They prepared an object oriented

design for each of the dataset. Their designs were

reviewed by two other engineers. One of them is a

Principal Software Engineer specialized in object

oriented design. The other is a Project Manager

specialized in design patterns. Both of them have more

than eight years of industry experience. In addition to

experience in software industry, they are also guest

lecturers in their specialized fields at Institute of

Information Technology, University of Dhaka. We have

considered the designs provided by this group of people

as benchmark for result evaluation.

B. Evaluation

For each dataset, we have calculated similarity

between design produced by our technique with result

provided by a group of software engineers using Jaccard

similarity coefficient. For calculating similarity of a

dataset, we take classes generated by our technique. We

call this class design actual class design and the class

design provided by the group of software engineers

expected class design. For each of the actual classes, we

find a best matching cluster in the expected classes. If no

matching pair is found for a class, it is paired with class

with no members.

Fig.5. Expected Class Design of Pebble Dropping Program

Let, E = {{a, b}, {c, d, e}, {f, g}, {h, i, j, k}} be the

expected clustering of an procedural code and A = {{a,

b}, {c, d}, {e}, {f, g, h}, {i, j, k}} be clustering generated

by our system. Here each are clusters and each

 are members of cluster. For example, h, i, j and k

forms a cluster in expected result. We use p, and to

denote a pair, expected set of the pair and actual set of the

pair by respectively. We establish the following mapping

for E and A:

10 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

 () () ()

1 * + → * +

2 * + → * +

3 * + → *+

4 * + → * +

5 * + → * +

We measure distance between a pair with the Jaccard

Similarity Coefficient. For a pair p similarity

| |

| |

For example, similarity of pair-5 is |
* + * +

* + * +
|

 . We calculate the similarity between each pair.

Direct mean of the pairwise similarity will produce

incorrect result. Because we expect that a large expected

cluster should have more effect on the final similarity

than a small expected cluster. To achieve this, we

calculate weighted sum of the pairwise similarities.

Weight of a pair is ratio of the cardinality of expected

clustering to the total number of elements in all clusters.

For a pair p, we define

| |

| |
 (4)

Finally, similarity of all pairs P of a data set D:

 ∑ (5)

Fig.6. Box Whisker Plot Representing the Similarity between Expected

and Actual Class Design for Different Programs using Different
Methods.

We run the same process with a single data by

changing weights of different type of edges in WDCG.

We set value of self-weight to 1. For other three weights,

we use values from 0.1 to 0.6 with an interval of 0.1. We

find the weight that generates best result for each data

and these results are shown in Table 1. We can see that

for the best case call weight, read weight and write

weights are 0.1, 0.4 and 0.5 respectively.

The proposed approach was compared with recent state

of the art techniques. The result is shown in Table 2. It

can be seen that the proposed method have outperformed

the state of the art techniques. To better visualize the

performance, the similarity using each approaches for

each of the five programs is presented in Figure 6. From

the figure it can be seen that the score of proposed

scheme is not only higher but also more consistent than

other techniques.

Our experiment found that Ω is biased towards value

of β, i.e. the measure of modularity. Generated results

created more clusters than the ones suggested by the

software engineers. For many cases we found pair p

where *+ which results to be 0. Expected

clustering for first three programs were all the elements in

a single class. These three programs were very cohesive

therefore produces high X in Ω. For first two data the

cohesiveness were strong enough to overcome bias of

modularization thus produced desirable results.

From Equation 4 we can derive, for a pair | .

In most of the cases, the value of turns out to be small

when the value of is 0. This is because large classes

are more likely to find a matching class than small classes.

Therefore larger values are multiplied with larger | |
values and small values are multiplied with zero or

small values. This helps to prevent excessive number of

small classes in our design that introduces high coupling.

In other words, it allows to keep balance between

modularity and coupling making the overall similarity

satisfactory.

