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Abstract—This paper applies a neural-network-based 
approximate dynamic programming (ADP) method, namely, 
the action dependent heuristic dynamic programming 
(ADHDP), to an industrial sucrose crystallization optimal 
control problem. The industrial sucrose crystallization is a 
nonlinear and slow time-varying process. It is quite difficult 
to establish a precise mechanism model of the crystallization, 
because of complex internal mechanism and interacting 
variables. We developed a neural network model of the 
crystallization based on the data from the actual sugar 
boiling process of sugar refinery. The ADHDP is a learning- 
and approximation-based approach which can solve the 
optimization control problem of nonlinear system. The 
paper covers the basic principle of this learning scheme and 
the design of neural network controller based on the 
approach. The result of simulation shows the controller 
based on action dependent heuristic dynamic programming 
approach can optimize industrial sucrose crystallization． 
 
Index Terms—Sucrose Crystallization, Sugar Boiling, 
Neural Networks, Approximate Dynamic Programming, 
Action Dependent Heuristic Dynamic Programming 

I.  INTRODUCTION 

The process of sucrose production consists mainly of 
press, clarification, evaporation, crystallization (sugar 
boiling). The sucrose crystallization incorporates both the 
heat and mass transfer, is the last and the most crucial 
step. The purpose of sugar boiling is to recover as much 
sugar from the syrup as possible, in the mean time; the 
size of the crystal should be as homogeneous as possible. 
The quality of the final product, the production efficiency 
and the economic benefits in sugar boiling technology 
were affected by the sucrose crystallization [14]. 

 The super saturation (The degree to which the sucrose 
content in solution is greater than the sucrose content in 
saturated solution.) of  sucrose solution is the key factor 
which impacts the sugar boiling process. We must keep 

the super saturation in a metastable zone (keeping the 
super saturation in 1.20-1.25) to speed up the 
crystallization rate and ensure the quality of crystal [14]. 
So, how to ensure the stability of the super saturation is 
the key to sugar boiling automation. Approximate 
dynamic programming doesn’t need a precise 
mathematical model of the plant, can solve the 
optimization control problem of nonlinear system. In this 
paper, action dependent heuristic dynamic programming 
is used to optimize the sucrose crystallization by 
controlling the Brix of the sucrose solution based on a 
large number of Brix data from the actual sugar boiling 
process of sugar refinery. This is of great practical 
significance to improve the production efficiency of the 
sugar boiling process. 

II.  APPROXIMATE DYNAMIC PROGRAMMING 

A.  Dynamic Programming for Discrete-Time Systems 
Dynamic programming is a very useful tool in solving 

optimization and optimal control problems. It is based on 
the principle of optimality: An optimal policy has the 
property that whatever the initial state and initial decision 
are, the remaining decisions must constitute an optimal 
policy with regard to the state resulting from the first 
decision [1]. 

We can use mathematical language to express the 
principle of optimality above [11]. Suppose that one is 
given a discrete-time nonlinear dynamical system 

              [ ]( 1) ( ), ( ), , 0,1,...x k F x k u k k k+ = =  .              (1) 

where nx R∈ represents the state vector of the system and 
mu R∈ denotes the control action and F is the system 

function. Suppose that one associates with this system the 
performance index (or cost) 

             ( ) ( ) ( ), , ,i k

i k
J x k k U x i u i iγ

∞
−

=

=⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∑  .             (2) 

where U is called the utility function and γ  is the 
discount factor with 0 1γ< ≤ . Note that the function J is 
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Figure 1.  The structure of approximate dynamic programming [13].

dependent on the initial time k and the initial state x(k), 
and it is referred to as the cost-to-go of state x(k). The 
objective of the dynamic programming problem is to 
choose a control sequence u(i), i = k, k+1, …, so that the 
function J (i.e., the cost) in (2) is minimized. 

