
I.J. Information Engineering and Electronic Business, 2016, 4, 1-9
Published Online July 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.04.01

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

Top-k Closed Sequential Graph Pattern Mining

K. Vijay Bhaskar
GITAM University/CSE, Visakhapatnam, 530045, India

E-mail: vbreddy.vijay@gmail.com

Dr. R.B.V Subramanyam
NIT Warangal/CSE, Warangal, 506004, India

E-mail: rbvs66@nitw.ac.in

Dr. K. Thammi Reddy
GITAM University/CSE, Visakhapatnam, 530045, India

E-mail: thammireddy@gitam.edu

S. Sumalatha
NIT Warangal/CSE, Warangal, 506004, India

E-mail:katam.suma@gmail.com

Abstract—Graphs have become increasingly important in

modeling structures with broad applications like

Chemical informatics, Bioinformatics, Web page retrieval

and World Wide Web. Frequent graph pattern mining

plays an important role in many data mining tasks to find

interesting patterns from graph databases. Among

different graph patterns, frequent substructures are the

very basic patterns that can be discovered in a collection

of graphs. We extended the problem of mining frequent

subgraph patterns to the problem of mining sequential

patterns in a graph database. In this paper, we introduce

the concept of Sequential Graph-Pattern Mining and

proposed two novel algorithms SFG(Sequential Frequent

Graph Pattern Mining) and TCSFG(Top-k Closed

Sequential Frequent Graph Pattern Mining). SFG

generates all the frequent sequences from the graph

database, whereas TCSFG generates top-k frequent

closed sequences. We have applied these algorithms on

synthetic graph database and generated top-k frequent

graph sequences.

Index Terms—Data mining, graph mining, frequent

sequential patterns, closed sequential patterns.

I. INTRODUCTION

Frequent graph patterns are substructures that appear in

a graph data set to a frequency not less than a user-

specified threshold [9]. Structural forms such as subtrees,

subgraphs, sublattices are referred as substructures. A

frequent structural pattern is a substructure that appears

frequently in a graph database. Sequential pattern mining,

the mining of frequently occurring sub-sequences as

patterns, was introduced in [13] and has become an

important problem in data mining. Sequential pattern

mining discovers frequent subsequences as patterns.

According to the GSP algorithm [14], sequential pattern

mining is to find all sequences whose support is greater

than the user-specified minimum support, such sequence

is called a frequent sequence. In SPADE [8], the set of all

frequent sequences is discovered by reducing database

scans and it minimizes I/O costs. The GSP and SPADE

follow candidate generation and test approach.

The PrefixSpan algorithm [5] is a pattern-growth

approach to sequential pattern mining and it follows

divide-and-conquer strategy. BIDE [6] is an algorithm

used for mining frequent closed sequences without

candidate generation. These algorithms [5,6] grow

patterns by constructing projected databases to reduce the

search space for a pattern. In this paper, we investigated

the problem of mining sequential patterns in graph

databases. Our approach finds sequential patterns

occurring in graph databases.

Fig.1. Three graphs where each vertex represents a web page

In ―Fig. 1‖ each node represents a web page. Let us

consider that the edges of the given graphs represent the

order of visiting the web pages. For example, Graph1

represents the sequence q,s,t. Similarly Graph2 represents

the sequence q,r,t and Graph3 represents the sequence

q,p,t. Observing the three given graphs, it is clear that

page t is accessed after page q(not immediately after q).

The resulting pattern is <qt> which is not a subgraph.

Given the above three graphs as input, any existing

subgraph mining algorithm will not generate <qt> as a

pattern. Many graph mining algorithms exist to find the

frequent subgraphs, maximal frequent subgraphs, closed

frequent subgraphs, and constraint-based closed frequent

subgraphs. The sequence <qt> is not considered as an

2 Top-k Closed Sequential Graph Pattern Mining

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

output pattern by the existing graph mining algorithms.

Though <qt> is not a subgraph, it represents a pattern

showing a sequence q followed by t. In this paper, we

proposed an algorithm to find sequential patterns from

graph databases known as Sequential Graph-Pattern

Mining.

We proposed SFG(Sequential Frequent Graph pattern

mining) algorithm to mine frequent sequences in a graph

database. As the number of edges in a graph increases,

the number of sequential patterns also increases

exponentially. This requires further analysis of frequent

sequential graph patterns. To overcome this difficulty, we

proposed TCSFG(Top-k Closed Sequential Frequent

Graph pattern mining) algorithm to generate top-k closed

sequential graph patterns.

The rest of the paper is organized as follows. Section II

describes the related work in subgraph mining. Section III

present problem definition and section IV describe SFG,

TCSFG algorithms. Our experimental results and

performance analysis are presented in section V and our

work is concluded in section VI.

