
I.J. Information Engineering and Electronic Business, 2016, 6, 28-36
Published Online November 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2016.06.04

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

Methodology of Compiling Web-Applications

into Executables, Obtaining Seamless Server

Installations and GUI Navigations through Qt and

C++ Process Communications

Emmanuel C. Paul
Department of Mathematics, University of Ilorin, Ilorin, Nigeria

Email: ewebstech@gmail.com

Abstract—Server-side scripts like Hyper-Text

Preprocessor, Active Server Pages, and their interaction

with databases, has been one of the most popularly used

packages for Large Database Intensive Enterprise

Software today. In this paper, an approach based on a

detailed and efficient method for compiling Web-

Applications into executable formats to increase ease of

software distribution, where limited internet access exists,

is proposed. By this approach, first, one of the server-side

scripts and a very popular web-application language in

the world, Hyper-Text Preprocessor, is employed as a

case study. Second, the methodology of using C++ for

writing server installation scripts and creating Graphics

User Interface Applications with Qt is shown, with tested

applications. Third, Inno Setup Compiler scripts are

written and used for compiling into installation and

uninstallation setup files. Finally, the relevance of offline

Web-Applications for solving scientific problems, the

enhancement of C++ codes powered by Graphics User

Interface for scientific computation, through inter-

channels communication using Qt, and the steps required

to easily conquer the challenges faced during the

installation of Web-Applications’ Servers and Databases

like MySQL, are discussed. This approach is efficiently

manifested by indicating and confirming this

computational potential in the installation and usage of

offline web-applications.

Index Terms—Compiling Web-Applications, Qt, C++,

GUI, Executables, PHP, Seamless Server Installations,

Web-Applications’ Servers and Databases.

I. INTRODUCTION

The importance and use of Server Side driven Web-

Applications have undoubtedly affected the working

structure of our world today. According to Lee Babin

(2007), Internet scripting technology has come along at a

very brisk pace. While its roots are lodged in text-based

displays (due to very limited amounts of storage space

and memory), over the years it has rapidly evolved into a

visual and highly functional medium
[2]

.

It is generally believed that Web

Programming/Scripting languages like Hyper Text

Markup Language (HTML), Hyper-Text Preprocessor

(PHP) and JAVASCRIPT are mostly used for website

development projects while other languages like C, C++,

Visual Basic or even Python are used to create desktop

applications. However, it is also true that Web-

Applications can be built, distributed as exes without any

existing knowledge of Web Server configurations by the

software users. Hence, the software would be navigated

and managed by the user just as with any other desktop

application.

The flexibility and ease in the development and use of

web applications for large network-dependent software

projects like Computer Based Tests (CBT) Software and

several Enterprise Management Software has made the

relevance of web programming important to both the

native web developer and also the scientific researcher

especially in developing countries, and hence, its

relevance cannot be overemphasized. Javascript and its

frameworks like jQuery has improved the world of web

development today, hereby creating avenues for

comfortable, fast and efficient client-side programming.

PHP is known for its robust nature, viable

documentations, stable version releases and frequent

updates. PHP's integration with cURL, Perl and its GD

library has placed it amongst the finest programming tool

in the programming field.

In these treatise, we disclose practical examples of how

Web Applications could be run locally on computer

systems, introduce the usage of Qt with C++ to write

commands for automatic installation of necessary servers

on the client's computer and finally write codes in Inno

Compiler setup in order to compile the scripts into .exes

which makes the web application install and uninstall like

a system application.

The remainder of this paper is organized as follows:

Section II gives an overview of the languages used in this

paper, Section III contains the C++ methodologies and

needed configuration procedures, Section IV entails the

GUI application techniques, Section V contains the web

application compilation procedures, and the discussion of

results is done in Section VI. The Conclusion is given in

the final section.

 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations 29

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

II. KEY LANGUAGES/TECHNOLOGIES USED

A. Hyper-Text Preprocessor (PHP)

PHP is one of the best free open-source server side

scripting languages used by many web-application

developers. Hence, according to Steve Suehring, Tim

Converse and Joyce Park (2009), PHP is a server-side

scripting language, usually used to create web

applications in combination with a web server, such as

Apache. PHP can also be used to create command-line

scripts akin to Perl or shell scripts, but such use is much

less common than PHPs use as a web language
[10]

.

Matt Zandstra (2000), also revealed that PHP's support

for Apache and MySQL further secured its popularity.