VI. CONCLUTION AND FUTURE WORK

This paper introduces a new technique for migrating

the design of procedural program to object oriented

architecture. We have formulated this design migration

scenario as a weighted graph clustering problem. We

have introduced new concepts in the literature to support

our technique: Weighted Data Call Graph, a grammar to

represent Weighted Data Call Graph, and a special type

of set called entity map and operations specific to entity

map. An inverse variant of Jaccard Similarity Coefficient

called Weighted Distance Matrix has been proposed to

compute similarity between two nodes of a weighted

graph. Similar nodes based on high modularity, high

cohesion and low coupling are clustered using

Agglomerative Hierarchical Clustering. Each of the

clusters are then considered as a class.

We have applied our technique on five C programs.

The results produced by our technique have been

compared with designs provided by a group of

professional software engineers. Similarity between

engineers' design and the design generated by our system

has been calculated using Jaccard Similarity Coefficient.

The experiment shows that in best cases the approach

yields identical designs and on average case the designs

are 75.6% similar. The proposed system can identify

optimal clusters as potential classes of a system. Our

future plan is to identify interfaces that classes implement.

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 11

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

Table 1. Results of Experiments Illustrating the Performance of the Proposed Scheme

Application Name
Call Edge

Weight
Read Edge

Weight
Write Edge

Weight
similarity Ψ

LCS

0.40 0.20 0.40

0.83

Supermarket 0.68

Student Report Card 0.68

Pebble Dropping 0.28

Calendar 0.33

Average 0.56

LCS

0.20 0.20 0.60

0.83

Supermarket 0.68

Student Report Card 0.68

Pebble Dropping 0.80

Calendar 0.33

Average 0.664

LCS

0.20 0.30 0.50

0.83

Supermarket 0.68

Student Report Card 0.68

Pebble Dropping 0.80

Calendar 0.33

Average 0.664

LCS

0.30 0.60

1.00

Supermarket

0.10

0.68

Student Report Card 0.68

Pebble Dropping 0.80

Calendar 0.33

Average 0.698

LCS

0.10 0.40 0.50

1.00

Supermarket 0.68

Student Report Card 0.68

Pebble Dropping 0.80

Calendar 0.62

Average 0.756

Table 2. Results of Experiments Illustrating The Performance of The Proposed Scheme in Terms of Ψ

Application Name Greedy [18] GA [33] LS [34] VNS [35] Proposed

LCS 1.00 1.00 1.00 1.00 1.00

Supermarket 0.67 0.67 0.67 0.67 0.68

Student Report Card 0.43 0.36 0.36 0.36 0.68

Pebble Dropping 0.34 0.61 0.61 0.61 0.80

Calendar 0.60 0.60 0.60 0.60 0.62

Average 0.608 0.648 0.648 0.648 0.756

Moreover, considering each identified classes as

clusters, we can apply a second layer of Agglomerative

clustering and mark the result as components.

ACKNOWLEDGMENT

This research was conducted by Optimization Research

Group of Institute of Information Technology, University

of Dhaka. Our sincere gratitude to Dr. Shahadat Hossain,

Associate Professor, Department of Math \& Computer

Science, University of Lethbridge for presenting this

problem to us.

REFERENCES

[1] Meir M Lehman. Programs, life cycles, and laws of

software evolution. Proceedings of the IEEE, 68(9):1060–

1076, 1980.

[2] Andrea De Lucia, Giuseppe A Di Lucca, Anna Rita

Fasolino, Patrizia Guerra, and Silvia Petruzzelli.

Migrating legacy systems towards object- oriented

platforms. In 13th International on Software Maintenance

(ICSM 1997), pages 122–129, Bari, Italy, 1997. IEEE.

[3] Harry M Sneed. Integrating legacy Software into a

Service oriented Architecture. In 10th European

Conference on Software Maintenance and Reengineering

(CSMR 2006), pages 3–14, Bari, Italy, 2006. IEEE.

[4] K. Bennett. Legacy systems: coping with stress. IEEE

Software, 12(1):19–23, Jan 1995.