II. RELATED WORK

Many algorithms exist in the literature for mining

frequent graph patterns [1,7,9,16,18]. AGM [1] algorithm

efficiently mines frequently appearing induced subgraphs

from a graph data database. Experimental results in [1]

show that AGM finds all frequent induced subgraphs

containing 300 chemical compounds in 40 minutes to 8

days, as the minimum support threshold varied from 20%

to 10%. FSG[9] algorithm uses a sparse graph

representation which minimizes both storage and

computation. The performance of FSG was worse where

the number of vertex and edge labels was small. AGM [1]

and FSG [9] are Apriori-based algorithms for mining

frequent substructures from graph data. Apriori-based

algorithms generate subgraph candidates from frequent

subgraphs and prunes false positives. These algorithms

[1,9] suffer from the problem of subgraph isomorphism

test and candidate generation. Candidate generation and

pruning false positives are costly.

The gSpan [18] was the first algorithm to discover all

the frequent subgraphs without candidate generation and

it prunes false positives. gSpan discovers frequent

substructures without candidate generation. A new

lexicographic ordering among graphs was built in [18]

and it maps each with a unique minimum DFS code as its

canonical label. gSpan finds both frequent subgraphs and

frequent induced subgraphs. It [18] uses rightmost

extension technique to minimize the generation of the

same subgraphs and explores the depth-first search in

frequent subgraph mining.

Frequent subgraph mining is a challenging issue due to

the generation of an exponential number of frequent

subgraphs. Closed graph pattern mining was introduced

in [16] to mine only closed frequent graph patterns. A

graph g is closed if there do not exist any proper super

graph of g with the same support as g. CloseGraph [16]

mines closed frequent graph patterns using the concepts

of equivalent occurrence and early termination to prune

the pattern search space. It [16] reduces unnecessary

subgraphs and also increases the efficiency of the mining

process in the presence of large graph patterns. TSP [12],

TFP [4] and CloSpan [17] are the recent work for closed

sequential pattern mining. CloSpan is the first algorithm

to solve closed sequential pattern mining problem. It [17]

mines frequent closed sequential patterns and produces

significantly less number of discovered sequences. The

CloSpan mines long frequent sequences with low

minimum support and without any information loss.

Mining top-k frequent closed patterns without

minimum support was introduced in [4]. Top-down and

bottom-up combined Fp-tree mining strategy was

developed in [4] to raise the support and to discover

closed frequent patterns. TSP algorithm mines top-k

frequent closed sequential patterns of length no less than

min_len, the minimum length of each pattern. It [12]

doesn’t require the minimum support threshold, it makes

use of the length constraint and outperforms the closed

sequential pattern mining algorithm that make use of

minimum support threshold.

Several algorithms were proposed previously ranging

from mining graph patterns with constraints [2,11,19] and

without constraints [6,18] for mining closed graph

patterns [16]. Frequent graph-pattern mining may result

in a large number of patterns. To make the mining more

effective, constraints are often used to confine the pattern

search. In gPrune algorithm[2] the frequent graph

patterns are generated based on the constraints such as

density and diameter. The Density of a graph is defined

as the ratio of the edge set to vertex set. The diameter of a

graph is the maximum length of the shortest path over all

pairs of vertices. The problem of incorporating structural

constraints in mining frequent graph patterns was solved

in gPrune.

Finding closed frequent graphs with connectivity

constraints in relational graphs was introduced in [19].

Two approaches, namely CLOSECUT and SPLAT

were proposed to speed up the mining process. The

former was pattern growth approach and it has better

performance on patterns with high support and low

connectivity, later approach was pattern reduction

approach and it achieves better performance for the high

connectivity constraints. These [19] algorithms mines

closed frequent graphs with connectivity constraints in

relational graphs. DS-search algorithm [11] mines

frequent subgraphs of limited diameter and symmetry. It

[11] employs the tree decomposition structure of database

graphs during the mining process and generates more

structurally interesting patterns in the database.

Recently two sequential techniques[3,10] were

developed to solve the problem of graph-coloring. Graph-

coloring concept [10] was used in processor allocation to

represent the busy processor and the busy processors are

mapped in the graph using different colors. The authors

in [3] investigated the problem of Star coloring and they

used DNA sequence to construct a solution space for the

star coloring problem

Two algorithms RP-FP and RP-GD were proposed in

 Top-k Closed Sequential Graph Pattern Mining 3

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

[7]. These algorithms mine a representative set that

summarizes frequent subgraphs. In these algorithms [7] a

representative set RS is mined such that any frequent

subgraph is covered by a representative in RS, and the

value of |RS| is minimized. RP-FP and RP-GD algorithms

have been proposed to summarize graph patterns

efficiently using the concept of δ-cover and generates δ-

jump patterns for a user specified δ. Even though there

exist many subgraph mining algorithms, the problem of

sequential pattern mining of graphs has not been

investigated in the literature.

