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Abstract—Graphs have become increasingly important in 

modeling structures with broad applications like 

Chemical informatics, Bioinformatics, Web page retrieval 

and World Wide Web. Frequent graph pattern mining 

plays an important role in many data mining tasks to find 

interesting patterns from graph databases. Among 

different graph patterns, frequent substructures are the 

very basic patterns that can be discovered in a collection 

of graphs. We extended the problem of mining frequent 

subgraph patterns to the problem of mining sequential 

patterns in a graph database. In this paper, we introduce 

the concept of Sequential Graph-Pattern Mining and 

proposed two novel algorithms SFG(Sequential Frequent 

Graph Pattern Mining) and TCSFG(Top-k Closed 

Sequential Frequent Graph Pattern Mining). SFG 

generates all the frequent sequences from the graph 

database, whereas TCSFG generates top-k frequent 

closed sequences. We have applied these algorithms on 

synthetic graph database and generated top-k frequent 

graph sequences. 

 

Index Terms—Data mining, graph mining, frequent 

sequential patterns, closed sequential patterns. 

 

I.  INTRODUCTION 

Frequent graph patterns are substructures that appear in 

a graph data set to a frequency not less than a user-

specified threshold [9]. Structural forms such as subtrees, 

subgraphs, sublattices are referred as substructures. A 

frequent structural pattern is a substructure that appears 

frequently in a graph database.  Sequential pattern mining, 

the mining of frequently occurring sub-sequences as 

patterns, was introduced in [13] and has become an 

important problem in data mining. Sequential pattern 

mining discovers frequent subsequences as patterns. 

According to the GSP algorithm [14], sequential pattern 

mining is to find all sequences whose support is greater 

than the user-specified minimum support, such sequence 

is called a frequent sequence. In SPADE [8], the set of all 

frequent sequences is discovered by reducing database 

scans and it minimizes I/O costs. The GSP and SPADE 

follow candidate generation and test approach.  

The PrefixSpan algorithm [5] is a pattern-growth 

approach to sequential pattern mining and it follows 

divide-and-conquer strategy. BIDE [6] is an algorithm 

used for mining frequent closed sequences without 

candidate generation. These algorithms [5,6] grow 

patterns by constructing projected databases to reduce the 

search space for a pattern. In this paper, we investigated 

the problem of mining sequential patterns in graph 

databases. Our approach finds sequential patterns 

occurring in graph databases.  

 

 
Fig.1. Three graphs where each vertex represents a web page 

In ―Fig. 1‖ each node represents a web page. Let us 

consider that the edges of the given graphs represent the 

order of visiting the web pages. For example, Graph1 

represents the sequence q,s,t. Similarly Graph2 represents 

the sequence q,r,t and Graph3 represents  the sequence 

q,p,t. Observing the three given graphs, it is clear that 

page t is accessed after page q(not immediately after q). 

The resulting pattern is <qt> which is not a subgraph. 

Given the above three graphs as input, any existing 

subgraph mining algorithm will not generate <qt> as a 

pattern. Many graph mining algorithms exist to find the 

frequent subgraphs, maximal frequent subgraphs, closed 

frequent subgraphs, and constraint-based closed frequent 

subgraphs. The sequence <qt> is not considered as an 



2 Top-k Closed Sequential Graph Pattern Mining  

Copyright © 2016 MECS                                            I.J. Information Engineering and Electronic Business, 2016, 4, 1-9 

output pattern by the existing graph mining algorithms. 

Though  <qt> is not a subgraph, it represents a pattern 

showing a sequence q followed by t. In this paper, we 

proposed an algorithm to find sequential patterns from 

graph databases known as Sequential Graph-Pattern 

Mining. 

We proposed SFG(Sequential Frequent Graph pattern 

mining) algorithm to mine frequent sequences in a graph 

database. As the number of edges in a graph increases, 

the number of sequential patterns also increases 

exponentially. This requires further analysis of frequent 

sequential graph patterns. To overcome this difficulty, we 

proposed TCSFG(Top-k Closed Sequential Frequent 

Graph pattern mining) algorithm to generate top-k closed 

sequential graph patterns. 

