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Abstract—Electroencephalogram (EEG) is a widely used 

signal for analyzing the activities of the brain and usually 

contaminated with artifacts due to movements of eye, 

heart, muscles and power line interference. Owing to eye 

movement, Ocular activity creates significant artifacts 

and makes the analysis difficult.  In this paper, a new 

threshold is presented for correction of Ocular Artifacts 

(OA) from EEG signal using Empirical Mode 

Decomposition (EMD), Ensemble Empirical Mode 

Decomposition (EEMD) and Complete Ensemble 

Empirical Mode Decomposition (CEEMD) methods. 

Unlike the conventional EMD based EEG denoising 

techniques, which neglects the higher order low-

frequency Intrinsic Mode Functions (IMFs), IMF Interval 

thresholding is opted to correct the artifacts. Obtained the 

noisy IMFs based on MI scores and perform interval 

thresholding to the noisy IMFs gives a relatively cleaner 

EEG signal. Extensive computations are carried out using 

EEG Motor Movement/Imagery (eegmmidb) dataset and 

compare the performance of Proposed Threshold (PT) 

with current threshold functions i.e., Universal Threshold 

(UT), Minimax Threshold (MT) and Statistical Threshold 

(ST) using several standard performance metrics: change 

in SNR (ΔSNR), Artifact Rejection Ratio (ARR), 

Correlation Coefficient (CC), and Root Mean Square 

Error (RMSE). Results of these studies reveal that 

CEEMD+PT is efficient to correct OAs in EEG signals 

and maintaining the background neural activity in non-

artifact zones. 

 

Index Terms—Electroencephalogram (EEG), Ocular 

artifacts, Empirical Mode Decomposition (EMD), 

Ensemble Empirical Mode Decomposition (EEMD), 

Complete Ensemble Empirical Mode Decomposition 

(CEEMD), Thresholding.  

 

I. INTRODUCTION  

EEG signals are often corrupted by physiological and 

extra-physiological artifacts. The extra-physiological 

artifacts such as line interference and electrode noise are 

removed by filtering techniques as there is a spectral 

separation. But careful attention is required to remove 

physiological artifacts due to movements of eye, heart, 

and muscles as they co-exist within the same frequency 

range of the EEG signal. There is a considerable loss of 

EEG activity due to overlapping spectrum if the process 

of artiafct removal is not methodical.  

Various techniques are in vogue for correcting OAs in 

EEG recordings. Wavelet Transform (WT) techniques are 

widely used for the correction of artifacts in EEG signals 

[1, 2, 3, 4]. Many investigators have employed various 

combinations of WT techniques: Discrete Wavelet 

Transform (DWT) and Stationary Wavelet Transform 

(SWT) and thresholds to remove OAs from EEG signals 

[3, 4]. But the WT is not adaptive and the selection of 

mother wavelet also influences the artifact removal 

performance. 

EMD has been adopted [5] to analyze non-linear and 

non-stationary signals like EEG. It is a powerful signal 

processing tool for extracting signals from noisy data.  

Research executed by [6] has asserted and demonstrated 

EMD filtering technique to remove the eye blink and eye 

movement artifacts in a single channel EEG by partial 

reconstruction from the components of decomposition. 

Novel methodology in this paradigm has published [7] 

applied analytical methods for the removal of blink 

artifacts from EEG signal by EMD. In this method, the 

noisy IMFs are identified relying on entropy and 

reconstruct the signal using IMFs that comprises lower 

entropy. Another profound work [8] has proposed based 

on mutual information to determine the noisy IMFs and 

the clean EEG was obtained by excluding the noisy IMFs. 

Mode mixing problem limits the performance of EMD. In 

order to improve it, the EEMD method is proposed, 

which can perform EMD over an ensemble of noisy 

copies of the raw signal and the true IMFs are obtained 

by taking the average [9, 10]. However, signal 

reconstructed by the EEMD restrains the residual noise 
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[10]. CEEMD is proved to be an important enhancement 

on EEMD which comprehensively resolves the mode 

mixing; thereby minimizing the reconstruction error [11, 

12].  
Excluding the noisy IMFs for OAs correction leads to 

loss of significant information in the reconstructed signal. 

To address this [13] novel methodologies were developed 

viz., EMD interval thresholding (EMD-IT), Iterative 

EMD Interval Thresholding (EMD-IIT) and Clear 

Iterative EMD Interval Thresholding (EMD-CIIT) 

inspired by wavelet thresholding for signal denoising. In 

recent years, the hybrid approach which is the 

combination of several methods has been proposed for 

automatic removal of artifacts [14, 15, 16]. These 

methods may remove the artifact without human 

intervention but multidimensionality does increase the 

computational complexity.  

The coefficient thresholding for OAs correction is 

simpler and requires less computational resources than 

existing techniques. Many threshold functions are 

available in the literature to remove artifacts from bio-

signals, in particular, Universal, Minimax, and Statistical 

Thresholds [17, 18]. This study proposes, a new threshold 

to remove OAs in single channel EEG signal and the 

performance of different thresholds are compared in 

EMD, EEMD and CEEMD domains [19]. The rest of the 

manuscript is structured as follows.  Data acquisition and 

methodology are described in section II. Section III 

details the methods of artifact correction and thresholding 

while the concepts of current and proposed threshold 

functions are discussed in section IV. Section V deals 

with various performance metrics used in this study, 

Section VI presents the results and discussion. 

