
I.J. Information Engineering and Electronic Business, 2017, 6, 27-34
Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijieeb.2017.06.04

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

A Proposal for High Availability of HDFS

Architecture based on Threshold Limit and

Saturation Limit of the Namenode

Sabyasachi Chakraborty, Kashyap Barua, Manjusha Pandey and Siddharth Rautaray
School of Computer Engineering, KIIT University, Bhubaneswar, India

Email: c.sabyasachi99@gmail.com, kashyapbarua@gmail.com, manjushafcs@kiit.ac.in, siddharthfcs@kiit.ac.in

Received: 02 June 2017; Accepted: 07 August 2017; Published: 08 November 2017

Abstract—Big Data which is one of the newest

technologies in the present field of science and

technology has created an enormous drift of technology

to a salient data architecture. The next thing that comes

right after big data is Hadoop which has motivated the

complete Big Data Environment to its jurisdiction and

has reinforced the complete storage and analysis of big

data. This paper discusses a hierarchical architecture of

Hadoop Nodes namely Namenodes and Datanodes for

maintaining a High Availability Hadoop Distributed File

System. The High Availability Hadoop Distributed File

System architecture establishes itself onto the two

fundamental model of Hadoop that is Master-Slave

Architecture and elimination of single point node failure.

The architecture will be of such utilization that there will

be an optimum load on the data nodes and moreover there

will be no loss of any data in comparison to the size of

data.

Index Terms—Hadoop, Namenode, Datanode, Big Data,

Architecture

I. INTRODUCTION

Big Data, as we all know, is becoming a new

technological trend in the industries, in science and even

businesses. Our activities on a daily basis, be it

interaction with machines, surfing websites and every

other activity that we perform generate data, on a huge

scale. These generated data come with responsibility for a

proper administration, proper storage and processing

mechanisms.

Numerous researches have been done and are still

being done to make the storage and processing

mechanism effective so that the end-users have a hassle-

free experience with these technologies. One of the most

popular frameworks that capacitate the motion of storing,

managing and analyzing of the huge amount of data is

Hadoop.

What and why Hadoop? Due to the open-source nature

of Hadoop, it is one of the preferable tools for the task of

storing an enormous amount of data and legitimate

analysis of the data to generate effective results. Hadoop

is a database which is used for processing large number

and large size of datasets. It is based on the concept of

Master-Slave architecture. The Master (Namenode),

which is responsible for the storage of the metadata about

the Slaves (Datanodes). Moreover, the Hadoop

architecture also ensures the elimination of Single point

Node failure as this can lead to huge amount of data loss.

Presently, the minimization of Single Point of Failure

in Hadoop Distributed File System has been taken into

consideration in the architecture by deploying Quorum

Journal Manager that further deploys Journal Nodes

across the system to maintain concurrency between the

Namenodes. The Quorum Journal Manager connects with

the Namenodes of the Architecture and tries to maintain

the concurrency between the Namenodes by maintaining

edit logs of the system. If at any point in time if an

Namenode fails then another Namenode can simply take

the place of the failed Namenode by fetching out the edit

logs.

The Namenode of Hadoop contains the directory tree

files of all the blocks of data that are distributed over the

data nodes for the faster computational purpose, but if at

any point of time the Namenode fails, then the complete

metadata of the distribution of data files across the

Datanodes will be lost. So for preventing such kind of

failures, a separate metadata table, FSImage file and edits

log file is maintained in the Secondary Namenode.

However, the Secondary Namenode can never be

considered as the replacement of Namenode because it

only takes care of the metadata of the Namenode.

The computation of all the task that takes place in

Hadoop is achieved by enforcing the Map-Reduce

algorithms onto the data sets. Whenever data is stored in

the Hadoop Distributed File System, the data is divided

and also replicated across the Datanodes based on the

block sizes and the replication factor which are either set

up by the administrator or the default values that comes

with Hadoop versions for the proper maintenance of data.