[5] KC Chisolm and JC Lisonbee. The use of computer

language compilers in legacy code migration. In IEEE

Systems Readiness Technology. Conference

(AUTOTESTCON‘99), pages 137–145, San Antonio, TX,

USA, September 1999. IEEE.

[6] Ruben Prieto-Diaz and Peter Freeman. Classifying

software for reusability. IEEE Software, 4(1):6–16, 1987.

[7] Wei Li and Sallie Henry. Object-oriented metrics that

predict maintain- ability. Journal of systems and software,

23(2):111–122, 1993.

[8] Robert W Schwanke. An intelligent tool for re-

engineering software modularity. In 13th International

Conference on Software Engineering (ICSE 1991), pages

83–92, Baltimore, Maryland, USA, 1991. IEEE.

12 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

[9] S. Pidaparthi and G. Cysewski. Case study in migration to

object oriented system structure using design

transformation methods. In First Euromicro Conference

on Software Maintenance and Reengineering

(EUROMICRO 97), pages 128–135, Berlin, Germany,

Mar 1997. IEEE.

[10] Alan Snyder. Encapsulation and inheritance in object-

oriented programming languages. ACM Sigplan Notices,

21(11):38–45, 1986.

[11] Shyam R Chidamber and Chris F Kemerer. A metrics

suite for object oriented design. IEEE Transactions on

Software Engineering, 20(6):476–493, Jun 1994.

[12] Andrian Marcus and Denys Poshyvanyk. The conceptual

cohesion of classes. In 21st IEEE International

Conference on Software Maintenance (ICSM 2005),

pages 133–142, Budapest, Hungary, 2005. IEEE.

[13] Rachel Harrison, Steve Counsell, and Reuben Nithi.

Coupling metrics for object-oriented design. In 5th

International Software Metrics Symposium (Metrics 98),

pages 150–157. IEEE, 1998.

[14] B. G. Ryder. onstructing the call graph of a program.

 IEEE Transactions on Software Engineering, SE-

5(3):216–226, May 1979.

[15] Jane Radatz, Anne Geraci, and Freny Katki. IEEE

standard glossary of software engineering terminology.

IEEE Std, 610121990.

[16] Y. Terashima and K. Gondow. Static call graph generator

for C++ using debugging information. In 14th Asia-

Pacific Software Engineering Conference (APSEC 2007),

pages 127–134, Aichi, Japan, Dec 2007. IEEE.

[17] Satu Elisa Schaeffer. Graph clustering. omputer Science

Review, 1(1):27–64, Aug 2007.

[18] Saeed Siddik, Alim Ul Gias, and Shah Mostafa Khaled.

Optimizing software design migration from structured

programming to object oriented paradigm. In 16th

International Conference on Computer and Information

Technology (ICCIT 2013), pages 187–192, Khulna

University, Khulna, Bangladesh, December 2013. IEEE.

[19] V Dineshkumar and J Deepika. Code to design migration

from structured to object oriented paradigm. International

Journal of Information and Communication Technology

Research, 1(8), December 2011.

[20] Arie van Deursen and Tobias Kuipers. Identifying objects

using cluster and concept analysis. In 21st International

Conference on Software Engineering (ICSE ‘99), pages

246–255, Los Angeles, California, USA, 1999. ACM.

[21] Zou Ying and Kostas Kontogiannis. A framework for

migrating procedural code to object-oriented platforms.

In Eighth Asia-Pacific Software Engineering Conference

(APSEC 2001), pages 390–399. IEEE, Dec 2001.

[22] Mark Shtern and Vassilios Tzerpos. Methods for selecting

and improving software clustering algorithms. Software:

Practice and Experience, 44(1):33–46, 2014.