Suppose that one has computed the optimal cost 
[ ]* ( 1),J x k k+  from time k+1 to the terminal time, for all 

possible states x(k+1), and that one has also found the 
optimal control sequences from time k+1 to the terminal 
time. The optimal cost results when the optimal control 
sequence * *( 1), ( 2),...u k u k+ + , is applied to the system 
with initial state x(k+1). If one applies an arbitrary control 
u(k) at time k and then uses the known optimal control 
sequence from k+1 on, the resulting cost will be 

 [ ] [ ]*( ), ( ), ( 1),U x k u k k J x k kγ+ +  
where x(k) is the state at time k, and x(k+1) is determined 
by (1). According to Bellman, the optimal cost from time 
k on is equal to 

[ ] [ ] [ ]{ }* *

( )
( ), min ( ), ( ), ( 1),

u k
J x k k U x k u k k J x k kγ= + + . (3) 

 The optimal control * ( )u k  at time k is the u(k) that 
achieves this minimum, i.e., 

( ) [ ] [ ]{ }* *

( )
arg min ( ), ( ), ( 1),

u k
u k U x k u k k J x k kγ= + + .  (4) 

Equation (3) is the principle of optimality for discrete-
time systems. Its importance lies in the fact that it allows 
one to optimize over only one control vector at a time by 
working backward in time. In other words, any strategy 
of action that minimizes J in the short term will also 
minimizes the sum of U over all future times. 

B.  Basic Structure and Principle of ADP 
Dynamic programming has been applied in different 

fields of engineering, operations research, economics, and 
so on for many years. It provides truly optimal solutions 
to nonlinear stochastic dynamic systems. However, it is 
well understood that for many important problems the 
computation costs of dynamic programming are very high, 
as a result of the “curse of dimensionality” [1]. 

Over the years, progress has been made to circumvent 
the “curse of dimensionality” by building a system, called 
“critic”, to approximate the cost function in dynamic 
programming [3], [4]. The idea is to approximate the 
dynamic programming solutions by using function 
approximation structures to approximate the optimal cost 
function and the optimal controller.  

In 1977, Werbos introduced an approach for approxi-
mative dynamic programming that was later called 
adaptive critic designs (ACDs) [2]. ACDs were proposed 
in [2], [3] as a way for solving dynamic programming 
problems forward-in-time. ACDs have received 
increasing attention recently. In the literature, there are 
several synonyms used including “Adaptive Critic 
Designs” (ACDs), “Approximative Dynamic Program-
ming”, “Adaptive Dynamic Programming”, and so on. 
The main idea of ADP is shown in Fig. 1 [13]. 

The whole structure consists of three parts: Dynamic 
System, Control/Action module, and Critic module. The 
Dynamic System is the plant to be controlled. The 
Control/Action module is used to approximate the 
optimal control strategy, and the Critic module is used to 
approximate the optimal performance index function. The 
combination of the Control/Action module and the Critic 
module is equivalent to an agent. After the 
Control/Action module acts on the Dynamic System (or 
the controlled plant), the Critic module is affected by a 
Reward/Penalty signal which is produced by environment 
(or the controlled plant) at various stages. The 
Control/Action module and the Critic module are 
function approximation structures such as neural net-
works. The parameters of the Critic module are updated 
based on the Bellman’s principle of optimality, and the 
objective of updating the parameters of the 
Control/Action module is to minimize the outputs of the 
Critic module. This not only minimizes the time of 
forward calculation, but also can online response 
dynamic changes of unknown system and adjusts some 
parameters of the network structure automatically. In this 
article, both the Control/Action module and the Critic 
module are neural networks, so they are also known as 
Control/Action network and Critic network. 

C.  Heuristic Dynamic Programming 
In order to solve dynamic programming problems, 

various function approximation structures were proposed 
to approximate the optimal performance index function 
and the optimal strategy directly or indirectly. 

Existing adaptive critic designs [5] can be categorized 
as: 1) heuristic dynamic programming (HDP); 2) dual 
heuristic programming (DHP); and 3) globalized dual 
heuristic programming (GDHP). One major difference 
between HDP and DHP is within the objective of the 
critic network. In HDP, the critic network outputs the 
estimate of J in (2) directly, while DHP estimates the 
derivative of J with respect to its input vector. GDHP is a 
combination of DHP and HDP, approximating both J(x(k)) 
and ( ( )) / ( )J x k x k∂ ∂  simultaneously with the critic 
network. Action dependent variants from these three 
basic design paradigms are also available. They are action 

dependent heuristic dynamic programming (ADHDP), 
action dependent dual heuristic programming (ADDHP), 



 Optimal Control for Industrial Sucrose Crystallization with Action Dependent 35 
Heuristic Dynamic Programming 

Copyright © 2009 MECS                                                                             I.J. Image, Graphics and Signal Processing, 2009, 1, 33-40 

( )x k
( )u k ( 1)x k + ( 1)J k

∧

+ ( )U k

( )J k
∧

γ

Figure 2.  The HDP structure diagram [13]. 

and action dependent globalized dual heuristic 
programming (ADGDHP). Action dependent (AD) refers 
to the fact that the action value is an additional input to 
the critic network. 