Now when a Map-Reduce task is enforced upon the data

for certain computations, then the task or the job is

carried out parallelly across the Datanodes. This process

of computation on large datasets that prevails in today’s

market, when performed parallelly across various Data

Nodes gives results efficiently and accurately.

mailto:kashyapbarua@gmail.com
mailto:manjushafcs@kiit.ac.in

28 A Proposal for High Availability of HDFS Architecture based on Threshold Limit

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

The High Availability Hadoop Distributed File System

is an architecture that allows us to maintain the Hadoop

Distributed File System in such a way that the data

storage is never affected by the occurrence of any failures

of the Data Nodes or the Namenodes. HAHDFS follows a

hierarchical model of storing the metadata of the

Datanodes that is connected to it. Moreover, the

HAHDFS follows a load balancing method to check the

load on a particular Namenode for the computation of

certain task. However, at any instant of time if it is found

that the load on a particular Namenode has reached the

threshold limit, and the computation of certain task is

querying for more resources, then the system activates

more Namenodes based upon the computational

requirements.

The Master Slave Architecture of Hadoop is a

prevalent method of the Hadoop Distributed File System.

The Hadoop Distributed File System ensures that the

Master Node is kept with Data Nodes attached to it. The

Master Node maintains the metadata table for the

concurrency control between the data that is stored in the

Data Nodes. Whenever a data is inserted in the Data

Node, the Data Node basically breaks the data into tiny

pieces for faster optimization. Also the Pieces of the data

are then replicated into various Nodes for proper fetching

during processing of the Data. The Replication of the

Data in the Data Nodes are then maintained and kept in

record in the metadata table that is maintained in the

master node of the Hadoop Distributed File System. The

Metadata table is always kept updated by the system for

maintaining the proper concurrency between the data

splits. The Splitting of the data is basically determined by

the block size of the Hadoop Distributed File System as

each data split account for the size of block. The default

block size of the Hadoop Distributed File System is

64MB.

The Single Point of Node Failure of the system is

addressed by keeping a Secondary Name in the system.

The Secondary Namenode maintains the metadata table.

The Secondary Namenode comes into effect when the

Master Namenode either fails or gets disconnected to the

system. The Secondary Namenode does not act as the

Master Namenode but acts as a backup for the Master

Namenode to prevent the meta data to get lost. The

Secondary Namenode previously had to be manually

activated by the Administrator of the system, but

presently it can be activated automatically by the

Zookeeper whenever the Master Namenode fails.

II. STATE OF THE ART

In the present world, each and every second holds the

generation of the enormous amount of data. The storage

of such large and useful data is one of the most primary

tasks, and also, the effective analysis of such huge

amount of data to get adequate results is very important.

On a second note, such huge amount of data may lead to

consumption of a huge amount of time and also require

high-end hardware to process the data. So, for reducing

the time consumption by the systems and reduction of

load on every system, we go for a new architecture of

systems of Hadoop Distributed File System based on the

hierarchical approach of control.

In the year 2013, Azzedin[1] proposed an architecture

which reduces the dependency of the size of metadata on

the Namenode and also proposed a fault tolerant and

highly scalable Hadoop Distributed File System. The

metadata of the storage allocation and replication of the

data is mainly stored in the RAM of the Namenode, so

storing the metadata of a huge amount of data results in

the increase of load on a single Namenode. Therefore, the

architecture establishes itself properly on managing huge

metadata by enrolling itself into a Chord protocol based

architecture which directly connects to the HDFS to

provide with a suitable solution to the scalability of the

system. As the system uses a Chord Protocol, it impacts

the system in the way of increasing complexity of Single

HDFS Namenode Architecture.

Fig.1. Hadoop Ecosystem

Fig.2. Map-Reduce process

Wang[2] in the year 2013, proposed an application

framework of HDFS for processing of small and medium

sized data. The Hadoop Architecture, which is one of the

most sought after database framework for storing and

analyzing Big Data has got some faults regarding

Ma
p()

Ma
p()

Ma
p()

Red
uce()

Red
uce()

 A Proposal for High Availability of HDFS Architecture based on Threshold Limit 29

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

processing small and medium sized data sets. The

relativity regarding the processing speed of the data is

quite unbalanced in Hadoop as the processing speed of

large and small data is more or less the same. So, in the

proposed architecture, a caching mechanism is combined

with the HDFS architecture to optimize the processing of

small files. The increase in the size of the disk cache has

significantly improved the processing speed of small data

sets and led to the optimization of the system.