The rest of the paper is organized as follows. Section II 

describes the related work in subgraph mining. Section III 

present problem definition and section IV describe SFG, 

TCSFG algorithms. Our experimental results and 

performance analysis are presented in section V and our 

work is concluded in section VI. 

 

II.  RELATED WORK 

Many algorithms exist in the literature for mining 

frequent graph patterns [1,7,9,16,18]. AGM [1] algorithm 

efficiently mines frequently appearing induced subgraphs 

from a graph data database. Experimental results in [1] 

show that AGM finds all frequent induced subgraphs 

containing 300 chemical compounds in 40 minutes to 8 

days, as the minimum support threshold varied from 20% 

to 10%. FSG[9] algorithm uses a sparse graph 

representation which minimizes both storage and 

computation. The performance of FSG was worse where 

the number of vertex and edge labels was small. AGM [1] 

and FSG [9] are Apriori-based algorithms for mining 

frequent substructures from graph data.  Apriori-based 

algorithms generate subgraph candidates from frequent 

subgraphs and prunes false positives. These algorithms 

[1,9] suffer from the  problem of subgraph isomorphism 

test and candidate generation. Candidate generation and 

pruning false positives are costly.  

The gSpan [18] was the first algorithm to discover all 

the frequent subgraphs without candidate generation and 

it prunes false positives. gSpan discovers frequent 

substructures without candidate generation. A new 

lexicographic ordering among graphs was built in [18] 

and it maps each with a unique minimum DFS code as its 

canonical label. gSpan finds both frequent subgraphs and 

frequent induced subgraphs. It [18] uses rightmost 

extension technique to minimize the generation of the 

same subgraphs and explores the depth-first search in 

frequent subgraph mining.  

Frequent subgraph mining is a challenging issue due to 

the generation of an exponential number of frequent 

subgraphs. Closed graph pattern mining was introduced 

in [16] to mine only closed frequent graph patterns. A 

graph g is closed if there do not exist any proper super 

graph of g with the same support as g. CloseGraph [16] 

mines closed frequent graph patterns using the concepts 

of equivalent occurrence and early termination to prune 

the pattern search space. It [16] reduces unnecessary 

subgraphs and also increases the efficiency of the mining 

process in the presence of large graph patterns. TSP [12], 

TFP [4] and CloSpan [17] are the recent work for closed 

sequential pattern mining. CloSpan is the first algorithm 

to solve closed sequential pattern mining problem. It [17] 

mines frequent closed sequential patterns and produces 

significantly less number of discovered sequences. The 

CloSpan mines long frequent sequences with low 

minimum support and without any information loss.  

Mining top-k frequent closed patterns without 

minimum support was introduced in [4]. Top-down and 

bottom-up combined Fp-tree mining strategy was 

developed in [4] to raise the support and to discover 

closed frequent patterns. TSP algorithm mines top-k 

frequent closed sequential patterns of length no less than 

min_len, the minimum length of each pattern. It [12] 

doesn’t require the minimum support threshold, it makes 

use of the length constraint and outperforms the closed 

sequential pattern mining algorithm that make use of 

minimum support threshold.  

Several algorithms were proposed previously ranging 

from mining graph patterns with constraints [2,11,19] and 

without constraints [6,18] for mining closed graph 

patterns [16]. Frequent graph-pattern mining may result 

in a large number of patterns. To make the mining more 

effective, constraints are often used to confine the pattern 

search. In gPrune algorithm[2] the frequent graph 

patterns are generated based on the constraints such as 

density and diameter. The Density of a graph is defined 

as the ratio of the edge set to vertex set. The diameter of a 

graph is the maximum length of  the shortest path over all 

pairs of vertices. The problem of incorporating structural 

constraints in mining frequent graph patterns was solved 

in gPrune.  

Finding closed frequent graphs with connectivity 

constraints in relational graphs was introduced in [19]. 