HDP is the most basic and widely applied structure of 
ADP [6], [7], [8], [9]. A typical design of HDP controller 
consists of three networks: action network, model 
network and critic network. Each of these networks 
includes a feed-forward and a feedback component. The 
action network outputs the control signal, the model 
network simulates the characteristics of controlled object 
and outputs new state parameter, and the critic network 
outputs an estimate of cost function given by the Bellman 
equation associated with optimal control theory. The 
structure of HDP is shown in Fig. 2 [13]. 

In Fig. 2, the solid lines represent signal flow, while 
the dashed lines are the paths for parameter tuning. It will 
generate control signal u(k) when the action network 
accepts the system state x(k), then u(k) and x(k) add to the 
model network which will predict new state parameter 
x(k+1), x(k+1) is the only input parameter of the critic 
network which will output an approximate value of J 
function given by (2). 

In HDP, the output of the critic network is J
∧

, which is 
the estimate of J in (2). This is done by minimizing the 
following error measure over time 

              

2

( )

1 ( ) ( ) ( 1)
2

c c
k

k

E E k

J k U k J kγ
∧ ∧

=

⎡ ⎤= − − +⎢ ⎥⎣ ⎦

∑

∑
            (5) 

where ( ) ( ( ), ( ), , )CJ k J x k u k k W
∧ ∧

= , CW  represents the 
weights of the critic network. When  ( ) 0cE k =  for all k, 
(5) implies that 

             
( )

( ) ( ) ( 1)

( ) ( ( 1) ( 2))
...

i k

i k

J k U k J k

U k U k J k

U i

γ

γ γ

γ

∧ ∧

∧

∞
−

=

= + +

= + + + +
=

=∑
               (6) 

which is exactly the same as the cost function in (2). It is 
therefore clear that minimizing the error function in (5), 

we will have a neural network trained so that its output J
∧

 
becomes an estimate of the cost function J defined in (2). 

The aim of training the action network is minimizing 

the output of the critic network J
∧

. We seek to minimize 

J
∧

 in the immediate future thereby optimizing the overall 
cost expressed as a sum of all U(k) over the horizon of 
the problem [5]. 

D.  Action-Dependent Heuristic Dynamic Programming 
ADHDP is an Action-dependent form of HDP, its 

structure has only action network and critic network, as is 
shown in Fig. 3. One major difference between ADHDP 
and HDP is within the input of the critic network. In HDP, 
state variable is the only input of the critic network, while 
in ADHDP both state variable and control variable are the 
inputs of the critic network. In ADHDP, the output of 
critic network is usually known as Q-function which 
estimates the J function given by (2), so ADHDP is also 
known as Q-learning [10], [11], [12]. 

In ADHDP, there is no model network, and the action 
value is an additional input to the critic network. This 
gives us a few advantages including the simplification of 
the overall system design and the feasibility of the present 
approach to application where a model network may be 
very difficult to obtain [11]. In this article, we use 
ADHDP method to optimize the sucrose crystallization. 

Critic Network: The critic network is used to provide Q 
as an approximation of J in (2). This is done by mini-
mizing the following error measure over time. 

                     21( ) ( )
2c c c

k k
E E k e k= =∑ ∑ .                 (7) 

where 

                    ( ) ( ) ( ( 1) ( ))ce k Q k Q k U kγ= − − − .              (8) 

where ( ) [ ( ), ( ), , ]cQ k Q x k u k k W=  and cW  represents the 
parameters of the critic network. The function U is the 
same utility function as the one in (2) which indicates the 
performance of the overall system. The function U given 

in a problem is usually a function of x(k), u(k), 
and k, i.e., U(k) = U(x(k),u(k),k). When 

( ) 0cE k =  for all k, (7) implies that 

                    

1

1

( ) ( 1) ( 1)
( 1) ( ( 2) ( 2))

...

( )i k

i k

Q k U k Q k
U k U k Q k

U i

γ
γ γ

γ
∞

− −

= +

= + + +
= + + + + +
=

= ∑
         (9) 

Clearly, comparing (2) and (9), we have now 
( )( ) ( 1), 1Q k J x k k= + + . Therefore, when 

minimizing the error function in (7), we have a neural 
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Figure 3.  The ADHDP structure diagram. 

network trained so that its output becomes an estimate of 
the performance index function defined in (2) for i = k+1, 
i.e., the value of the performance index function in the 
immediate future. 