In 2014, KIM et al.[4] suggested a new HDFS

Architecture consisting of several Namenodes to resolve

the significant issues faced by an HDFS such as Single-

Point- of-Failure (SPOF), Namespace limitation and Load

Balancing Problem. Single-Point- of-Failure can be easily

resolved by Quorum Journal Manager (QJM) which is

available in Hadoop Versions of 2.1 and later. QJM

manages and advocates Journal Nodes which carry the

edit logs of the Namenode so that the Single-point- of-

Failure can be removed in such a case. However, the

namespace limitation and load balancing problem still

pertains in the system. Therefore, to remove such

dependencies, the paper proposes an architecture of

establishing multiple Namenodes where one acts as the

primary Namenode and others as the backup Namenodes.

Islam et al.[10] in 2015, proposed a Hybrid Design

(Triple H) for ensuring effective data placement policies

to speed up HDFS on HPC Clusters. The major idea

behind the Hybrid design was the inclusion of High-

Performance Hardware to the HDFS. The addition of

such High- performance hardware has evaluated the

system to be more optimized and more scalable. As the

Hadoop Architecture maintains the complete metadata

into the primary memory of the Namenode, so if the

primary architecture of the Namenode is replaced with

High-performance hardware then the I/O bottlenecks will

also be minimized. This system will further result in an

effective utilization of the Heterogeneous Storage

resources that are available on HPC clusters.

In 2017, Stamatakis et al.[9] proposed a general-

purpose architecture for High Availability Metadata

Services. Metadata is one of the most important

components of distributed file system. The metadata

services are often considered as an independent

component of the system, rather than a part of the data

servers due to the simplicity of the design. Accessibility

of metadata is looked forward as a key procedure to the

interaction between the client and the data set that is

stored in the data server because if a client is unable to

access the metadata properly, then he might not even be

able to access the datasets. Parallel Virtual File System

(PVFS) and Hadoop Distributed File System (HDFS)

have been offering highly available metadata services.

However, both the distributed file system have specific

disadvantages. Such as PVFS provides stateless

replication of data blocks of the data on defined metadata

servers over a shared network accessible storage due to

which it suffers single point failures. The HDFS provides

quorum based replication of data blocks which also puts a

limit to the storage of metadata onto the main memory

due to its checkpoint and roll forward solution. Thus the

paper proposes a high availability solution to the

metadata services by incorporating the file systems with a

general purpose architecture of replicated metadata

service (RMS). The RMS implements a type of service

which replicates the metadata for guaranteed accessibility

throughout the file system.

In the year 2013, Liu et al.[6] proposed a new

architecture for maintaining metadata effectively and

efficiently by incorporating the system with two

symmetrical nodes and Quorum-based third party node.

As the Namenode in Hadoop is susceptible to Single-

point- Failure, the author has proposed two symmetrical

Namenodes where one of the effective nodes is in an

active state and the other one in the passive state. The

Active node remains as the primary Namenode when it is

performing a task but, if at any point in time the Active

Node fails, then it is replaced by the passive node. Here

the concurrency between the contents of the Namenode is

maintained by the Quorum Journal Nodes(QJN). The

QJM holds the complete edit logs of the Namenode, and

the passive node is capable of reading all the edit logs and

make changes to its respective namespace from the QJM.

Therefore the act of QJM in this architecture proposes a

simple concurrency control for maintaining the metadata

across the Namenodes and also avoids the single-point-

failure problem.

In the year 2017, Jena et al.[11] proposed some

exceptional methods on the optimisation of the Big Data

System by providing the special system of feature locality

Sensitive Bloom Filter for the increase of the metric of

performance. The Bloom Filter basically supports the

quick selection of data in a networked system. The

Bloom Filter keeps much hold in increasing the

efficiency of such algorithms as it accounts for a much

lower time complexity. The paper also explains the

usage of Locality Sensitive Bloom Filter for increasing

the efficiency of the data query optimization in Big Data

and Statistical Analysis. The Paper has also made a

comparative analysis of the Big Data Query Optimization

Techniques in terms of Performance, Accuracy, Cost and

Complexity. In this comparative analysis the Bloom

Filter restricts itself in giving high performance and high

accuracy by keeping the complexity and cost as low as

possible. There has also been a discussion on the

optimization of parameters in SVM on Big Data. The

sequential optimization of the parameters in SVM is done

by focussing on the conspiracy plots of the cross

validation accuracy. But the major problem that was

faced during the comparative analysis of the sequential

optimization of the parameters of SVM was that it

showed moderate level of performance and low accuracy

by accounting moderate complexity and low cost.