In this paper, we proposed a new algorithm SFG to

mine sequential patterns from a graph database using

pattern growth approach. We also extended our algorithm

to mine top-k closed sequential patterns. We demonstrate

that generating top-k closed frequent sequences reduce

the number of output graphs without losing much

information.

III. PROBLEM DEFINITION

In this section, we define sequential graph pattern and

frequent sequential graph pattern mining problem.

A Labeled directed Multigraph can be represented as a

tuple, G= (V,E,L,F) where V denotes a set of vertices, E

denotes a set of edges, L denotes a set of labels and F is a

labeling function that assigns labels to the vertices and

edges. Every edge is a 4 tuple <s, d, Gid, lb>, where s is

the source vertex, d is destination vertex, Gid is Graph id

and lb is an edge label. A sample Graph data set is shown

in ―Fig. 2‖.

Fig.2. A sample graph data set

Definition 1 (Graph Sequence)

An ordered collection of edges in a graph is called a

graph sequence. Every edge is assigned a time constant

(time of the creation of the relationship between the

vertices) as a label. A Graph Sequence can be represented

as,

GS=<(va,vb),(vb,vc),….(vl,vm),(vm,vn)> where va, vn are

the source and destination of the Graph sequence and

each (vi,vj) represents an edge from vi to vj. Compact

representation of Graph sequence is given as

GS=<va,vb,vc,….vn>.

Definition 2 (Length of the Graph Sequence).

Given a Graph Sequence GS =<va,vb,vc,….vn> Where

each vi represents a vertex. Length of the Graph sequence

is the number of edges in the sequence.

Definition 3 (Support of Graph sequence)

Support of Graph Sequence GS is the total number of

graphs containing the sequence GS as a subsequence.

Fig.3. A sample graph

Graph sequence for the graph in ―Fig. 3‖ is

<(p-q),(q-r),(r-p),(p-s)> where t1,t2,t3,t4 are edge

labels such that t1<t2<t3<t4. Its compact representation is

<pqrps>. Length of the sequence is 4.

Definition 4 (Projected database of a sequence S)

Let S be a sequential pattern in a Graph database GD.

The S projected database is the collection of subgraph

sequences in GD with S as the first occurring sequence.

Definition 5 (Projected database of a vertex)

Given a Graph Database GD = {G1, G2,… Gn}, The

projected database of a vertex V is the set of subgraphs in

which the sequence of the subgraph starts with V.

PDv = { SGi / i ɛ 1,2,..n and v is the starting vertex in

each SGi}.For example, in the given graph database, the

sequence that starts with vertex p as the source forms

projected database of p. In ―Fig. 2‖ edge 1 of Graph 1,

edge 3 of Graph 2, edge 2 of Graph 3, edge 1 of Graph 4

and edge 2 of Graph 5 forms the sequence starting with p.

Instead of storing the projected database separately for

every vertex, considering the space constraints, we store

only the <Graph-Id, Edge-Id> pairs. Hence p-projected

database is <(1,1),(2,3),(3,2),(4,1), (5,2)>

Definition 6 (Support of a vertex)

Support of a vertex V is the number of sequences that

start with V. A graph may contain multiple subsequences

starting with V, but the count is only 1 for every graph.

Definition 7 (Canonical form)

Given a multigraph Gi with n vertices, m edges and a

graph sequence GS <v1,v2,…..vn>, Canonical form of Gi

is denoted as (v1,v2,i,1),(v2,v3,i,2),….(vn-1,vn,i,m)

Definition 8 (Sequential Graph Pattern)

Given a graph sequence, a Sequential Graph Pattern is

all possible subsequences.

For the Graph given in ―Fig. 3‖ Graph Sequence is

4 Top-k Closed Sequential Graph Pattern Mining

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

<pqrps>, the possible sequential graph patterns are

<pq>,<pr>,<ps><pqr>,<pqp>,<pqs>,<pqps>,<pqrp>,<

pqrs>,<pqrps>,<prp>,<prs>,<prps>,<qr>,<qp>,<qs>,<qr

p>,<qrs>,<qrps>,<rp>,<rs>,<rps>

Definition 9 (Frequent Sequential Graph Pattern Mining)

Given a Graph database and minimum support,

Frequent Sequential Graph-Pattern Mining is to find all

the frequent sequences from the graph database.