Apache is now the most-used Web server in the world,

and PHP can be compiled as an Apache module. MySQL

is a powerful free SQL database, and PHP provides a

comprehensive set of functions for working with it. The

combination of Apache, MySQL, and PHP is all but

unbeatable
[9]

.

Unfortunately, Tutorials on the working principles of

PHP is not in the scope of this work. Therefore, no PHP

Scripts would be provided here. Alternatively, web sites

like http://www.hotscripts.com can be visited and

browsed through to get working PHP scripts for test

purposes in this work.

B. Qt

Qt is a complete C++ application development

framework. It includes a comprehensive

C++ class library, RAD GUI development tool (Qt

Designer), Internationalization tool (Qt Linguist), Help

browser (Qt Assistant) and comprehensive documentation.

QT is very comprehensive in the sense that it possesses

• 400+ fully documented classes,

• Core libs such as GUI, Utility, Events, File, Print,

Network, Plugins, Threads, Date and

• Time, Image processing, Styles and Standard

dialogs.

• Modules like Canvas, Iconview, Network,

OpenGL, SQL, Table, Workspace, XML

• Tools such as Designer, Assistant, Linguist and

finally,

• Extensions like ActiveQt, Motif migration and

MFC migration.

• The version of Qt IDE used as at the time of this

publication is Qt 5.5.1 (MSVC 2013, 32 bit).

C. C++

C++ is a general purpose programming language with

a bias towards systems programming. According to the

Inventor of C++, Bjarne Stroustrup (1997), C++:

• is a better C,

• supports data abstraction,

• supports object oriented programming, and

• Supports generic programming.

However, this section gives an insight into what this

means without going into the finer details of the language

definition. Its purpose is to give a general overview of

C++ and the key techniques for using it, not to provide

you with the detailed information necessary to start

programming in C++.

D. Inno Setup Compiler

Inno Setup Compiler is a free installer for Windows

programs. First introduced in 1997,

Inno Setup today rivals and even surpasses many

commercial installers in feature set and stability.

Key features:

• Support for every Windows release since 2000,

including: Windows 10, Windows 8.1, Windows 8,

Windows Server 2012, Windows 7, Windows

Server 2008 R2, Windows Vista, Windows Server

2008, Windows XP, Windows Server 2003, and

Windows 2000. (No service packs are required.)

• Extensive support for installation of 64-bit

applications on the 64-bit editions of Windows.

Both the x64 and Itanium architectures are

supported. (On the Itanium architecture, Service

Pack 1 or later is required on Windows Server

2003 to install in 64-bit mode.)

• Supports creation of a single EXE to install your

program for easy online distribution. Disk

spanning is also supported.

• Standard Windows wizard interface.

• Customizable setup types, e.g. Full, Minimal,

Custom.

• Complete uninstall capabilities etc.

III. LET’S BEGIN

A. Setting up the Web-Application running environment

For the purpose of the subsequent discussions, we

would take the following assumptions:

• That we have created a Web-Application written

in PHP to computationally find the exact solution

to some Differential Algebraic Equations (DAE)

problems in which some members of the system

are differential equations and the others are purely

algebraic, having no derivatives in them.

• There exists some interested users who need to run

this program on their computers, and they know

nothing about PHP or any complex information

about servers and their installations. Hereby,

bringing in the question of distributing this

application for use in a very convenient manner

whereby the user easily installs the application and

opens it conveniently without any help.

• That the web-application scripts are written and

kept in a folder in the system path C://

30 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

We would now go over the installation procedures for

installing Apache 2.4, PHP 5.4 and MySQL (If needed)

on your local machine.

However, installing a Web server (and its related

programs) is not as simple as installing commercial

applications. There are a lot of variables involved and

many things that can go wrong. However, with patience,

it can be done without errors occurring. Several

components are needed to build a standalone PHP

development system. PHP development is often done

with either a system called LAMP (Linux, Apache,

MySQL, and PHP) or WAMP (Windows, Apache,

MySQL, and PHP).

B. Needed Files

For the purpose of this discussion, needed configured

versions of Apache 2.4, PHP 5.4 and MySQL 5.5 can be

downloaded at -

https://drive.google.com/open?id=0B2ORI93vyUo8RGl

meVVadmVLdjg

Please Note that all necessary initial/basic

configurations have been done on the Apache/conf file

and the php.ini settings have also been set appropriately

for use on any machine it is installed on. If a different

Apache, PHP or MySQL server, downloading a copy and

doing some crosschecking whenever problems are

encountered with installation.