Liu et al [6] in the year 2015, explained the method of

Big Data Optimization in Smart Grid using the multi

block ADMM [Algorithms based on alternating Direction

Method of Multipliers]. The paper basically reviews the

parallel and distributed optimization algorithms of Big

Data optimization problem in smart grid communication

networks. As we know that with modest size of data with

the unprecedented number of algorithms on Data Science

30 A Proposal for High Availability of HDFS Architecture based on Threshold Limit

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

may give an amplified form of accuracy with the massive

amount of data set for resolving all many personalized

problems of business such as Health Care Management,

Intelligent Social Media Feed Analysis, Smart Grid

Optimisation Techniques etc. But on the other hand the

collection and processing of such sheer amount of data

for the optimisation of the models is unpractical in every

way. Also such huge data is full of noise, heterogeneous

variety, outliers and may also be prone to the amicable

amount of cyber attacks. Again, the Big Data Problems

comes with some problems based on Time Complexity

where a moderately accurate answer is accepted with less

time than a Highly accurate answer with more time. As

ADMM comes into the focus where it can break the huge

amount of Data to smaller bits by addressing the convex

problem in a much more discrete way. The established

formulation of such large scale Big Data Problems may

address the ADMM with much more sophisticated

modification.

Jens et al.[32] discussed the technique of reducing the

performance gap to well-tuned database systems. The

similarities and differences between the techniques used

in Hadoop with those used in parallel distributions were

pointed out. In the modern world, dealing with terabytes

and even petabytes of data is a reality. It is very essential

to process these huge amounts of data sets in an even

more efficient way. Thus, the use of the MapReduce

processing framework has become quite popular due to

the ease-of-use, scalability and failover properties. But

these performance tweaks come with a price that the

overall performance is nowhere near the performance of a

fine-tuned parallel database. Therefore, numerous

researches are being conducted to improve the

performance of the MapReduce jobs in various aspects.

III. PROPOSED ARCHITECTURE OF HIGH AVAILABILITY

ARCHITECTURE

High Availability HDFS is an architecture which has

conditioned itself in maintaining the three issues of

HDFS such as Single-point-of-failure, metadata

consistency across the nodes and balancing of the load on

a particular Namenode when lot many Datanodes are

interacting with the namespace. The High Availability

HDFS defines a simple model of placing the Namenodes

and Datanodes in such a way that the load on a single

Namenode is always balanced by maintaining a threshold

limit of data nodes and also the concurrency control

between different Namenodes are established with the

help of the Quorum Journal Nodes (QJN). The System

follows a hierarchical structure for maintaining and

processing a huge amount of data optimally and

efficiently.

In Fig. 3, it is depicted that the Data Nodes are

connected to the Namenode in a particular manner that all

the Namenodes are having the same number of the Data

Nodes.The numbers are decided by determining the load

balancing capability of the Namenode. Also, the

Namenode will maintain two limits on the number of

Datanodes that is a threshold limit and a saturation limit.

The Threshold limit k is the optimum number of

Datanodes that can be connected to the Namenode for

optimized processing and perfect load balancing, and the

saturation limit is the maximum number of Datanodes

that can be attached to the Namenode in any case. The

reason for maintaining two limits on the connectivity of

Data Nodes and Namenodes is that the threshold limit is

the limit on which the Namenode can work optimally.

However, at any point in time if a Datanode is switched

on in the system, and all the Namenodes associated with

the system have reached the threshold limit, then turning

another Namenode for accompanying the newly arrived

Datanode will be a waste of resource as it will be

connected to only one Datanode. Therefore, we propose a

saturation limit for the Namenodes to connect with the

Data Nodes so that at any point in time if a Datanode

arrives and the Namenodes achieve their Threshold then

one of the Namenode will be able to connect with the

newly arrived Datanode.