Two  approaches, namely  CLOSECUT and SPLAT  

were proposed to speed up the mining process. The 

former was pattern growth approach and it has better 

performance on patterns with high support and low 

connectivity, later approach was pattern reduction 

approach and it achieves better performance for the high 

connectivity constraints. These [19] algorithms mines 

closed frequent graphs with connectivity constraints in 

relational graphs. DS-search algorithm [11] mines 

frequent subgraphs of limited diameter and symmetry. It 

[11] employs the tree decomposition structure of database 

graphs during the mining process and generates more 

structurally interesting patterns in the database. 

Recently two sequential techniques[3,10] were 

developed to solve the problem of graph-coloring. Graph-

coloring concept [10 ] was used in processor allocation to 

represent the busy processor and the busy processors are 

mapped in the graph using different colors. The authors 

in [3] investigated the problem of Star coloring and they 

used DNA sequence to construct a solution space for the 

star coloring problem 

Two algorithms RP-FP and RP-GD were proposed in 
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[7]. These algorithms mine a representative set that 

summarizes frequent subgraphs. In these algorithms [7] a 

representative set RS is mined such that any frequent 

subgraph is covered by a representative in RS, and the 

value of |RS| is minimized. RP-FP and RP-GD algorithms 

have been proposed to summarize graph patterns 

efficiently using the concept of δ-cover and generates δ-

jump patterns for a user specified δ.  Even though there 

exist many subgraph mining algorithms, the problem of 

sequential pattern mining  of graphs has not been 

investigated in the literature. 

In this paper, we proposed a new algorithm SFG to 

mine sequential patterns from a graph database using 

pattern growth approach. We also extended our algorithm 

to mine top-k closed sequential patterns. We demonstrate 

that generating top-k closed frequent sequences reduce 

the number of output graphs without losing much 

information.  

 

III.  PROBLEM DEFINITION 

In this section, we define sequential graph pattern and 

frequent sequential graph pattern mining problem. 

A Labeled directed Multigraph can be represented as a 

tuple, G= (V,E,L,F) where V denotes a set of vertices, E 

denotes a set of edges, L denotes a set of labels and F is a 

labeling function that assigns labels to the vertices and 

edges. Every edge is a 4 tuple <s, d, Gid, lb>, where s is 

the source vertex, d is destination vertex, Gid is Graph id 

and lb is an edge label. A sample Graph data set is shown 

in ―Fig. 2‖. 

 

 

Fig.2. A sample graph data set 

Definition 1 (Graph Sequence) 

An ordered collection of edges in a graph is called a 

graph sequence. Every edge is assigned a time constant 

(time of the creation of the relationship between the 

vertices) as a label. A Graph Sequence can be represented 

as, 

GS=<(va,vb),(vb,vc),….(vl,vm),(vm,vn)> where va, vn  are 

the source and destination of the   Graph sequence and 

each (vi,vj) represents an edge from vi to vj. Compact 

representation of Graph sequence is given as 

GS=<va,vb,vc,….vn>.  

Definition 2 (Length of the Graph Sequence).  

Given a Graph Sequence GS =<va,vb,vc,….vn> Where 

each vi represents a vertex. Length of the Graph sequence 

is the number of edges in the sequence. 

Definition 3 (Support of Graph sequence) 

Support of Graph Sequence GS is the total number of 

graphs containing the sequence GS as a subsequence. 

 

 

Fig.3. A sample graph 

Graph sequence for the graph in ―Fig. 3‖ is 

<(p-q),(q-r),(r-p),(p-s)> where t1,t2,t3,t4 are edge 

labels such that t1<t2<t3<t4. Its compact representation is 

<pqrps>. Length of the sequence is 4. 

Definition 4 (Projected database of a sequence S) 

Let S be a sequential pattern in a Graph database GD. 

The S projected database is the collection of subgraph 

sequences in GD with S as the first occurring sequence. 

Definition 5 (Projected database of a vertex) 

Given a Graph Database  GD = {G1, G2,… Gn}, The 

projected database of a vertex V is the set of subgraphs in 

which the sequence of the subgraph starts with V. 