We would configure the downloaded files when we are

dealing with the compiling procedures.

C. Methodology

We simply create a GUI Application using the Qt

Framework to help the user navigate to the address where

the web-application is stored on the server. This means

that the GUI Application will act as a bridge between the

web-app and the user. We would discuss and show

practically how we could write the configuration script in

C++ and make the GUI application access and run the

process asynchronously, communicate with the process

and give the user the results generated from the C++

server installation process. Therefore, after compiling, the

user installs the setup file, and gets access to an (exe)

application that can either give him options to install

servers either by clicking a button, or do it automatically

when the (exe) application is opened, and also be able to

perform some other functions that might be useful for the

web-application like providing navigations to the web

application.

Although the whole process is a bit tricky and for non-

Qt programmers can be very burdensome and time

consuming to understand, but with the examples and

explanations here, it would be surprisingly easy to

develop and implement.

D. Writing the Server Installation Program with C++

We would now write a simple C++ program to access

the server configuration files and install them as a service.

The purpose of installation as a service is to enable an

auto start-up of the servers during system start-up.

We now create the C++ file named installation.cpp

1 #include <iostream>

2 #include <stdlib.h>

3 #include <stdio.h>

4 using namespace std;

5 void mysqlserver();

6 void startapache();

7 void startmysql();

6 void main()

7 {

8system("C:\\MySoftwareFolder\\Apache24\\bin\\httpd

- k install");

9 mysqlserver();

10 startapache();

11 startmysql();

12 }

13 void startapache()

14 {

15system("C:\\MySoftwareFolder\\Apache24\\bin\\http

d - k start");

16 }

17 void startmysql()

18 {

19

system("C:\\MySoftwareFolder\\mysql\\bin\\mysqld");

20 cout<< "Program Complete" <<endl; exit(0);

21 }

21 void mysqlserver()

22 {

23 system("C:\\MySoftwareFolder\\mysql\\bin\\mysqld

- install")) ;

24 }

Line 1 to 3 includes the necessary standard header files

needed for the task we want to accomplish. Line 5, 6 & 7

performs prototyping of the functions - mysqlserver(),

startapache() and startmysql(). This is done because

these functions when called inside the main function on

Line 9, 10 and 11, will produce a compilation error

because it has not been declared prior to that time. Line 8

inside the main() function, performs a system command

operation that installs the apache server if and only if the

path included as its argument is correct/found. Line 9

installs the MySQL server, while Line 10 and 11 starts

Apache's Server and MySQL Server respectively by

performing the system commands on Line 15 and 19.

Once installed as service and started successfully at first,

this servers requires no future additional effort in starting

up again, because, it starts automatically during system

start-up.

For this discussion we would take MySoftwareFolder

as the folder where the intended software is to be

compiled into, i.e. C:/MySoftwareFolder/.../.

This is where the earlier downloaded servers would be

extracted into. Otherwise, the files can also be extracted

to any other folder, as long as the path passed as the

argument in the system() function tallies with it.

The System() function then performs an automated

command-line shell/batch operation by looking for the

 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations 31

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

path specified as its argument, and if found, tries running

the code. If successful, a success message shows up, else,

an error message would be shown. The Apache 2.4 server

does not install itself as a service twice, once installed at

first, it would not install again when next it is told to

except it no longer exists on the local disk or has been

stopped manually for reasons best known. Same goes for

the MySQL server too.

Now compile installation.cpp file in a C++ compiler to

get an exe file called installation.exe

Move this installation.exe program into a folder called

bin inside the MySoftwareFolder to produce the path

C:/MySoftwareFolder/bin/installation.exe. When this is

done we are set to move into the next process.

IV. DEVELOPING THE GUI INTERFACE USING QT

A. Getting and setting up Qt IDE for C++

Qt for C++ IDE can be downloaded from its website at

https://www.qt.io/download-open-source/section-2.

Problems with installation might be encountered if the

wrong bit version for the development system is

downloaded. The version being used for the purpose of

this work is 64-bit Qt 5.5.1.

Most functions covered during this discussion would

be duly explained to induce understanding to the Novice

Qt User and increase the knowledge of Qt Developers.

The example given here serves as a possible tool for

further development in similar regards.

Graphics User Interface Applications can be developed

in Qt either by using the built in Qt Visual Designer or by

totally hand coding to produce the designs you need. For

large projects, many Qt Developers prefer the Qt Visual

Designer because they find it more natural and faster than

hand-coding, and they want to be able to experiment with

and change designs more quickly and easily than is

possible with hand-coded forms.