Fig.3. Double Layered Namenode Management

Also, we have included Quorum Journal

Manager[QJM] to the architecture. The Quorum Journal

Manager deploys Journal Nodes in the system that

accesses the edit logs of the Namenodes and keeps all the

Namenodes aware of all the read and writes that are

occurring on the Data Nodes for processing of a

particular log to maintain a check in the concurrency

control between the Namenodes. As the architecture

highly follows the model of hierarchy to establish a

proper control over the data processing and establishing

high scalability, so QRM is an essential part of the

system.

Fig. 2 also depicts the presence of a Master Namenode.

Moreover, the Master Namenode is connected to the

QRM which is connected to the Namenodes. The Master

Namenode also keeps a check on the QRM to maintain a

proper concurrency control with the Namenodes. The

main reason of this Master Namenode it to remove the

Single point of Failure from the system design.

As at any point in time if any Namenode fails then it

will be able to activate another Namenode which will

further connect to the Datanodes of the failed Namenode

and will also be able to access the edit logs from the

Quorum Node Manager for further processing of data

stored in Datanode.

 A Proposal for High Availability of HDFS Architecture based on Threshold Limit 31

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

IV. METHODOLOGY

The complete working of the architecture is such a way

that all the Datanodes are connected to the Namenode,

and the Namenode maintains proper threshold and

saturation limits while connecting to the Datanodes. As

all the Datanodes are connected to the Namenode so it

may happen that a Datanode may get disconnected or

may run into any breakdown, this breakdown will lead to

a breakage in the connection and will also lead to a

vacancy in the connection architecture of the Namenode.

The vacancy may further be fulfilled by any of the

Datanode that arrives first and requests for connection.

Now, when at a certain point of time the disconnected

Datanodes become active, then it will again request a

connection to the system. Whenever a Datanode request

for a connection, it first sends the ping requests to the

Master Namenode. The Master Namenode then initiates a

search between all the Namenodes tied under its QJM for

an optimum solution. So now we come across two cases

either it will find a vacancy or not. If a vacancy is found

across any of the Namenodes, then it will first initiate a

check in the QJM for any edit logs of the particular

Datanode, and if an edit log is found, then it will fetch the

edit log to its namespace for maintaining the proper

metadata table of the allocation. However, if a vacancy is

not found then the Datanode will be attached to the

Namenode it was previously connected considering that it

has not reached the saturation limit of attaching the

Datanodes.

In Fig. 4, the Datanodes are represented by D with a

number of their identification and the Namenodes are

represented by N with also a number for their

identification. In the first interpretation, we can observe

that the Datanode D1 gets disconnected from the

Namenode N1 and becomes non-active. Now as the N1

has one Datanode less than the threshold limit so that it

will have a vacancy in its connection architecture. As D7

arrives for connection and puts a demand on N1 for

connectivity, N1 first sends a request to its immediate

QJM for any existence of D7’s edit logs. If any edit logs

of D7 is found then, N1 will fetch the edit log and will

implement the same in its Namespace, and the

connectivity between N1 and D7 will be established.

However, if N1 does not find any existence of D7 in its

immediate QJM, then it will further request the Master

Namenode for any existence of edit logs in its QJM, this

process will go until the last Namenode in the hierarchy

is requested. If at the end no edit logs are found for a

particular Datanode then it will be simply added to the

Namenode.

In the second interpretation, it is observed that D1

again becomes active and demands connectivity to the

Namenode in the hierarchy. However, now N1 will not be

able to accommodate D1 as it has already reached the

limit of the threshold. So now the request will be sent to

the Namenode which is present in the immediate top of

the hierarchy that is the Master Namenode. The Master

Namenode will now initiate a request between all the

Namenodes present in the same level or will have to

request in the top of the hierarchy to find a suitable

placement for the connectivity of the Datanode D1. So

now the Namenode Nx is found after a search among all

the Namenodes in the architecture. Also, Nx has one

Datanode less than the threshold limit, so it will first

search for an existence of edit logs of D1. As D1 was first

connected to N1 so, Nx will be able to retrieve the

complete edit log from the QJM of N1, and it will

implement a connection between itself and D1.The

Hierarchical Structure may turn out to be a complex one

but helps in fetching the Metadata Table of a particular

Namenode without affecting the system and by

maintaining optimum accuracy. Therefore this system of

fast retrieval will help Nx to completely retrieve the edit

log of the Datanode D1 and maintain the concurrency of

the Data without compromising the Data of the Datanode.