PDv = { SGi  / i ɛ 1,2,..n and v is the starting vertex in 

each SGi}.For example, in the given graph database, the 

sequence that starts with vertex p as the source forms 

projected database of p. In ―Fig. 2‖ edge 1 of Graph 1, 

edge 3 of Graph 2, edge 2 of Graph 3, edge 1 of Graph 4 

and edge 2 of Graph 5 forms the sequence starting with p. 

Instead of storing the projected database separately for 

every vertex, considering the space constraints, we store 

only the <Graph-Id, Edge-Id> pairs. Hence p-projected 

database is  <(1,1),(2,3),(3,2),(4,1), (5,2)> 

Definition 6 ( Support of a vertex) 

Support of a vertex V is the number of sequences that 

start with V. A graph may contain multiple subsequences 

starting with V, but the count is only 1 for every graph.  

Definition 7 (Canonical form) 

Given a multigraph Gi with n vertices, m edges and a 

graph sequence GS <v1,v2,…..vn>,  Canonical form of Gi 

is denoted as  (v1,v2,i,1),(v2,v3,i,2),….(vn-1,vn,i,m) 

Definition 8 (Sequential Graph Pattern) 

Given a graph sequence, a Sequential Graph Pattern is 

all possible subsequences.  

For the Graph given in ―Fig. 3‖ Graph Sequence is 
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<pqrps>, the possible sequential graph patterns are 

<pq>,<pr>,<ps><pqr>,<pqp>,<pqs>,<pqps>,<pqrp>,<

pqrs>,<pqrps>,<prp>,<prs>,<prps>,<qr>,<qp>,<qs>,<qr

p>,<qrs>,<qrps>,<rp>,<rs>,<rps> 

Definition 9 (Frequent Sequential Graph Pattern Mining) 

Given a Graph database and minimum support, 

Frequent Sequential Graph-Pattern Mining is to find all 

the frequent sequences from the graph database. 

Table 1. Canonical representation of Graph database 

Graph-Id 
Graph Sequence 

(Ordered Edges) 
Canonical form 

1 
p→q, 

q→r,r→p,p→q,q→s,s→r 
(p,q,1,1),(q,r,1,2),(r,p,1,3), 
(p,q,1,4),(q,s,1,5),(s,r,1,6) 

2 
q→r, r→p, p→q, 

q→s,s→r 

(q,r,2,1),(r,p,2,2),(p,q,2,3), 

(q,s,2,4),(s,r,2,5) 

3 r→p, p→s (r,p,3,1),(p,s,3,2) 

4 
p→q, q→r, r→t, t→q, 

q→r 
(p,q,4,1),(q,r,4,2),(r,t,4,3), 

(t,q,4,4),(q,r,4,5) 

5 
r→p, p→s, s→r, r→t, 

t→r, r→t 

(r,p,5,1),(p,s,5,2),(s,r,5,3), 
(r,t,5,4),(t,r,5,5), 

(r,t,5,6) 

6 q→s, s→t (q,s,6,1),(s,t,6,2) 

Table 2. Projected database of vertices 

Vertex 
v 

Projected 
Database 

Support 
(v) 

Nodes 
visited 

from v 

Frequent 

Sequential 
Length-1 

patterns 

P 
{(1,1),(2,3),(3,2) 

,(4,1),(5,2)} 
5 

<r:7,q:5 

,s:4,t:3> 

<pr>,<pq>, 

.<ps>,<pt> 

Q 
{(1,2),(2,1),(4,2), 

(6,1)} 
4 

<r:6,s:3, 

p:2,t:2> 

<qr>,<qs>, 

<qp>,<qt> 

R 
{(1,3),(2,2),(3,1), 

(4,3),(5,1)} 
5 

<p:4,s:4, 
q:3,t:3> 

<rp>,<rs>, 
<rq>,<rt> 

S 
{(1,6),(2,5),(5,3), 

(6,2)} 
4 <r:4,t:3> <sr>,<st> 

T {(4,4),(5,5)} 2 <r:2,q:1> <tr> 

 

Definition 10 (Top-k Closed Graph Sequence)  

A Graph sequence S is said to be a closed graph 

sequence if S is frequent and there is no proper super 

sequence with the same support. A closed graph sequence 

is said to be a top-k closed sequence of minimum length l 

if there exists no more than (k-1) closed graph sequences 

whose length is at least l whose support is higher than 

that of S. 