[23] Lionel C. Briand, J u r̈gen Wu s̈t, Stefan V. Ikonomovski,

and Hakim Lounis. Investigating quality factors in object-

oriented designs: An industrial case study. In 21st

International Conference on Software Engineering (ICSE

1999), pages 345–354, Los Angeles, California, USA,

1999. ACM.

[24] H.M. Sneed and E. Nyary. Extracting object-oriented

specification from procedurally oriented programs. In 2nd

Working Conference on Reverse Engineering, pages 217–

226, Toronto, Ontario, Canada, Jul 1995. IEEE.

[25] Bill Andreopoulos, Aijun An, Vassilios Tzerpos, and

Xiaogang Wang. Clustering large software systems at

multiple layers. Information and Software Technology,

49(3):244–254, 2007.

[26] Onaiza Maqbool and Haroon A Babri. Hierarchical

clustering for software architecture recovery. IEEE

Transactions on Software Engineering, 33(11):759–780,

Nov 2007.

[27] M.A. Heroux and J.M. Willenbring. Barely sufficient

software engineering: 10 practices to improve your CSE

software. In ICSE Workshop on Software Engineering for

Computational Science and Engineering (SECSE ‘09),

pages 15–21, Vancouver, BC, Canada, May 2009. IEEE.

[28] P. E. Livadas and P. K. Roy. Program dependence

analysis. In Conference on Software Maintenance, pages

356–365, Orlando, FL, USA, Nov 1992. IEEE.

[29] S.-S. Liu and N. Wilde. Identifying objects in a

conventional procedural language: an example of data

design recovery. In Conference on Software Maintenance,

pages 266–271, San Diego, CA, USA, Nov 1990. IEEE.

[30] Emdad H. Khan, Mansoor Al-A‘ali, and Moheb R. Girgis.

Object oriented programming for structured procedural

programmers. Com- puter, 28(10):48–57, Oct 1995.

[31] D. Doval, S. Mancoridis, and B.S. Mitchell. Automatic

clustering of software systems using a genetic algorithm.

In Software Technology and Engineering Practice (STEP

1999), pages 73–81, Pittsburgh, PA, USA, Sep 1999.

IEEE.

[32] Marc Eisenstadt, Blaine A Price, and John Domingue.

Redressing ITS fallacies via software visualization. In

Cognitive models and intelligent environments for

learning programming, volume 111, pages 220–234.

Springer Berlin Heidelberg, 1993.

[33] Md Selim, Saeed Siddik, Alim Ul Gias, M Abdullah-Al-

Wadud, and Shah Mostafa Khaled. A genetic algorithm

for software design migration from structured to object

oriented paradigm. In 8th International Conference on

Computer Engineering and Application (CEA 2014),

pages 187–192, January 2014.

[34] Saeed Siddik, Alim Ul Gias, Md. Selim, Shah Mostafa

Khaled, and Kazi Sakib. A direction of migrating

procedural paradigm to object based architecture by

forming cluster of functions using local search heuristics.

In 3rd International Conference Informatics, Electronics

& Vision, pages 1–6, University of Dhaka, Bangladesh,

May 2014. IEEE.

[35] Md Selim, Md Saeed Siddik, Tajkia Rahman, Alim Ul

Gias, and Shah Mostafa Khaled. Approximating object

based architecture for legacy software written in

procedural languages using variable neighbor- hood

search. In 8th International Conference on Software,

Knowledge, Information Management and Applications

(SKIMA 2014), pages 1–6, December 2014.

[36] Michael W Trosset. Distance matrix completion by

numerical optimiza- tion. Computational Optimization

and Applications, 17(1):11–22, 2000.

[37] Alan Bundy and Lincoln Wallen. Context-free grammar.

In Catalogue of Artificial Intelligence Tools, Symbolic

Computation, pages 22–23. Springer Berlin Heidelberg,

1984.

[38] Yang Zhou, Hong Cheng, and Jeffrey Xu Yu. Graph

clustering based on structural/attribute similarities.

VLDB Endowment, 2(1):718–729, Aug 2009.