Using the Qt Designer, here is how we create a Dialog

with two buttons in Horizontal layout and a label to

display 'Welcome to My App'.

If Qt IDE is configured properly, create a new Project -

Choose Application - Qt Widgets Application - Enter

Project Name - set class name to Myguiapp and change

base class to QDialog - Save.

Once project has been created, on the toolbar, then

click on the "design tab", drag two Push Buttons from the

section between the Dialog's UI form and the Toolbar and

rename them to Start Application and Quit Application

respectively. Highlight them both and press Ctrl+H on

your keyboard. Drag another label to the form above the

buttons and rename it "Welcome to My App". Highlight

them all and press Ctrl+V on your keyboard.

If all goes well, the result should be identical to the

image below

Fig.1. Qt Designer’s Window

Here is the source code.

First we create the dialog's header file myguiapp.h

1 #ifndef MYGUIAPP_H

2 #define MYGUIAPP_H

3 #include<QProcess>

4 #include <QDialog>

5 namespace Ui {

6 class Myguiapp;

7 }

Lines 1 and 2 protects the header file against multiple

inclusions. Line 3 includes The QProcess class which is

used to start external programs and to communicate with

them. Line 4 includes the definition of QDialog, the base

class for dialogs in Qt. QDialog inherits QWidget.

Next, we define Myguiapp as a subclass of QDialog

8 class Myguiapp : public QDialog

9 {

10 Q_OBJECT

11 public:

12 explicit Myguiapp(QWidget *parent = 0);

13 ~Myguiapp();

The Q OBJECT macro at the beginning of the class

definition on Line 10 is necessary for all classes that

define signals or slots. The Myguiapp constructor is

typical of Qt widget classes. The parent parameter

specifies the parent widget. The default is a null pointer,

meaning that the dialog has no parent. Line 13 is a

deconstructor which handles memory management of the

dialog.

14 private slots:

15 void begin_installations();

16 void on_action_started();

17 private:

18 Ui::Myguiapp *ui;

19 QProcess myProcess;

20 };

21 #endif // MYGUIAPP_H

32 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

In the class's private section, we declare two slots. The

first slot is called whenever the start button emits a

clicked signal, while the second slot is called whenever

the process emits the readyRead() signal. The slots

keyword is, like signals, a macro that expands into a

construct that the C++ compiler can digest.

Line 19 declares a QProcess object which will be used

in Myguiapp.cpp implementation file.

We would now look at the Myguiapp.cpp file which is

an implementation of the Myguiapp dialog class.

22 #include "myguiapp.h"

23 #include "ui_myguiapp.h"

24 #include<QDesktopServices>

25 #include<QUrl>

26 #include<QString>

27 #include<QMessageBox>

28 #include<QProcess>

29 #include<QFile>

30 #include<QDir>

31 Myguiapp::Myguiapp(QWidget *parent) :

32 QDialog(parent),

33 ui(new Ui::Myguiapp)

34 {

35 ui->setupUi(this);

36 connect(ui->pushButton, SIGNAL(clicked(bool)),

this, SLOT(begin_installations()));

37 connect(ui->pushButton_2, SIGNAL(clicked(bool)),

this, SLOT(close()));

38 connect(&myProcess, SIGNAL(readyRead()), this,

SLOT(on_action_started()));

39 }

Line 24 to 30, contain all the necessary header files. In

line 32, we pass on the parent parameter to the base class

constructor.

In line 36, we connect the first pushbutton to a slot

when a clicked() signal is emitted by the button. This

takes the action to the function which executes and

returns required result. Line 37 connects the second

pushbutton to a slot that closes the GUI App when it

emits the clicked() signal. Line 38 connects the

readyRead() signal to a slot that performs a specific

action. i.e. When QProcess executes an external process,

it emits readyRead() whenever data is available to be read

from that process.

40 Myguiapp::~Myguiapp()

41 {

42 delete ui;

43 }

44 void Myguiapp::begin_installations()

45 {

46 QString program;

47 program = "C:/Easytrades/bin/syscommands.exe";

48

myProcess.setProcessChannelMode(QProcess::Merge

dChannels);

49 myProcess.start(program);

50 }

The slot on Line 44 is called whenever the first

pushbutton's clicked() signal is emitted. The function

declares a QString variable on line 46, sets the path to the

C++ installation program created earlier. Line 48 sets the

Process channel mode to MergedChannels using the

QProcess object 'myProcess'. Line 49 starts the program.