The interpretations of Fig. 4 are more or less same as

that of Fig. 3 with only one difference with a special case

of this architecture. The special case is that in the

interpretation of Fig. 3 we could find a suitable

Namenode for D1 as Nx which had one Datanode less in

its connection architecture. However, in this

interpretation, the Datanode D1 is connected to N1 when

N1 has reached its threshold limit. The reason behind this

stays in the fact that, when D1 demands connectivity to

N1 then N1 which has reached the threshold by accepting

D7 sends a request to the immediate Master Namenode

for a search of a proper Namenode. However, in this

scenario, all the Namenodes has reached their threshold

for accepting any more Data Nodes so allocating a new

Namenode for just one Datanode will be a waste of

resource. Therefore the Namenode N1 goes for one more

Datanode D1 and establishes a connection by fetching the

proper edit logs of D1. So, in this case, the primary load

balancing is shown where wastage of resource is avoided

by not allocating a vacant Namenode to the system, in

place we are allocating it to any present Namenode till its

final Saturation limit is reached.

Fig.4. Interpretation of Connectivity Part 1

32 A Proposal for High Availability of HDFS Architecture based on Threshold Limit

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

Fig.5. Interpretation of Connectivity Part 2

V. CONCLUSION

Hadoop Distributed File System has always been used

in the field of Big Data Analytics to a huge extent. This

system may be one of the most optimum ways of storing

the data but have always left us in the position of resource

wastage. The wastage of resources has been optimized in

this proposal by setting up two limits of allocating Data

Nodes, i.e., Threshold Limit and Saturation Limit and

also by maintaining a Quorum Journal Node Manager for

setting up proper concurrency between the Namenodes

for maintaining the namespace. After maintaining the two

limits in the Hadoop Architecture, we may achieve a

Highly Available Hadoop Distributed File System for

storing and processing data. As of now, no further

practical implementation of the proposal has been

performed. However, when performed practically some

advantages and disadvantages of the Namenodes of the

system may arise.

ACKNOWLEDGMENT

I express my profound gratitude to the Dean of School

Of Computer Engineering, KIIT University Dr. Samaresh

Mishra for allowing me to proceed with the report and

also for giving me full freedom to access the lab facilities.

My heartfelt thanks to Dr. Siddharth Swarup Rautaray &

Dr. Manjusha Pandey for taking time and helping me

through my work. They have been a constant source of

encouragement without which the work might not have

been completed on time. I am very grateful for their

support. Their ideas and thoughts have been of great

importance.

REFERENCES

[1] Azzedin, Farag. "Towards a scalable HDFS architecture."

Collaboration Technologies and Systems (CTS), 2013

International Conference on. IEEE, 2013.

[2] Wang, Xin, and Jianhua Su. "Research of distributed data

store based on hdfs." Computational and Information

Sciences (ICCIS), 2013 Fifth International Conference on.

IEEE, 2013.

[3] Apache Software Foundation, “Quorum Journal Manager

“, https://hadoop.apache.org/docs/r2.7.1/hadoop-project-

dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html

[4] Kim, Yonghwan, et al. "A Distributed NameNode Cluster

for a Highly-Available Hadoop Distributed File System."

Reliable Distributed Systems (SRDS), 2014 IEEE 33rd

International Symposium on. IEEE, 2014.

[5] Apache Software Foundation, “Centralized Cache

Management in HDFS,”

http://hadoop.apache.org/docs/r2.3.0/hadoop-projectdist/

hadoop-hdfs/CentralizedCacheManagement.html.

[6] Tantisiriroj, Wittawat, et al. "On the duality of data-

intensive file system design: reconciling HDFS and

PVFS." Proceedings of 2011 International Conference for

High Performance Computing, Networking, Storage and

Analysis.ACM,2011.