The weights of the critic network are updated accord-
ing to a gradient-descent algorithm 

            ( 1) ( ) ( )c c cW k W k W k+ = + Δ  .                            (10) 

              

( )
( ) ( )

( )

( ) ( )( )
( ) ( )

c
c c

c

c
c

c

E k
W k l k

W k

E k Q kl k
Q k W k

⎛ ⎞∂
Δ = −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂
= −⎜ ⎟∂ ∂⎝ ⎠ .               (11) 

where ( )(0 ( ) 1)c cl k l k< <  is the learning rate of the critic 
network at time k, which usually decreases with time to a 
small value, and cW  is the weight vector in the critic 
network. 

Action Network: The principle in adapting the action 
network is to indirectly back-propagate the error between 
the desired ultimate objective, denoted by cU , and the 
output of the critic network Q. cU  is set to “0” in our 
design paradigm and in our following case studies. The 
weight updating in the action network can be formulated 
as follows [10]. Let 

                        ( ) ( ) ( )a ce k Q k U k= − .                      (12) 

The weights in the action network are updated to 
minimize the following performance error measure 

                          21( ) ( )
2a aE k e k= ⋅ .                          (13) 

The update algorithm is then similar to the one in the 
critic network. By a gradient descent rule  

           ( 1) ( ) ( )a a aW k W k W k+ = + Δ .                              (14) 

                  

( )
( )

( )

( ) ( ) ( )( )
( ) ( ) ( )

a
a a

a

a
a

a

E k
W l k

W k

E k Q k u kl k
Q k u k W k

⎛ ⎞∂
Δ = −⎜ ⎟∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
= −⎜ ⎟∂ ∂ ∂⎝ ⎠ .     (15) 

where ( ) 0al k >  is the learning rate of the action network 
at time k, which usually decreases with time to a small 
value, and aW  is the weight vector in the action network. 

III.  SUCROSE CRYSTALLIZATION 

A.  Formation of Sucrose Crystals 
In sucrose solution, sucrose molecules distribute 

uniformly in the space of water molecules. Under the 
conditions of a certain concentration and temperature, the 
sucrose solution becomes saturated. The sucrose mole-
cules steadily fill the space of water molecules, and 
achieve a balance combining with water molecules. 
When the number of sucrose molecules exceeds the 
inherent amounts of sucrose molecules in saturated 
solution, the balance will be broken, from balance to 
imbalance, stable to unstable. Even more, when the 
sucrose molecules reach a certain number, the distance 
between them lessens and the opportunity of collision 
increases. So the attraction between molecules gradually 
surpasses repulsion, and then some sucrose molecules can 
gather together, thus, sucrose crystals gradually form [14]. 

B.  Sucrose Crystallization 
At the beginning of crystallization, seeds usually with 

no uniform size. So we need to use water or syrup to 
dissolve part of small crystals and keep crystals 
homogeneous. This is called collation. After collation, the 
super saturation of syrup is relatively low in general, can 
not meet the requirement of the crystallization. At this 
time, the syrup needs to be enriched, the process known 
as enrichment A. When the syrup is enriched to a certain 
extent the crystal growth process start. It’s the main 
process of sucrose crystallization, accounting for the most 
of time for the crystallization. If improper operation occur 
in sucrose crystallization, pseudocrystals will appear. The 
pseudocrystals need to be washed away by water. If water 
injection rate is faster than evaporation rate, Brix of syrup 
will decline. So we need a water boiling process to make 
the super saturation return to the required value for 
crystallization. At the end of crystallization, we need to 
enrich massecuite (called enrichment B). When the 
massecuite is enriched to a certain extent, we can stop 
and complete the sugar boiling process [14]. 

C.  Factors Which Affect Sucrose Crystallization 
According to the analysis of sucrose crystallization and 

practical experience, we know that many factors affect 
the crystallization. These factors include the feed rate, the 
water inflow, the purity of the syrup, the vacuum of tank, 
the material temperature, the volume of sucrose solution, 
the heating steam pressure and temperature, and so on 
[14]. In this paper, we assume that the purity of the syrup 
is relatively stable for a period, and the super saturation 
of the syrup can also be kept in a relatively stable range. 
Under these assumptions, we study three key factors 
which impact the crystallization, i.e., the vacuum of tank, 
the heating steam pressure and temperature. 