51 void Myguiapp::on_action_started()

52 {

53 QFile file;

54 QDir::setCurrent("C:/Easytrades");

55 file.setFileName("donotdelete.xml");

56 if(file.exists())

57 {

58 if(!myProcess.waitForFinished()){

59 QMessageBox::warning(this, tr("Error"),

 tr("<p>Error has occurred. App wont start"));

60 }

The slot in line 51 is called for execution whenever the

QProcess Object emits a readyRead() signal. To disable

multiple installation attempts, we resort into creating a

file called 'donotdelete.xml' place it into the installation

folder of the application. This file can be of any type. The

idea is just to find the file in the directory stipulated and

install the server if the file is available. Once the install

program has been executed, the object 'file' deletes that

file from its directory and keeps the installation from

happening multiple times. This method is only one of the

many ways to eradicate multiple installations.

Line 58 checks the waitforFinished() function to see if

the process has started and ended, if it returns false, a

message box is displayed with an error message.

61 else{

62 if(myProcess.Running)

63 {

64 QByteArray newData = myProcess.readAll();

65 int exitstatus = myProcess.exitCode();

66 if(exitstatus == 0)

67 {

68 QMessageBox::information(this, tr("Server

Installation"),

69 tr("<h3>Installation Status</h3>" + newData +

"\n"));

70 QString link="http://localhost/appurl/";

71 QDesktopServices::openUrl(QUrl(link));

72 else{

73 QApplication::quit();

74 }

75 }

76 }

77 file.remove();

78 }

79 else{

80 QString link="http://localhost/appurl/";

81 QDesktopServices::openUrl(QUrl(link));

82 }

83 }

 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations 33

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

If the Process has emitted the waitforFinished() signal,

Line 61 begins execution.

The readAll() functions outputs results which take the

form of QByteArray, hence, declaring newData to be

QByteArray, we can retrieve the value of

myProcess.readAll(). Line 65 gets the value of the

process' exitcode by retrieving the data into exitstatus. If

the process exitcode is 0, this indicates that the program

completed properly and returned the correct exit code.

If the exitcode returned is 0, a message is displayed to

the user on the status of the installation.

Line 71 then triggers the link set in Line 70, if found, it

opens the link which is the url pointing to where the web

application is stored in the server's htdocs folder.

Otherwise, in the case of not finishing the process

properly and inability to return exitstatus of 0, the

application quits.

The file (donotdelete.xml) is then deleted from its

directory on Line 78. Line 80 to 83 gets executed

whenever the file (donotdelete.xml) is not found.

We then create the main.cpp file.

85 #include "myguiapp.h"

86 #include <QApplication>

87 int main(int argc, char *argv[])

88 {

89 QApplication a(argc, argv);

90 Myguiapp w;

91 w.show();

92 return a.exec();

93 }

Line 85 includes the myguiapp header file while the

Line 86 include the definitions of the QApplication class.

For every Qt class, there is a header file with the same

name (and capitalization) as the class that contains the

class's definition.

 Line 89 creates a QApplication object to manage

application-wide resources. The QApplication constructor

requires argc and argv because Qt supports a few

command-line arguments of its own. Line 91 makes the

object created from the Myguiapp widget visible and Line

92 passes control of the application on to Qt. At this point,

the program enters the event loop. This is a kind of stand-

by mode where the program waits for user actions such as

mouse clicks and key presses.

Running the application should produce the result

similar to the diagram below:

Fig.2. Simple GUI Dialog for navigating Web-Application with Qt

B. Qt Applications Running Environment

In order to run a Qt Application successfully

on a computer different from the one in which the

application was compiled or in a path that is not

accessible by the Qt Application, we would need to

transfer some dynamic-link library (DLL) files to share

code and other resources necessary to perform particular

tasks in the course of running the Qt application. There

are some fundamental Qt DLLs that must be compiled

alongside your application in order to enable the

application run on almost any computer system it is

installed.

• Open this path c:/your-path/Qt5.5.1/5.5/msvc2013

64/

• All contents in the folder 'bin' and 'plugins' would

need to be copied as they are into the root folder

of the application. i.e. MySoftwareFolder. This is

to ensure all needed files for the application you

are creating are all included without any

omissions.

• Next, we run myguiapp.exe, and while it is

running, we highlight all files we copied from bin

and platform folder which are now in the

Application's root folder, and we delete them.