 

IV.  ALGORITHMS 

In this section, we present SFG and TCSFG algorithms 

to generate frequent sequential graph patterns and Top-k 

closed frequent sequential graph patterns. 

A.  Algorithms Description  

A Graph database is given as input to each of these 

algorithms. The  concept of SFG algorithm generates set 

of sequential frequent graph patterns. To reduce 

redundant patterns, we followed an order based on the 

frequency of sequences in the database. Sequences with 

higher frequency are grown first, followed by sequences 

of lower frequency. 

B.  SFG 

SFG algorithm generates set of sequential frequent 

graph patterns. The main steps include the generation of 

the set of all frequent length-1 sequences S’, pruning 

infrequent edges and vertices from Graph database D, 

sorting S’ in descending order of its frequency, and 

growing each edge in the sequence. 

 

Algorithm 1. SFG 

Input: A Graph database GD, a minimum support 

threshold min_sup. 

Output: Set of sequential frequent graph patterns SP. 

1: Scan the Graph database once, 

a. Find the projected database of each vertex v in 

the input vertex set V and let it be PDv. Find 

the support count of each vertex. 

b. Find the set of vertices Vu that can be visited 

from each vertex v and also find  the support 

count of the sequence<v,u>   where u ɛ Vu  . 

2: Sort the vertex set V in descending order of their 

support count and insert them  in a priority queue Q. 

Do not insert the vertex whose support count is less 

than the min_sup. 

3: For every vertex v in the priority queue Q  

4: For every vertex u ɛ Vu   

5:     a. If the support count of the sequence   

               <vu> is greater than or equal to                   

                minsup threshold then add the    

                sequence <vu> to S. 

  b. SP ← SP U S. 

6: Sort S in descending order of their supports. 

7: SequenceMining (PDv, S) 

 

In Line 1 of the algorithm, single scan of the graph 

database is done. The projected database of each vertex 

and their support counts are calculated. For every 

sequence that grows with a vertex, it is ensured that only 

its projected database is scanned. This reduces the search 

space and scan time. Find the set of vertices that can be 

visited from each vertex v and the support count of 

length-1 sequences. Line 2 of the algorithm removes the 

projected database of an infrequent vertex. The vertex 

whose support count is less than the min_sup threshold is 

an infrequent vertex. The remaining vertices are sorted in 

descending order of their support count. Lines (3-5) finds 

length-1 frequent sequences and calls the subprocedure 

SequenceMining to find the frequent sequences of length 
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more than one. SFG algorithm iterates until there are no 

vertices that can grow the sequence. 

 

Subprocedure1. SequenceMining(PD,S) 

Input: Projected database PD, Sequential Pattern S 

Output: Set of sequential frequent graph patterns SP. 

1: if S is empty then return. 

2: For every sequence Sʹ in S 

PDs←Find_projected_database(PD,Sʹ) 

3:     Scan the projected database PDs and find the 

vertices visited from the sequence Sʹ and their 

support counts. 

4:         For every vertex v visited from Sʹ,  

a. Add the sequence <Sʹv> to Sʹʹ only if  the 

support count of the sequence <Sʹv> satisfies 

the min_sup threshold. 

b. SP← Sʹʹ. 

5:         SequenceMining(PDs , Sʹ’,min_sup) 

 

SequenceMining is a recursive procedure that grows 

every sequence in S. Lines 2-3 of the procedure finds the 

projected database of the sequences in S and scans the 

projected database of each sequence to find the vertices 

visited from the sequence and the support count of the 

new sequence. Line 4 of the procedure grows the 

sequence and returns if there is no sequence to be grown. 