D.  Neural Network Model of Sucrose Crystallization 
In sucrose crystallization, Brix is proportional to super-

saturation, and determines the crystallization rate. The 
neural network has strong nonlinear mapping (fitting) 
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Figure 5.  The trained model for sugar crystallization. 
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Figure 4.  The neural network model for sucrose crystallization. 

characteristics [15]. In this paper, we developed a neural 
network model of the crystallization based on the data 
from the actual sugar boiling process of sugar refinery. 
We use the vacuum of the tank, the heating steam 
pressure and temperature as the inputs of the neural 
network, Brix degree as the output of the network. The 
neural network model is shown in Fig. 4. 

The data came from the actual production process of 
Liaoping Sugar Refinery of Guangxi. The neural network 
modeling mainly has several important links: data 
pretreatment, data normalization, network design, 
network training and network test, and so on. When 
processing the sample data, summarizing the operation 
range of sampled variables based on technical 
requirements and operation experiences, parts of the data 
can be primarily eliminated. After being processed, 500 
sets of data are used as training samples, and 100 sets of 
data are used as testing samples, the data become 
numerical values between (-1,1) after a normalization 
process. Our designed neural network is chosen as a 3-
65-1 structure with 3 input neutrons, 65 hidden neutrons 
and 1 output neutron. For this neural network, the hidden 
layer and output layer use the sigmoidal function tansig. 
We have applied trainlm (the Levenberg-Marquardt 
algorithm) for the training of the netwok. The trained 
model is shown in Fig. 5. 

IV.  THE DESIGN OF THE CONTROLLER 

A.  Control Objective of Brix and Sugar Boiling Time for 
Every Stage 

According to the principle of sugar boiling process, 
statistical analysis of the sample data form actual 
production process of sugar refinery, and the practical 
experience of workers, we can get the control objective of 
Brix and the sugar boiling time for every stage, which is 
shown in Table I. 

B.  Defining of Utility Function 
The definition of utility function is not exactly the 

same, because the control objectives of various stages are 
different. For example, we have need to control the Brix 
degree of the collation process in the scope of 82-86Bx, 
so the utility function is defined as 

               

2( ( ) 84) , ( ) 84 3
( )

1,
x k x k

U k
otherwise

⎧ − − <
= ⎨
⎩                (16) 

C.  Design of Network and Algorithm Implementations 

Two BP neural networks are needed in the design of 
the ADHDP controller for sucrose crystallization, one is 
used as action network, and the other is used as critic 
network. In our ADHDP design, both the action network 
and the critic network are nonlinear multilayer feed-
forward networks. In our design, one hidden layer is used 
in each network. In the following, we devise learning 
algorithms and elaborate on how learning takes place in 
each of the two networks. 

The critic network: The critic network is chosen as a 4-
8-1 structure with 4 input neurons and 8 hidden layer 
neurons. The 4 inputs are the outputs of the action 
network u1(k), u2(k) and u3(k), and the Brix degree 
which is denoted by x(k). For the critic network, the 
hidden layer uses the sigmoidal function tansig, and the 
output layer uses the linear function purelin. The 
structure of the critic network is shown in Fig. 6. 

There are two processes for training the network. One 
is the forward computation process and the other is the 
error backward propagation process which updates the 
weights of the critic network. 

In the critic network, the output Q(k) will be of the 
form

TABLE I.   
THE CONTROL OBJECTIVE OF BRIX AND THE SUGAR BOILING TIME FOR 

EVERY STAGE 

Stage Control objective of 
Brix / Bx 

Sugar boiling time 
/ min 

Collation 82--87 25 

Enrichment A 88.2--90 25 

Crystal Growth 88.2--90 120 

Water Boiling 84--88 30 

Enrichment B 92--94 20 

 



38 Optimal Control for Industrial Sucrose Crystallization with Action Dependent  
Heuristic Dynamic Programming 

Copyright © 2009 MECS                                                                             I.J. Image, Graphics and Signal Processing, 2009, 1, 33-40 

Q(k)

Input layer Hidden layer Output layer

u1(k)

u2(k)

u3(k)

x(k)

2cW1cW

Figure 6.  The structure of critic network. 

Input layer Hidden layer Output layer

u1(k)

u2(k)

u3(k)

x(k)

2aW1aW

Figure 7.  The structure of action network. 