• Once the delete button is pressed, all DLL files

and folders selected which are not in use by the

application will be deleted and the files that are in

use would be left behind. This way, we have

exactly all the DLL files we need for our

application.

V. COMPILING WITH INNO SETUP COMPILER

For the purpose of this work, the version of Inno Setup

Compiler used is 5.5.8.

Once downloaded and installed, a new script can be

created by Ctrl+N. On the Inno Setup Script

Wizard dialog, Check the ‘create a new empty script’

box and click finish.

Please Note that the wizard can also be used, but it

does not provide all available options.

A. Setting & Configuring Server Files

Before we dive into compilation, we need to make sure

all files are where they should be and the paths in the

Apache Configuration file are correctly linked. Some

configurations have to be changed in the Apache

configuration file C:/yourpath/Apache24/conf/httpd.conf/

It is also necessary that the folder which contains the

web application is stored inside the htdocs folder which

can be found in the path C:/your-path/Apache24/

First, the ServerRoot will have to be changed. For the

sake of this demonstration, we want the compiled setup to

extract its contents into a specified folder during setup

called MySoftwareFolder. Since the path to the Apache

server files have changed, we need to change some values

in the configuration file –

34 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

ServerRoot "c:/MySoftwareFolder/Apache24".

Next, we need to change the directory address to some

php modules to match the directory path on the user’s

computer.

LoadModule php5_module

"c:/MySoftwareFolder/php/php5apache2_4.dll"

Then we do the same to the DocumentRoot, i.e. the

directory out of which you will serve your documents.

DocumentRoot

"c:/MySoftwareFolder/Apache24/htdocs"

<Directory "c:/MySoftwareFolder/Apache24/htdocs">

Then the CGI directory

<Directory "c:/MySoftwareFolder/Apache24/cgi-bin">

And Lastly, the PHP ini Directory

PHPIniDir C:/MySoftwareFolder/php

Next, we need to correct some paths in the php.ini file

to match the installation directory.

extension_dir = "C:\MySoftwareFolder\php\ext"

session.save_path = "C:\MySoftwareFolder\php\tmp"

session.save_path = "C:\MySoftwareFolder\php\tmp"

B. Compiling

We then create a file with the name ompilemyapp.iss

Here is the source code

1 #define MyAppName "Your Software Name"

2 #define MyAppVersion "1.0"

3 #define MyAppPublisher "Publisher's Name"

4 #define MyAppURL "http://www.example.com"

5 #define MyAppExeName "Myguiapp.exe"

Line 1 to 5 defines the identity of the to-be-compiled

software.

6 ; NOTE: The value of AppId uniquely identifies this

application.

7 ; Do not use the same AppId value in installers for

other applications.

8 [Setup]

9 AppId={{2EDA0D0A-43B1-4B39-9A6C-

47EA23F4D2E5}

10 AppName={#MyAppName}

11 AppVersion={#MyAppVersion}

12 ;AppVerName={#MyAppName} {#MyAppVersion}

13 AppPublisher={#MyAppPublisher}

14 AppPublisherURL={#MyAppURL}

15 AppSupportURL={#MyAppURL}

16 AppUpdatesURL={#MyAppURL}

17 DefaultDirName=C:/MySoftwareFolder

18 DisableProgramGroupPage=yes

19 LicenseFile=C:\your-path\license.txt ;

20 OutputDir=C:\your-path\Desktop

21 OutputBaseFilename=myguiapp_setup_3.01

22 SetupIconFile=C:\your-path\icon.ico

23 Compression=lzma

24 SolidCompression=yes

25 ;Additional Options

26 AppContact=ewebstech@gmail.com

27 AppCopyright=Copyright (C) 2014-2016 company,

Inc.

28 AppSupportPhone=+234 000 000 000

29 ChangesEnvironment=yes

30 CloseApplications=Force

31 VersionInfoVersion=3.0

Line 21 defines the name of the setup file after

compilation. Compression lzma is the method of

compression employed by the 7-Zip LZMA compressor.