The recursive procedure finds length-2 frequent 

sequences in the first run, length-3 frequent sequences in 

the second run and so on. It finds the set of all frequent 

sequences of length more than one and performs a one 

edge growth of the sequence in each recursive call. 

 

Subprocedure2. Find_projected_database(PD,Sʹ) 

Input: Projected database PD, Sequential Pattern 

Sʹ, where Sʹ=<va,vb,……vn> 

Output: PDS, where PDS is a Projected database of Sʹ. 

1: PDS←Φ 

2. for every graphid, edgeid pair (i,j) in PD 

3: Scan graph i from j to find k, where  k is the 

first occurrence of vn. 

4: PDS←PDS ᴜ (i,k) 

5: return PDS 

 

Example: Given the graph sequence database as shown 

in Table 1 with min_sup=2, frequent sequential patterns 

are mined in the following manner.  

 

1. Scan the graph database once and find the 

projected database PDv of each vertex and their 

support counts. The database is divided into 5 

partitions, the first partition starts with p as the 

source vertex, the second partition starts with q as 

the source and so on. 

2. Find the vertices visited from each vertex and their 

support count. Find length 1 frequent graph 

sequences. Projected database and frequent length 

1 graph sequences are  shown in Table 2. 

3. Vertices visited from vertex p and their support 

count is <r:7, q:5, s:4, t:3>. Length 1 frequent 

graph sequences are <pr:7,pq:5,ps:4,pt:3>.The 

sequence <pr:7> represents that vertex r is visited 

7 times after vertex p. Similarly <pq: 5> represents 

that vertex q is visited 5 times after p and so on. 

4. Descending order of vertices based on their 

support count is  <p:5>,<r:5>,<q:4>,<s:4>,<t:2>. 

Call the sub procedure SequenceMining with the 

Projected database of the vertex p and the 

sequences grown from p, <pr>,<pq>,<ps>,<pt> as 

input. 

5. Grow the sequence with the highest support first. 

In our example, grow the sequence <pr> first. 

Scan the projected database of p to construct the 

projected database of <pr>. Projected database of 

p is { (1,1), (2,3), (3,2), (4,1), (5,2)}. 

Subprocedure2 is called to find the projected 

database of the sequence <pr> as shown below. 

 

a. Scan (1,1)as follows, the first occurrence  of p as 

a source vertex in graph 1 from the edge 1 is 1. 

Now check the first occurrence of r as a source 

after the first occurrence of p, it is found at 3. 

Note the graph-id, edge-id  pair (1,3). 

b. Similarly, scan (2,3) as follows, the first 

occurrence of p as a source vertex in graph 2 

from edge 3 is 3. Now check the first occurrence 

of r as source after the first occurrence of p, it is 

not found. This indicates that the sequence <pr>  

cannot be grown in graph 2. 

c. Similarly, scan (3,2) and the sequence <pr> 

cannot be grown in graph 3. 

d. Scan (4,1) and note the pair (4,3), the first 

occurrence of r as a source in graph 4 after first 

occurrence of p is 3.  

e. Scan (5,2) and note the pair (5,4), the first 

occurrence of r as a source in graph 5 after first 

occurrence of p is 4. 

 

Now the list of pairs noted in the steps a to e form the 

projected database of the sequence <pr>, 

{(1,3),(4,3),(5,4)}. 

 

6. Scan the projected database of <pr> and find the 

vertices visited from <pr>. 

pr <t:3, q:2 ,p:1, s:1> , vertex t is visited 3 times 

after <pr>, vertex q is visited 2 times , vertex p is 

visited 1 time, and vertex s is visited 1 time. 

Remove the infrequent sequences <prp>, <prs>. 

Length-2 frequent sequences obtained so far in 

descending order of their supports are <prt:3> 

<prq:2>. 

7. Grow the sequences <prt>, <prq> in the similar 

manner. 