[7] Zaharia, Matei, et al. "Resilient distributed datasets: A

fault-tolerant abstraction for in-memory cluster

computing." Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation.

USENIX Association,2012.

[8] Demchenko, Yuri, Cees De Laat, and Peter Membrey.

"Defining architecture components of the Big Data

Ecosystem." Collaboration Technologies and Systems

(CTS), 2014 International Conference on. IEEE, 2014.

[9] Stamatakis, Dimokritos, et al. "A General-Purpose

Architecture for Replicated Metadata Services in

Distributed File Systems." IEEE Transactions on Parallel

and Distributed Systems (2017).

[10] Islam, Nusrat Sharmin, et al. "Triple-H: a hybrid approach

to accelerate HDFS on HPC clusters with heterogeneous

storage architecture." Cluster, Cloud and Grid Computing

(CCGrid), 2015 15th IEEE/ACM International

Symposium on. IEEE, 2015.

[11] Jena, Bibhudutta, et al. "A Survey Work on Optimization

Techniques Utilizing Map Reduce Framework in Hadoop

Cluster." International Journal of Intelligent Systems and

Applications 9.4 (2017): 61.

[12] Stoica, Ion, et al. "Chord: a scalable peer-to-peer lookup

protocol for internet applications." IEEE/ACM

Transactions on Networking (TON) 11.1 (2003): 17-32.

[13] Karger, David, et al. "Consistent hashing and random

trees: Distributed caching protocols for relieving hot spots

on the World Wide Web." Proceedings of the twenty-

ninth annual ACM symposium on Theory of computing.

ACM, 1997.

[14] Ananthanarayanan, Ganesh, et al. "PACMan: Coordinated

memory caching for parallel jobs." Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation. USENIX Association, 2012.

[15] Zulkarnain, Novan, and Muhammad Anshari. "Big data:

Concept, applications, & challenges." Information

Management and Technology (ICIMTech), International

Conference on. IEEE, 2016.

https://hadoop.apache.org/docs/r2.7.1/hadoop-project-

 A Proposal for High Availability of HDFS Architecture based on Threshold Limit 33

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

[16] Fetjah, Laila, et al. "Toward a Big Data Architecture for

Security Events Analytic." Cyber Security and Cloud

Computing (CSCloud), 2016 IEEE 3rd International

Conference on. IEEE, 2016.

[17] Demchenko, Yuri, et al. "Addressing big data issues in

scientific data infrastructure." Collaboration Technologies

and Systems (CTS), 2013 International Conference on.

IEEE, 2013.

[18] Ramaprasath, Abhinandan, Anand Srinivasan, and Chung-

Horng Lung. "Performance optimization of big data in

mobile networks", 2015 IEEE 28th Canadian Conference

on Electrical and Computer Engineering (CCECE), 2015.

[19] Mayank Bhushan , Monica Singh , Sumit K Yadav ," Big

Data query optimization by using Locality Sensitive

Bloom Filter ",IJCT, 2015.

[20] E. Yildirim, J. Kim, and T. Kosar, “Optimizing the sample

size for a cloud-hosted data scheduling service,” in Proc.

2nd Int. Workshop Cloud Computing. Sci. Appl., 2012.

[21] Shvachko, Konstantin V. "HDFS Scalability: The limits to

growth." ; login:: the magazine of USENIX & SAGE 35.2

(2010): 6-16 .

[22] The Apache Software Foundation, “The Apache Hadoop

Project,” http://hadoop.apache.org/.

[23] Fischer, Michael J., Nancy A. Lynch, and Michael S.

Paterson. "Impossibility of distributed consensus with one

faulty process." Journal of the ACM (JACM) 32.2 (1985):

374-382.

[24] Zaharia, Matei, et al. "Resilient distributed datasets: A

fault- tolerant abstraction for in-memory cluster

computing." Proceedings of the 9th USENIX conference

on Networked Systems Design and Implementation.

USENIX Association, 2012.

[25] Islam, Nusrat Sharmin, et al. "In-memory i/o and

replication for hdfs with memcached: Early experiences."