Table 1. Canonical representation of Graph database

Graph-Id
Graph Sequence

(Ordered Edges)
Canonical form

1
p→q,

q→r,r→p,p→q,q→s,s→r
(p,q,1,1),(q,r,1,2),(r,p,1,3),
(p,q,1,4),(q,s,1,5),(s,r,1,6)

2
q→r, r→p, p→q,

q→s,s→r

(q,r,2,1),(r,p,2,2),(p,q,2,3),

(q,s,2,4),(s,r,2,5)

3 r→p, p→s (r,p,3,1),(p,s,3,2)

4
p→q, q→r, r→t, t→q,

q→r
(p,q,4,1),(q,r,4,2),(r,t,4,3),

(t,q,4,4),(q,r,4,5)

5
r→p, p→s, s→r, r→t,

t→r, r→t

(r,p,5,1),(p,s,5,2),(s,r,5,3),
(r,t,5,4),(t,r,5,5),

(r,t,5,6)

6 q→s, s→t (q,s,6,1),(s,t,6,2)

Table 2. Projected database of vertices

Vertex
v

Projected
Database

Support
(v)

Nodes
visited

from v

Frequent

Sequential
Length-1

patterns

P
{(1,1),(2,3),(3,2)

,(4,1),(5,2)}
5

<r:7,q:5

,s:4,t:3>

<pr>,<pq>,

.<ps>,<pt>

Q
{(1,2),(2,1),(4,2),

(6,1)}
4

<r:6,s:3,

p:2,t:2>

<qr>,<qs>,

<qp>,<qt>

R
{(1,3),(2,2),(3,1),

(4,3),(5,1)}
5

<p:4,s:4,
q:3,t:3>

<rp>,<rs>,
<rq>,<rt>

S
{(1,6),(2,5),(5,3),

(6,2)}
4 <r:4,t:3> <sr>,<st>

T {(4,4),(5,5)} 2 <r:2,q:1> <tr>

Definition 10 (Top-k Closed Graph Sequence)

A Graph sequence S is said to be a closed graph

sequence if S is frequent and there is no proper super

sequence with the same support. A closed graph sequence

is said to be a top-k closed sequence of minimum length l

if there exists no more than (k-1) closed graph sequences

whose length is at least l whose support is higher than

that of S.

IV. ALGORITHMS

In this section, we present SFG and TCSFG algorithms

to generate frequent sequential graph patterns and Top-k

closed frequent sequential graph patterns.

A. Algorithms Description

A Graph database is given as input to each of these

algorithms. The concept of SFG algorithm generates set

of sequential frequent graph patterns. To reduce

redundant patterns, we followed an order based on the

frequency of sequences in the database. Sequences with

higher frequency are grown first, followed by sequences

of lower frequency.

B. SFG

SFG algorithm generates set of sequential frequent

graph patterns. The main steps include the generation of

the set of all frequent length-1 sequences S’, pruning

infrequent edges and vertices from Graph database D,

sorting S’ in descending order of its frequency, and

growing each edge in the sequence.

Algorithm 1. SFG

Input: A Graph database GD, a minimum support

threshold min_sup.

Output: Set of sequential frequent graph patterns SP.

1: Scan the Graph database once,

a. Find the projected database of each vertex v in

the input vertex set V and let it be PDv. Find

the support count of each vertex.

b. Find the set of vertices Vu that can be visited

from each vertex v and also find the support

count of the sequence<v,u> where u ɛ Vu .

2: Sort the vertex set V in descending order of their

support count and insert them in a priority queue Q.

Do not insert the vertex whose support count is less

than the min_sup.

3: For every vertex v in the priority queue Q

4: For every vertex u ɛ Vu

5: a. If the support count of the sequence

 <vu> is greater than or equal to

 minsup threshold then add the

 sequence <vu> to S.

 b. SP ← SP U S.

6: Sort S in descending order of their supports.

7: SequenceMining (PDv, S)

In Line 1 of the algorithm, single scan of the graph

database is done. The projected database of each vertex

and their support counts are calculated. For every

sequence that grows with a vertex, it is ensured that only

its projected database is scanned. This reduces the search

space and scan time. Find the set of vertices that can be

visited from each vertex v and the support count of

length-1 sequences. Line 2 of the algorithm removes the

projected database of an infrequent vertex. The vertex

whose support count is less than the min_sup threshold is

an infrequent vertex. The remaining vertices are sorted in

descending order of their support count. Lines (3-5) finds

length-1 frequent sequences and calls the subprocedure

SequenceMining to find the frequent sequences of length

 Top-k Closed Sequential Graph Pattern Mining 5

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

more than one. SFG algorithm iterates until there are no

vertices that can grow the sequence.

Subprocedure1. SequenceMining(PD,S)

Input: Projected database PD, Sequential Pattern S

Output: Set of sequential frequent graph patterns SP.

1: if S is empty then return.

2: For every sequence Sʹ in S

PDs←Find_projected_database(PD,Sʹ)

3: Scan the projected database PDs and find the

vertices visited from the sequence Sʹ and their

support counts.