 

                      11( ) ( ) ( )cch k inputC k W k= × .                   (17) 

                      2( ) tan ( 1( ))ch k sig ch k=  .                       (18) 

                        2( ) 2( ) ( )cQ k ch k W k= × .                        (19) 

where 
inputC: input vector of the critic network, inputC=[u1 

u1 u3 x]; 
ch1: input vector of the hidden layer; 
ch2: output vector of the hidden layer; 
By applying the chain rule, the adaptation of the critic 

network is summarized as follows. 
1) 2cW  (weight vector for hidden to output layer) 

             2 2 2( 1) ( ) ( )c c cW k W k W k+ = + Δ .                        (20) 

               

2
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2) 1cW  (weight vector for input to hidden layer) 

    1 1 1( 1) ( ) ( )c c cW k W k W k+ = + Δ .                                 (22) 
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= − ⋅ ⋅ ⋅ ⋅ ×

⊗ − ⊗
(23) 

The action network: The structure of the action 
network is chosen as 1-8-3 with 1 input neuron, 8 hidden 
layer neurons and 3 output neurons. The input is x(k) 
denotes Brix degree. The output is the predictive control 
vector u(k) (u(k) = [ u1(k) u2(k) u3(k)]), where u1(k), 
u2(k) and u3(k) correspond to the vacuum of the tank, the 

heating steam pressure and the heating steam temperature 
respectively. Both the hidden layer and output layer use 
the sigmoidal function tansig. The neural network 
structure for the action network is shown in Fig. 7. 

Now, let us investigate the adaptation in the action 
network; the associated equations for the action network 
are 

                        11( ) ( ) ( )aah k x k W k= × .                          (24) 

                       2( ) tan ( 1( ))ah k sig ah k= .                       (25) 

                          2( ) 2( ) ( )av k ah k W k= × .                       (26) 

                          ( ) tan ( ( ))u k sig v k= .                           (27) 

where 
ah1: input vector of the hidden layer; 
ah2: output vector of the hidden layer; 
v: input vector of the output layer; 
By applying the chain rule, the adaptation of the action 

network is summarized as follows. 
1) 2aW  (weight vector for hidden to output layer) 

         2 2 2( 1) ( ) ( )a a aW k W k W k+ = + Δ .                            (28) 
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= − ⋅ ⋅ × − ⊗

⎤⎡⊗ ⊗ − ⊗ ×⎣ ⎦ (29) 

where 
                         1(1: 3,:)cu cW W=  

2) 1aW  (weight vector for input to hidden layer) 

                   1 1 1( 1) ( ) ( )a a aW k W k W k+ = + Δ .                   (30) 
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Figure 8.  Schematic diagram for ADHDP controller of sucrose 

crystallization 
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Figure 9.  Simulation results for the collation, enrichment A and 
crystal growth stage. 
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Figure 10.  Simulation results for the water boiling and enrichment B 
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                                                                                       (31) 

where 

1(1: 3,:)cu cW W=  

( ) ( )
8

( ) 1 ( ) ( ) ; ; 1 ( ) ( )
Total

A k u k u k u k u k= − ⊗ ⋅⋅⋅ − ⊗⎡ ⎤⎣ ⎦14444444244444443
 

It should be noted that, in the formulas above, the 
operation symbol “× ” means the general matrix multiply, 
while the operation symbol “⊗ ” means bitwise matrix 
multiply. 

The schematic diagram for ADHDP controller of 
sucrose crystallization is shown in Fig. 8. 

V.  SIMULATION RESULTS 

The initial Brix of sucrose solution is 83Bx. We 
choose randomly initial weights of the critic and the 
action networks in the range of (-1,1). We use ( ) 0.3cl k = , 

( ) 0.3al k =  and 0.95γ =  in our simulation. In order to 
prevent the training of the critic network and the action 
network from entering the endless loop we set the 
maximum cycle-index as 50 and 500, respectively. The 
simulation results are shown in Fig. 9 and Fig. 10.. 

VI. CONCLUSION 

It is quite difficult to establish a precise mechanism 
model of sucrose crystallization. According to the 
principle of sugar boiling process, and the practical 
experience of workers, we developed a neural network 
model of the crystallization based on the data from the 
actual sugar boiling process of sugar refinery. The 
approximate dynamic programming approach can solve 
the optimization control problem of nonlinear system. 
The ADHDP as a model independent ADP approach has 
provided some level of flexibility. The paper covers the 
basic principle of this learning- and approximation-based 
approach and the design of neural network controller 
based on the approach. The result of simulation shows the 
controller based on action dependent heuristic dynamic 
programming approach can optimize industrial sucrose 
crystallization． 
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