Big Data (Big Data), 2014 IEEE International Conference

on. IEEE, 2014.

[26] Gray, Cary, and David Cheriton. Leases: An efficient

fault-tolerant mechanism for distributed file cache

consistency. Vol. 23. No. 5. ACM, 1989.

[27] D. Liben-Nowell, H. Balakrishnan, and D. R. Karger, ―

Analysis of the evolution of peer-to-peer systems,‖ in

Proc. 21st ACM Symp. Principles of Distributed

Computing (PODC), Monterey, CA, July 2002, pp. 233 –

242.

[28] The Forrester Wave: Big Data Predictive Analytics

Solutions, Q1 2013. Mike Gualtieri, January 13, 2013.

[Online]. Available:

http://www.forrester.com/pimages/rws/reprints/document/

8 5601/oid/1-LTEQDI

[29] Morton, Guy M. A computer oriented geodetic data base

and a new technique in file sequencing. New York:

International Business Machines Company, 1966.

[30] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:

simplified data processing on large clusters."

Communications of the ACM 51.1 (2008): 107-113.

[31] Raji, R. Pillai. "MapReduce: Simplified Data Processing

On Large Clusters." (2009).

[32] Jens Dittrich Jorge-Arnulfo Quian´eRuiz, ”Efficient Big

Data Processing in Hadoop MapReduce.”

Authors’ Profiles

Sabyasachi Chakraborty was born on

the 9th of September 1996 in Shillong.

He is continuing his studies in School of

Computer Engineering as a B.Tech

undergraduate at KIIT University. His

research areas include Data Analytics

and Big Data, Brain Computer

Interface, Natural Language Processing

and Machine Learning.
He is currently interning at

HighRadius Technologies, Hyderabad, India as a Machine

Learning Engineer. His paper on “A Proposal for Shelf

Placement Optimization for Retail Industry using Big Data

Analytics” was accepted at Data Science Congress 2017. He has

also had his article on “Healthcare after the advent of

Information Technology” published in CSI Communications.

Sabyasachi Chakraborty is the member of the IET (The

Institution of Engineering and Technology).

Kashyap Barua was born on the 26th

of November, 1994 in Assam. He is

pursuing B.Tech degree in Computer

Science & Engineering from KIIT

University, Bhubaneswar, India. His

field of research includes Big Data

Analytics, Data Science and Machine

Learning.

He has worked as a software

developer intern at Zaloni, Guwahati. He is also the student

coordinator of EMC2 Academic Alliance at KIIT University.

His paper on “A Proposal for Shelf Placement Optimization for

Retail Industry using Big Data Analytics” was accepted at Data

Science Congress 2017. He has also had his article on “Trends

in Big Data” published in CSI Communications.

Kashyap Barua is the member of the IET (The Institution of

Engineering and Technology).

Siddharth Swarup Rautaray, PhD

(Computer Science), Member IEEE is

Professor at the School of Computer

Engineering, KIIT University,

Bhubaneswar. He has more than a

decade of teaching and research

experience. Dr Rautaray has published

numbers of Research Papers in peer-

reviewed International Journals and

conferences. His areas of interest are Image Processing, Data

analytics, Human Computer Interaction.

Manjusha Pandey, PhD (Computer

Science), Member IEEE is Professor at

the School of Computer Engineering,

KIIT University, Bhubaneswar. She

has more than a decade of teaching and

research experience. Dr Pandey has

published numbers of Research Papers

in peer-reviewed International Journals

and conferences. Her areas of interest

are WSN, Data analytics.

34 A Proposal for High Availability of HDFS Architecture based on Threshold Limit

and Saturation Limit of the Namenode

Copyright © 2017 MECS I.J. Information Engineering and Electronic Business, 2017, 6, 27-34

How to cite this paper: Sabyasachi Chakraborty, Kashyap Barua, Manjusha Pandey, Siddharth Rautaray," A Proposal

for High Availability of HDFS Architecture based on Threshold Limit and Saturation Limit of the Namenode",

International Journal of Information Engineering and Electronic Business(IJIEEB), Vol.9, No.6, pp. 27-34, 2017. DOI:

10.5815/ijieeb.2017.06.04