It typically compresses significantly better than the zip

and bzip methods. Line 29, When set to yes, at the end of

the installation Setup will notify other running

applications (notably Windows Explorer) that they should

reload their environment variables from the registry. Line

30, If set to yes or force and Setup is not running silently,

Setup will pause on the Preparing to Install wizard page if

it detects applications using files that need to be updated

by the [Files] or [InstallDelete] sections, showing the

applications and asking the user if Setup should

automatically close the applications and restart them after

the installation has been completed. If set to yes or force

and Setup is running silently, Setup will always close and

restart such applications, unless told not to via the

command line. If set to force Setup will force close when

closing applications, unless told not to via the command

line. Use with care since this may cause the user to lose

unsaved works. If your installation creates or changes an

environment variable but doesn't have

ChangesEnvironment set to yes, the new/changed

environment variable will not be seen by applications

launched from Explorer until the user logs off or restarts

the computer.

32 [Languages]

33 Name: "english"; MessagesFile:

"compiler:Default.isl"

34 [Tasks]

35 Name: "desktopicon"; Description:

"{cm:CreateDesktopIcon}";

36 GroupDescription: "{cm:AdditionalIcons}"; Flags:

unchecked

37 Name: "quicklaunchicon"; Description:

"{cm:CreateQuickLaunchIcon}";

38 GroupDescription: "{cm:AdditionalIcons}"; Flags:

unchecked; OnlyBelowVersion: 0,6.1

Line 35 gives the user the option of creating desktop

shortcut icon and Line 37 a quick launch icon in the case

of older operating systems.

 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations 35

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

39 [Files]

40 Source: "C:\path-where-Myguiapp.exe-app-is-

stored\Myguiapp.exe";

41 DestDir: "{app}"; Flags: ignoreversion

42 Source: "C:\path-to-downloaded-apacheserver-

folder\Apache24*";

43 DestDir: "{app}\Apache24"; Flags: ignoreversion

recursesubdirs createallsubdirs

44 Source:

"C:\Users\EWEBS\Documents\Easytrades\imageforma

ts*";

45 DestDir: "{app}\imageformats";

46 Flags: ignoreversion recursesubdirs

createallsubdirs

47 Source:

"C:\Users\EWEBS\Documents\Easytrades\mysql*";

48 DestDir: "{app}\mysql"; Flags: ignoreversion

recursesubdirs createallsubdirs

49 Source:

"C:\Users\EWEBS\Documents\Easytrades\php*";

50 DestDir: "{app}\php";

51 Flags: ignoreversion recursesubdirs createallsubdirs

The Source is the path to where the files to be

compiled reside in, while the DestDir is the destination

for the compiled application. If there exists some files to

be extracted into its own separate folder inside the

application folder MySoftwareFolder, then a '*' is placed

after the folder's name as shown above. The ags

recursesubdirs createallsubdirs needs to be placed in

front of the Flag for that file. Otherwise, it would put all

files and sub-folders into the same directory with every

other file in MySoftwareFolder. More files can be added

following the procedure for the Source, DestDir & Flags.

Note: Don't use "Flags: ignoreversion" on any shared

system files.

52 [Icons]

53 Name: "{commonprograms}\{#MyAppName}";

Filename: "{app}\{#MyAppExeName}"

54 Name: "{commondesktop}\{#MyAppName}";

Filename: "{app}\{#MyAppExeName}";

55 Tasks: desktopicon

56 Name: "{userappdata}\Microsoft\Internet

Explorer\Quick Launch\{#MyAppName}";

57 Filename: "{app}\{#MyAppExeName}"; Tasks:

quicklaunchicon

59

60 [Run]

61 Filename: "{app}\{#MyAppExeName}";

62 Description:

"{cm:LaunchProgram,{#StringChange(MyAppName,

'&', '&&')}}";

63 Flags: nowait postinstall skipifsilent

Running this script would compile the files to produce

our setup file which contains our assumed

Web-application which solves DAE problems which

also can now be distributed easily at a compressed size.

The user also gets an opportunity to uninstall the

application, without the risk of leaving the servers behind.

Fig.3. Compilation

However, for the purpose of installing the servers, the

GUI application would have to be opened in

administrator's mode to give appropriate access for

installation. This is typical for Windows Operating

Systems.

VI. DISCUSSION OF RESULT

With the proposed outlined steps and algorithms above,

we can successfully create a system through which web

applications could be compiled, distributed and installed

by any one easily. These also gives an opportunity for

navigating to the software through the GUI application

that acts as a bridge between the Web application, Server,

and the user. Fig. 2 shows a simple typical example of a

GUI dialog created using Qt that can function as the

bridge between the Web application, server, and the user.

Any type of GUI application can be created for these

purpose, i.e. any type of style could be adopted.

Therefore, if the outlined procedures are followed, Web

Applications can now be transferred as compiled (exe)

applications, its servers can be installed silently by Qt and

C++ communications and can also be navigated by Qt

GUI applications.