4: For every vertex v visited from Sʹ,

a. Add the sequence <Sʹv> to Sʹʹ only if the

support count of the sequence <Sʹv> satisfies

the min_sup threshold.

b. SP← Sʹʹ.

5: SequenceMining(PDs , Sʹ’,min_sup)

SequenceMining is a recursive procedure that grows

every sequence in S. Lines 2-3 of the procedure finds the

projected database of the sequences in S and scans the

projected database of each sequence to find the vertices

visited from the sequence and the support count of the

new sequence. Line 4 of the procedure grows the

sequence and returns if there is no sequence to be grown.

The recursive procedure finds length-2 frequent

sequences in the first run, length-3 frequent sequences in

the second run and so on. It finds the set of all frequent

sequences of length more than one and performs a one

edge growth of the sequence in each recursive call.

Subprocedure2. Find_projected_database(PD,Sʹ)

Input: Projected database PD, Sequential Pattern

Sʹ, where Sʹ=<va,vb,……vn>

Output: PDS, where PDS is a Projected database of Sʹ.

1: PDS←Φ

2. for every graphid, edgeid pair (i,j) in PD

3: Scan graph i from j to find k, where k is the

first occurrence of vn.

4: PDS←PDS ᴜ (i,k)

5: return PDS

Example: Given the graph sequence database as shown

in Table 1 with min_sup=2, frequent sequential patterns

are mined in the following manner.

1. Scan the graph database once and find the

projected database PDv of each vertex and their

support counts. The database is divided into 5

partitions, the first partition starts with p as the

source vertex, the second partition starts with q as

the source and so on.

2. Find the vertices visited from each vertex and their

support count. Find length 1 frequent graph

sequences. Projected database and frequent length

1 graph sequences are shown in Table 2.

3. Vertices visited from vertex p and their support

count is <r:7, q:5, s:4, t:3>. Length 1 frequent

graph sequences are <pr:7,pq:5,ps:4,pt:3>.The

sequence <pr:7> represents that vertex r is visited

7 times after vertex p. Similarly <pq: 5> represents

that vertex q is visited 5 times after p and so on.

4. Descending order of vertices based on their

support count is <p:5>,<r:5>,<q:4>,<s:4>,<t:2>.

Call the sub procedure SequenceMining with the

Projected database of the vertex p and the

sequences grown from p, <pr>,<pq>,<ps>,<pt> as

input.

5. Grow the sequence with the highest support first.

In our example, grow the sequence <pr> first.

Scan the projected database of p to construct the

projected database of <pr>. Projected database of

p is { (1,1), (2,3), (3,2), (4,1), (5,2)}.

Subprocedure2 is called to find the projected

database of the sequence <pr> as shown below.

a. Scan (1,1)as follows, the first occurrence of p as

a source vertex in graph 1 from the edge 1 is 1.

Now check the first occurrence of r as a source

after the first occurrence of p, it is found at 3.

Note the graph-id, edge-id pair (1,3).

b. Similarly, scan (2,3) as follows, the first

occurrence of p as a source vertex in graph 2

from edge 3 is 3. Now check the first occurrence

of r as source after the first occurrence of p, it is

not found. This indicates that the sequence <pr>

cannot be grown in graph 2.

c. Similarly, scan (3,2) and the sequence <pr>

cannot be grown in graph 3.

d. Scan (4,1) and note the pair (4,3), the first

occurrence of r as a source in graph 4 after first

occurrence of p is 3.

e. Scan (5,2) and note the pair (5,4), the first

occurrence of r as a source in graph 5 after first

occurrence of p is 4.

Now the list of pairs noted in the steps a to e form the

projected database of the sequence <pr>,

{(1,3),(4,3),(5,4)}.

6. Scan the projected database of <pr> and find the

vertices visited from <pr>.

pr <t:3, q:2 ,p:1, s:1> , vertex t is visited 3 times

after <pr>, vertex q is visited 2 times , vertex p is

visited 1 time, and vertex s is visited 1 time.

Remove the infrequent sequences <prp>, <prs>.

Length-2 frequent sequences obtained so far in

descending order of their supports are <prt:3>

<prq:2>.

7. Grow the sequences <prt>, <prq> in the similar

manner.

All the frequent sequential graph patterns generated

from the vertex p are shown in ―Fig 4‖. The Time

complexity of SFG depends on the time taken for

scanning a graph database and a number of subsequences

generated. It is given by tg+ O (stp), where tg is the time

taken to scan graph database, s is the number of

subsequences and tp is the time taken to scan the

6 Top-k Closed Sequential Graph Pattern Mining

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

projected database of each subsequence.