 

All the frequent sequential graph patterns generated 

from the vertex p are shown in ―Fig 4‖. The Time 

complexity of SFG depends on the time taken for 

scanning a graph database and  a number of subsequences 

generated. It is given by  tg+ O ( stp), where tg is the time 

taken to scan graph database, s is the number of 

subsequences and tp is the time taken to scan the 
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projected database of each subsequence. 

C.  TCSFG 

The number of sequential patterns generated for a 

given min_sup  increase exponentially with an increase in 

the average number of edges in the graph database. To 

reduce the output search space, we proposed TCSFG 

algorithm which generates top-k closed sequential graph 

patterns. 

Given a Graph database, minimum support, and k 

number of patterns, Top-k Closed Sequential Graph 

Pattern Mining is to find only top-k closed frequent 

sequences from the graph database. 

 

 
Fig.4. Frequent sequential graph patterns generated from vertex p. 

Algorithm 2. TCSFG 

Input: A Graph database GD, minimum support 

threshold min_sup, minimum length of the 

sequence min_len, number of closed patterns 

k . 

Output: Top-k closed sequential patterns. 

1: Scan the Graph database GD to find projected 

databases PD of all the vertices and their support 

counts.    

2: Sort the vertices in descending order of their 

supports. 

3: Find all frequent Length-1 sequences S and add all 

of the sequences to the priority queue, Q. 

4:   Top-kClosedSeqMining(PD,Q) 
 

Line 3 of algorithm2 sorts all frequent length 1 

sequences in descending order of their supports. In our 

example, out of 16 sequences, 15 are frequent as shown 

in Table 2. Line 4 of algorithm2 calls the sub-procedure 

Top-kClosedSeqMining to mine top-k sequences whose 

length is not less than min_len. 

 

 

Subprocedure3.Top-kClosedSeqMining(PD,S) 

Input: Projected database PD,  Set of Sequential 

Patterns S 

Output: Top-k Closed sequential frequent graph 

patterns CSP. 

1: if S is empty then return 

2: if a number of closed sequential graph patterns 

 is equal to k then return. 

3: For every sequence Sʹ in S  

PDs←find_projected_database(PD,Sʹ, 

min_sup) 

4:   Scan the projected database PDs and find the 

vertices visited from the sequence Sʹ and their 

support counts.  

5:         For every vertex v visited from Sʹ,  

Add the sequence <Sʹv> to Sʹʹ only if  the 

support count of the sequence <Sʹv> satisfies 

the min_sup threshold. 

6.  If there is no sequence Sʹʹ with support equal 

to    the support of Sʹ and if the length of the 

sequence Sʹ is not less than l  then add Sʹ to set 

of closed patterns. 

CSP←CSP U Sʹ. 

7: Top-kClosedSequenceMining(PDs,Sʹ’) 

 

Let sʹ be the number of closed sequences obtained and 

sʹ<<s where s is the number of frequent sequences. The 

time complexity of TCSFG is given by tg+O(sʹtp) , where 

tg is the time taken to scan the graph database and tp is 

time taken to scan the projected database of each 

subsequence. 

 

 
Fig.5. Top-k closed graphs 

Example: Given the graph sequence database as shown 

in Table 1 with min_support=2, min_len =3 , k=6, top-k 

closed sequential patterns are mined as follows: 

 

1. Descending order of frequent length 1 Sequences 

are, 

<pr:7>,<qr:6>,<pq:5>,<ps:4>,<rp:4>,<rs:4>,<sr:4

>,<pt:3>,<qs:3>,<rq:3>,<rt:3>,<st:3>,<qp:2>,<qt:

2>,<tr:2>. 

2. Select the first sequence <pr:7> and grow. 

Length2, length3, sequences generated from <pr> 

are <prt:3>,<prq:2>,<prtr:2>, <prqr:2>. Among 

these 4 sequences only <prtr:2> and <prqr:2> are 

added to set of closed patterns. <prq:2> is not 
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closed as it is having a super sequence <prqr:2> 

with the same support. <prt:3> is closed, but the 

length of the sequence is less than l. The Closed 

patterns generated from the sequence <pr:7> are 

highlighted as shown in ―Fig.4‖. 