[39] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia

Procopiuc, and Jong Soo Park. Fast algorithms for

projected clustering. SIGMOD Rec., 28(2):61–72, Jun

1999.

[40] Kuo-Lung Wu and Miin-Shen Yang. Alternative c-means

clustering algorithms. Pattern recognition, 35(10):2267–

2278, Oct 2002.

 Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph 13

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 2, 1-13

[41] Pierre Hansen and Brigitte Jaumard. Cluster analysis and

mathematical programming. Mathematical Programming,

79(1-3):191–215, 1997.

[42] Aftab Hussain and Md. Saidur Rahman. A new

hierarchical clustering technique for restructuring

software at the function level. In 6th India Software

Engineering Conference (ISEC 2013), pages 45–54, New

Delhi, India, 2013. ACM.

[43] Edie M Rasmussen. Clustering algorithms. Information

retrieval: data structures & algorithms, pages 419—442,

1992.

Authors’ Profiles

Mohayeminul Islam completed M.Sc in

Software Engineering from Institute of

Information Technology with thesis ―Design

Migration from Procedural to Object

Oriented Program by Clustering Data Call

Graph‖ under the supervision of Shah

Mostafa Khaled. He received his Bachelor's degree in

Information Technology (Major in Software Engineering) from

the same institute. Mohayemin completed his internship at

M\&H Informatics (BD) Ltd. from July-December 2011.

Currently he is working as software engineer at Jantrik

Technologies Ltd. Bangladesh.

Tajkia Rahman Toma completed her M.Sc

in Software Engineering degree from the

Institute of Information Technology. She

received her Bachelor‘s degree in

Information Technology (Major in Software

Engineering) from the same institute. Tajkia

completed her internship at M\&H Informatics (BD) Ltd. from

July-December 2011. Tajkia worked as a Honorary Research

Assistant at IITDU Optimization Group during June-September

2014. Since September 2014 she is working as software

engineer at Jantrik Technologies Ltd. Bangladesh.

Md. Selim completed M.Sc in Software

Engineering from Institute of Information

Technology with thesis ―Source Code

Analysis for Design Migration: A Guideline

for Procedural to Object Oriented Paradigm

Migration‖ under the supervision of Shah

Mostafa Khaled. Earlier Selim completed B.Sc in Software

Engineering from same institute with research titling ``A

Genetic Algorithm for Design Migration from Structured to

Object Oriented Paradigm''. He completed his internship during

January-June 2013 at the Binary Quest Limited, Bangladesh. He

is currently working as a Lecturer at Department of Disaster

Science & Management, University of Dhaka.

Alim Ul Gias completed M.Sc. in Software

Engineering at Institute of Information

Technology with thesis on Adaptive Software

Testing. He received his Bachelor's degree in

Information Technology (Major in Software

Engineering) from the same institute. Alim

completed his internship at Grameenphone Ltd. Bangladesh

from July-December 2011. He was a student member of ACM

and SIGSOFT and at present, a member of IEEE. Currently he

has been working as a Lecturer at Institute of Information

Technology, University of Dhaka.

Shah Mostafa Khaled completed his B.Sc.

and M.Sc. from Department of Computer

Science and Engineering, University of

Dhaka. Khaled completed his second

masters in Computer Science from

University of Lethbridge, Canada with a

thesis titling ''Heuristic Algorithms for Wireless Mesh Network

Planning'' under the supervision of Robert Benkoczi.

Theoretical Optimization, Operations Research and Machine

Learning are his areas of interest. Khaled is now the coordinator

of IIT DU Optimization Research Group.

How to cite this paper: Mohayeminul Islam, Tajkia Rahman Toma, Md. Selim, Alim Ul Gias, Shah Mostafa

Khaled,"Design Migration from Procedural to Object Oriented Paradigm by Clustering Data Call Graph", International

Journal of Information Engineering and Electronic Business(IJIEEB), Vol.8, No.2, pp.1-13, 2016. DOI:

10.5815/ijieeb.2016.02.01