C. TCSFG

The number of sequential patterns generated for a

given min_sup increase exponentially with an increase in

the average number of edges in the graph database. To

reduce the output search space, we proposed TCSFG

algorithm which generates top-k closed sequential graph

patterns.

Given a Graph database, minimum support, and k

number of patterns, Top-k Closed Sequential Graph

Pattern Mining is to find only top-k closed frequent

sequences from the graph database.

Fig.4. Frequent sequential graph patterns generated from vertex p.

Algorithm 2. TCSFG

Input: A Graph database GD, minimum support

threshold min_sup, minimum length of the

sequence min_len, number of closed patterns

k .

Output: Top-k closed sequential patterns.

1: Scan the Graph database GD to find projected

databases PD of all the vertices and their support

counts.

2: Sort the vertices in descending order of their

supports.

3: Find all frequent Length-1 sequences S and add all

of the sequences to the priority queue, Q.

4: Top-kClosedSeqMining(PD,Q)

Line 3 of algorithm2 sorts all frequent length 1

sequences in descending order of their supports. In our

example, out of 16 sequences, 15 are frequent as shown

in Table 2. Line 4 of algorithm2 calls the sub-procedure

Top-kClosedSeqMining to mine top-k sequences whose

length is not less than min_len.

Subprocedure3.Top-kClosedSeqMining(PD,S)

Input: Projected database PD, Set of Sequential

Patterns S

Output: Top-k Closed sequential frequent graph

patterns CSP.

1: if S is empty then return

2: if a number of closed sequential graph patterns

 is equal to k then return.

3: For every sequence Sʹ in S

PDs←find_projected_database(PD,Sʹ,

min_sup)

4: Scan the projected database PDs and find the

vertices visited from the sequence Sʹ and their

support counts.

5: For every vertex v visited from Sʹ,

Add the sequence <Sʹv> to Sʹʹ only if the

support count of the sequence <Sʹv> satisfies

the min_sup threshold.

6. If there is no sequence Sʹʹ with support equal

to the support of Sʹ and if the length of the

sequence Sʹ is not less than l then add Sʹ to set

of closed patterns.

CSP←CSP U Sʹ.

7: Top-kClosedSequenceMining(PDs,Sʹ’)

Let sʹ be the number of closed sequences obtained and

sʹ<<s where s is the number of frequent sequences. The

time complexity of TCSFG is given by tg+O(sʹtp) , where

tg is the time taken to scan the graph database and tp is

time taken to scan the projected database of each

subsequence.

Fig.5. Top-k closed graphs

Example: Given the graph sequence database as shown

in Table 1 with min_support=2, min_len =3 , k=6, top-k

closed sequential patterns are mined as follows:

1. Descending order of frequent length 1 Sequences

are,

<pr:7>,<qr:6>,<pq:5>,<ps:4>,<rp:4>,<rs:4>,<sr:4

>,<pt:3>,<qs:3>,<rq:3>,<rt:3>,<st:3>,<qp:2>,<qt:

2>,<tr:2>.

2. Select the first sequence <pr:7> and grow.

Length2, length3, sequences generated from <pr>

are <prt:3>,<prq:2>,<prtr:2>, <prqr:2>. Among

these 4 sequences only <prtr:2> and <prqr:2> are

added to set of closed patterns. <prq:2> is not

 Top-k Closed Sequential Graph Pattern Mining 7

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

closed as it is having a super sequence <prqr:2>

with the same support. <prt:3> is closed, but the

length of the sequence is less than l. The Closed

patterns generated from the sequence <pr:7> are

highlighted as shown in ―Fig.4‖.

3. The next sequence to be grown is <qr:6>. Closed

Sequences whose length greater than or equal to l

are <qrqr:3>, <qrqsr:2>, <qrpqr:2>, <qrpqsr:2>.

The algorithm stops as the number of sequences

obtained till now are 6.

The Top-k closed output graphs are shown in ―Fig. 5‖.

V. RESULTS

We implemented the SFG and TCSFG algorithms and

tested them on synthetic dataset produced by a graph

database generator [15]. It is based on the IBM Quest

Synthetic Data Generation Code for Association and

sequential patterns.

The graph generator generates the data sets based on

the four parameters: D be the total number of graphs in

the database, V be the number of vertex labels and E be

the number of edge labels, T be the average size of each

graph based on the number of edges and M be the

average density of each graph which is defined as the

number of edges in the graph divided by the number of

edges in a complete graph. ―Fig. 6‖ shows the result

where the size of the data set (D) is varied between 100

and 1000 graphs. Other values of the parameters used are:

V = 20, E = 20 , T = 20 and M=0.3.