3. The next sequence to be grown is <qr:6>. Closed 

Sequences whose length greater than or equal to l 

are <qrqr:3>, <qrqsr:2>, <qrpqr:2>, <qrpqsr:2>. 

The algorithm stops as the number of sequences 

obtained till now are 6.  

 

The Top-k closed output graphs are shown in ―Fig. 5‖. 

 

V.  RESULTS 

We implemented the SFG and TCSFG algorithms and 

tested them on synthetic dataset produced by a graph 

database generator [15]. It is based on the IBM Quest 

Synthetic Data Generation Code for Association and 

sequential patterns.  

The graph generator generates the data sets based on 

the four parameters: D be the total number of graphs in 

the database, V be the number of vertex labels and E be 

the number of edge labels, T be the average size of each 

graph based on the number of edges and M be the 

average density of each graph which is defined as the 

number of edges in the graph divided by the number of 

edges in a complete graph. ―Fig. 6‖ shows the result 

where the size of the data set (D) is varied between 100 

and 1000 graphs. Other values of the parameters used are: 

V = 20, E = 20 , T = 20 and M=0.3. 

―Fig. 6‖ and ―Fig. 7‖ shows the variations in the 

number of sequential graph patterns generated and the 

time taken by the SFG and TCSFG algorithms as the 

minimum support  is varied. This shows that in the case 

of SFG algorithm the growth of frequent sequences 

increases exponentially with reduced minimum support 

and hence more analysis time. This might result in less 

scalability for large graphs because the number of 

subsequences increases exponentially. 

 

 

Fig.6. Number of patterns generated with respect to change in 
minimum support 

These results point us to the problem of reducing these 

output sequences by generating top-k closed sequences as 

we discussed in TCSFG.  This gives us an idea of how 

important it is to reduce the number of frequent 

sequences in the output using constraints, some of which 

are based on the support, graph structure and generating 

summarized patterns. These constraints are added in a 

TCSFG algorithm to generate top-k closed graph 

sequences. The running time and the number of patterns 

generated for TCSFG for the same input database is 

reduced by a factor when compared to SFG for smaller 

values of minimum support. ―Fig. 8‖ shows the running 

time of SFG and TCSFG algorithms with varying number 

of graphs. During this experiment, the minimum support 

threshold is kept 20% of the size of the graph data set. 

These experimental results show that top-k closed 

patterns are generated in less time compared to all the 

sequential patterns with varying number of graphs as 

input. We also tested performance of the TCSFG 

algorithm by changing the value of k. We found that 

running time of TCSFG algorithm is varying linearly 

with the k value. ―Fig. 9‖ shows the running time of the 

TCSFG algorithm for different values of k. 

 

 

Fig.7. Performance of SFG and TCSFG 

 

Fig.8. Running time with 20% minimum support 

 

Fig.9. Performance of  TCSFG on different k 

As the size of the graph database increases, the number 

of frequent graph sequences increases much faster than 

the number of frequent closed graph sequences. The 

effectiveness of an algorithm depends on the number of 

useful patterns generated. As shown in the results, useful 

patterns without much loss of information can be 

obtained using TCSFG algorithm. 
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VI.  CONCLUSION 

In this paper, we studied the problem of mining 

sequential patterns and closed sequential patterns in large 

graph data sets. To the best of our knowledge, the 

problem of mining closed graph sequence is not dealt 

with much and this is the first piece of work to mine Top-

k closed sequential graph patterns. We proposed two 

algorithms, SFG generates all the frequent sequences 

from the graph database, whereas TCSFG generates top-k 

frequent closed sequences. These algorithms use the 

concept of projected database for a graph to reduce the 

search space and an order based on the frequency of the 

patterns to generate the set of all patterns. These 

algorithms were verified on a synthetic database [15]. 

Based on this study, we conclude that mining top-k 

closed sequential graph patterns are preferable than the 

traditional closed graph mining. We further extend our 

study to push constraints in generating top-k closed 

sequential graph patterns.  
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