VII. CONCLUSION

In this paper, the methodology of compiling web-

applications into executable file formats, obtaining

seamless server installations and GUI navigations,

through Qt and C++ process communications is proposed

and its potential manifests good performance in the

indication and confirmation of offline web-applications’

installation and usage. Undoubtedly, an expanded use of

web-applications has been illustrated in easy-to-

implement procedures of describing significantly, the

methods for the silent and automated installation of a web

server using native C++ for its distribution and usage

offline; the steps to be taken when creating basic GUI

applications that run the installation and navigation of the

web-application without complexities on the user's end;

and finally, the method for compilation into exes at a well

compressed size. This ideology would aid the distribution

of, and enhance opportunities in developing countries, for

the usage of offline web-applications, especially in

36 Methodology of Compiling Web-Applications into Executables, Obtaining Seamless Server Installations

and GUI Navigations through Qt and C++ Process Communications

Copyright © 2016 MECS I.J. Information Engineering and Electronic Business, 2016, 6, 28-36

countries with little or no internet access. Most Lines in

the displayed source codes were also explained for clarity

on the author’s style of implementation.

ACKNOWLEDGMENT

The author wishes to thank the Almighty God for

bringing him this far. Also, many thanks to Professor

Christopher Thron, University of Edinburgh, U.S.A, Dr.

O.T. Olotu, Dept. of Mathematics, University of Ilorin

and J.B. Okeowo, University of Ilorin, for their support

and constructive reviews.

REFERENCES

[1] Gabe Rudy, Cross-platform C++ Development Using Qt,

2005.

[2] Lee Babin, Beginning Ajax with PHP: From Novice to

Professional, 2007.

[3] Wolfram Mathematica, Differential Equation Solving With

Dsolve.

[4] Jasmin Blanchette and Mark Summer_eld. C++ GUI

Programming with Qt, 2006.

[5] Juan Souli, The C++ Language Tutorial.

[6] Harry Fuecks, The Php Anthology, Volume 1: Foundations.

[7] Quentin Zervaas, Practical Web 2.0 Applications with

PHP, 2008.

[8] Bjarne Stroustrup, The C++ Programming Language

Third Edition, AT&T Labs, Murray Hill, New Jersey, 1997.

[9] Brian Schaffner, Matt Zandstra, Teach Yourself PHP4 in

24 Hours, 2000.

[10] Steve Suehring, Tim Converse and Joyce Park, PHP6 and

MySQL, 2009.

[11] Koch, N., Wirsing, M.: Software Engineering for

Adpatative Hypermedia Applications. In: 3rd Workshop

on Adaptative Hypertext and Hypermedia (2001).

[12] Muruguesan, S., Desphande, Y.: Web Engineering.

Software Engineering and Web Application Development.

Springer LNCS – Hot Topics (2001).

[13] Chen, J.Q, & Heath, R. D. (2005). Web application

development methodologies. In W. Suh (Ed.), Web

Enginerring: Principles and techniques. Hershey, PA: Idea

Group Publishing

[14] Coda, F., Ghezzi, C,. Vigna, G., & Garzotto, F. (1998,

April 16-18). Towards a software engineering approach to

Web site development. Paper presented at the Ninth

International Workshop on Software Specification and

Design (IWSSD-9), Ise-shima, Japan.

[15] Deborah Kurata, Doing Web Development: Client-Side

Techniques, 2008.

[16] Make a windows installer file (.exe file) using Inno Setup

Compiler, published on 31st, July 2015,

https://www.scirra.com/tutorials/4779/make-a-windows-

installer-file-exe-file-using-inno-setup-compiler/page-3.

Authors’ Profiles

Emmanuel C. Paul, born in Lagos, Nigeria

on the 28th April, 1994, is an undergraduate

student for bachelor’s degree for Mathematics

in University of Ilorin, Ilorin, Nigeria.

Emmanuel C. Paul majors in computational

and applied mathematics.

His current research is based on the

mathematical modelling of bacteria resistance to multiple

antibiotics and immune system response.

How to cite this paper: Emmanuel C. Paul,"Methodology of Compiling Web-Applications into Executables, Obtaining

Seamless Server Installations and GUI Navigations through Qt and C++ Process Communications", International

Journal of Information Engineering and Electronic Business(IJIEEB), Vol.8, No.6, pp.28-36, 2016. DOI:

10.5815/ijieeb.2016.06.04