―Fig. 6‖ and ―Fig. 7‖ shows the variations in the

number of sequential graph patterns generated and the

time taken by the SFG and TCSFG algorithms as the

minimum support is varied. This shows that in the case

of SFG algorithm the growth of frequent sequences

increases exponentially with reduced minimum support

and hence more analysis time. This might result in less

scalability for large graphs because the number of

subsequences increases exponentially.

Fig.6. Number of patterns generated with respect to change in
minimum support

These results point us to the problem of reducing these

output sequences by generating top-k closed sequences as

we discussed in TCSFG. This gives us an idea of how

important it is to reduce the number of frequent

sequences in the output using constraints, some of which

are based on the support, graph structure and generating

summarized patterns. These constraints are added in a

TCSFG algorithm to generate top-k closed graph

sequences. The running time and the number of patterns

generated for TCSFG for the same input database is

reduced by a factor when compared to SFG for smaller

values of minimum support. ―Fig. 8‖ shows the running

time of SFG and TCSFG algorithms with varying number

of graphs. During this experiment, the minimum support

threshold is kept 20% of the size of the graph data set.

These experimental results show that top-k closed

patterns are generated in less time compared to all the

sequential patterns with varying number of graphs as

input. We also tested performance of the TCSFG

algorithm by changing the value of k. We found that

running time of TCSFG algorithm is varying linearly

with the k value. ―Fig. 9‖ shows the running time of the

TCSFG algorithm for different values of k.

Fig.7. Performance of SFG and TCSFG

Fig.8. Running time with 20% minimum support

Fig.9. Performance of TCSFG on different k

As the size of the graph database increases, the number

of frequent graph sequences increases much faster than

the number of frequent closed graph sequences. The

effectiveness of an algorithm depends on the number of

useful patterns generated. As shown in the results, useful

patterns without much loss of information can be

obtained using TCSFG algorithm.

8 Top-k Closed Sequential Graph Pattern Mining

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

VI. CONCLUSION

In this paper, we studied the problem of mining

sequential patterns and closed sequential patterns in large

graph data sets. To the best of our knowledge, the

problem of mining closed graph sequence is not dealt

with much and this is the first piece of work to mine Top-

k closed sequential graph patterns. We proposed two

algorithms, SFG generates all the frequent sequences

from the graph database, whereas TCSFG generates top-k

frequent closed sequences. These algorithms use the

concept of projected database for a graph to reduce the

search space and an order based on the frequency of the

patterns to generate the set of all patterns. These

algorithms were verified on a synthetic database [15].

Based on this study, we conclude that mining top-k

closed sequential graph patterns are preferable than the

traditional closed graph mining. We further extend our

study to push constraints in generating top-k closed

sequential graph patterns.

REFERENCES

[1] A. Inokuchi, T. Washio, and H. Motoda. ―An apriori-

based algorithm for mining frequent substructures from

graph data,‖ In Proc. PKDD, ser. LNCS, Springer,

Vol.1910,pp. 13-23, July 2002. ―doi: 10.1007/3-540-

45372-5_2‖.

[2] F. Zhu, X.Yan, J. Han, and P. S.Yu, ―GPrune: A

constraint pushing framework for graph pattern mining,‖

In Proc. PAKDD, ser. LNCS, Springer, vol. 4426, pp.

388–400, May 2007. ―doi: 10.1007/978-3-540-71701-

0_38‖.

[3] G. Sethuraman, and Kavitha Joseph. ―Star Coloring

Problem:The DNA Solution,‖ International Journal of

Information Technology and Computer Science, Vol. 4,

No.3, pp.31-37, Apr.2012.―doi:

10.5815/ijitcs.2012.03.05‖.

[4] J. Han, J. Wang, Y. Lu, and P. Tzvetkov. ―Mining top-k

frequent closed patterns without minimum support,‖. In

Proc. ICDM 2002, Maebashi, Japan, pp. 211-218, Dec.

2002. ‖doi: 10.1109/ICDM.2002.1183905‖.

[5] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q.

Chen, U.Dayal, and M.C.Hsu. ―Mining sequential

patterns by pattern growth: Prefix span approach,‖ IEEE

Transactions on Knowledge and data engineering, Vol.16,

No.11,pp.1424-1440,Nov2004, ―doi:10.1109/TKDE.2004.

77 ‖.

[6] Jianyong Wang and Jiawei Han, ―Bide:Efficient mining of

frequent closed sequences,‖ In Proc. of 20th IEEE

international conference on Data Engineering ,pp. 79-90,

―doi:10.1109/ICDE.2004.1319986‖.

[7] Jianzhong Li, Yong Liu, and Hong Gao ―Efficient

Algorithm for Summarizing Graph Patterns,‖ IEEE

Transactions on Knowledge and Data Engineering, Vol.23,

Issue:9,pp.1388-1405,2011,―doi:10.1109/TKDE.

2010.48‖.

[8] M. Zaki, ―SPADE:An Efficient Algorithm for Mining

Frequent Sequences,‖ Machine Learning, Kluwer

Academic Publishers, Vol.42, issue:1, pp.31-60, 2001,

―doi: 10.1023/A:1007652502315‖.

[9] M. Kuramochi and G. Karypis, ―Frequent Subgraph

discovery,‖ In Proc. 2001. Int. conf. Data Mining 2001,

pp. 313-320, San Jose, CA, November 2001, ―doi:

10.1109/ICDM.2001.989534‖.

[10] Mohammed Hasan Mahafzah. ―An Efficient Graph-

coloring Algorithm for processor Allocation,‖

International Journal of Information Technology and

Computer Science, Vol.5, No.7, pp. 43-48, June 2013,

―doi: 10.5815/ijitcs. 2013.07.05‖.

[11] Natalia Vanetik. ‖Mining Graphs with Constraints on

Symmetry and Diameter,‖ In WAIM 2010 International

Workshops, Vol. 6185,Springer, pp. 1-12, July 2010, ―doi:

10.1007/978-3-642-16720-1_1‖.

[12] Petre Tzvetkov, Xifeng Yan, Jiawei Han. ―TSP: Mining

Top-K Closed Sequential Patterns,‖ Third IEEE

International Conference on Data mining, pp. 347-354,

November 2003, ―doi:10.1109/ICDM.2003.1250939‖.

[13] R. Agrawal and R. Srikant.‖ Mining sequential patterns‖.

In ICDE’95, Taipei, Taiwan, pp. 3-14, Mar. 1995.

[14] R. Srikant and R. Agrawal. ―Mining sequential patterns:

Generalizations and performance improvements‖. In

EDBT’96 Proceedings of the 5th International Conference

on Extending Database Technology: Advances in

Database Technology,pp.3-17,―doi:10.1007/

BFb0014140‖

[15] Synthetic graph generated by IBM Quest Synthetic Data

Generation Code for Associations and Sequential Patterns.

[http://www.cse.ust.hk/graphgen/].

[16] X. Yan and J. Han. ―CloseGraph: Mining closed frequent

graph patterns‖. In KDD’03, Washington, D.C., August

2003, ‖doi:10.1145/956750.956784‖.

[17] X. Yan, J. Han, and R. Afshar. ―CloSpan: Mining closed

sequential patterns in large datasets,‖ In SDM’03, San

Fransisco, CA, pp. 166-177 May 2003.

[18] Xifeng Yan, Jiawei Han. ―gSpan: Graph-Based

Substructure Pattern Mining,‖ In Proc ICDM 2002, pp.

721-724, ―doi:10.1109/ICDM.2002.1184038‖.

[19] Yan X, Zhou XJ, Han J. ―Mining closed relational graphs

with connectivity constraints‖. In Proc of ACM SIGKDD

international conference on knowledge discovery in

databases (KDD’05), Chicago, IL, pp. 324–333, 2005,

―doi:10.1145/1081870.1081908‖.

Authors’ Profiles

K. Vijay Bhaskar is currently a PhD

student in the department of Computer

Science and Engineering, Gandhi Institute

of Technology (GITAM). His current

research areas of interest include Data

Mining, Graph Databases, Network

security, and Mobile Computing.

Dr. R.B.V.Subramanyam is an associate

professor in the department of computer

science and Engineering, National Institute

of Technology, Warangal. He received his

Master of Technology and Doctor of

Philosophy from Indian Institute of

Technology, Kharagpur. His areas of

interest include Data mining, Distributed

data mining, Graph databases, Fuzzy data mining, Big data

analytics, Pattern recognition, High performance computing,

Soft computing, Game theory, Outlier analysis.

 Top-k Closed Sequential Graph Pattern Mining 9

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 4, 1-9

Dr. K. Thammi Reddy is the Director of

Internal Quality Control (IQC) and

Professor of CSE at Gandhi Institute of

Technology(GITAM).He is having Over 18

years of experience in Teaching, Research,

Curriculam Design and consultancy. His

research areas include Data warehousing

and Mining, Distributed computing,

Network Security etc.

S. Sumalatha is currently a PhD student in

the department of Computer Science and

Engineering, National Institute of

Technology, Warangal. Her research areas

of interest include Data mining, Big data

analytics and Graph databases.

How to cite this paper: K. Vijay Bhaskar, R.B.V Subramanyam, K. Thammi Reddy, S. Sumalatha,"Top-k Closed

Sequential Graph Pattern Mining", International Journal of Information Engineering and Electronic Business(IJIEEB),

Vol.8, No.4, pp.1-9, 2016. DOI: 10.5815/ijieeb.2016.04.01