Conclusions drawn are presented in section VII. 

 

II. DATA ACQUISITION AND METHODOLOGY 

A. Data Acquisition 

Single channel EEG epochs of 10sec duration each 

from five subjects are taken for this work at 

polysomnographic records (https://physionet.org/cgi-

bin/atm/ATM) [20]. The ocular artifacts are found 

dominant in the frontal and frontopolar channels like F7, 

F8, Fp1, and Fp2. Hence, it is reasonable to take signals 

from these electrodes as contaminated or corrupted EEG 

signals. EEG signals with blink artifacts are shown in 

fig.1. 

B. Methodology  

 Applied EMD, EEMD and CEEMD for the raw 

EEG signal to obtain the IMFs. Higher order IMFs 

comprise low-frequency noise and lower order IMF 

components consist of high-frequency noise, i.e., the 

ocular artifacts lie in the last several IMFs.  

 Perform soft thresholding (Eq.11) to the noisy IMFs 

[8] as described in section III.B.The EEG signal is 

reconstructed by adding the modified IMFs and the 

remaining signal IMFs.  

 Evaluation of the metrics: ΔSNR, ARR, CC, and 

RMSE between raw and clean EEG signals. The 

process of artifact correction is shown in fig.2. 

 

 

Fig.1. Raw EEG Signals with Ocular Artifacts from Electrodes  

F7, F8, Fp1 and Fp2 

 

Fig.2. Denoising Approach Based on IMF Thresholding 

 

III. METHODS OF ARTIFACT CORRECTION 

A. EMD, EEMD and Complete EEMD Description 

EMD decomposes the signal into IMFs, which are 

extracted through an iterative sifting process [5].  

EMD algorithm for raw EEG signal x(t) is described as 

follows: 

 

(a) Determine the peaks of raw EEG signal.  

(b) Construct the lower envelope (elower) and upper 

envelope (eupper) of the signal separately by 

cubic spline interpolation.  

(c)  Generate the first Intrinsic Mode Function 

(IMF1) by subtracting the mean envelope from 

x(t). 

 

)t(m)t(x)t(h
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where the mean envelope 
2

)ee(
)t(m

upperlower


  

(d) The first residual component is obtained by 

subtracting IMF1 from x(t). 

 

)t(h)t(x)t(d
11

                       (2) 

 

(e) Repeat the process described from step (a) to 

calculate the next IMF by considering the 

residual component as a new signal.  

(f) Repeat the process until no more IMFs can be 

extracted. The original signal x (t) can be 

reconstructed from IMF as  
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EMD experiences mode mixing, it is addressed by 

EEMD, which defines the “true modes” by averaging 

IMFs. Let )t(x be the signal of interest. The EEMD 

algorithm can be described as follows: 

 

(a) Create )t(w)t(x)t(x ii   

where )I,...,2,1i(),t(w i  is a zero mean unit 

variance white noise realization and the scaling 

factor ε > 0. 

(b)  Completely decompose each )t(x i  by EMD to 

obtain the modes ).t(h i

k
 

(c)  True IMFs are obtained by taking the average of 

all IMFs 
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Ensemble size I and scaling factor ε were set to 100 

and 0.2 respectively [10]. 

This situation results the following EEMD 

disadvantages: (i) In-complete decomposition and (ii) The 

reconstructed signal contain residual noise. 

In order to deal with the reconstruction error, the 

complete EEMD (CEEMD) [11] was proposed. 

Let )(E
k
 be the operator which produces the thk  mode 

obtained by EMD and let )t(w i be a realization of zero 

mean unit variance white noise. Then: 

 

(a) For every I,..,2,1i   decompose each 

),t(w)t(x)t(x i

0

i  by EMD, until its first 

mode and compute ).t(h i

1
 

(b) Average over the ensemble to obtain the first 

IMF: 
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(c)  Calculate the first residue as 

).t(h
~

)t(x)t(d
11

   

(d) Decompose the realizations  

),)t(w(E)t(d i

111
  ,I,...,2,1i  until their 

first mode and define the second mode 
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for K,..,2k   calculate the 
thk residue 
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(e) Decompose the realizations 

),)t(w(E)t(d i

kkk
  ,I,...,1i  until their first 

EMD mode, and define the th)1k(   mode as 
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(f) Go to step (d) for next k. 

 

Steps (d) to (f) are performed until residue is below a 

stopping criterion. The final residue satisfies: 

)t(h
~

)t(x)t(d
K
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k


 where K is the total number of 

modes. Finally )(tx  can be expressed as  
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                       (9) 

 

The noise scaling factor on the first mode ε0 and the 

ensemble size I were also set as 0.2and 100 which are 

same conditions of EEMD. The CEEMD scheme provides 

better spectral separation of the modes and requires lesser 

number of sifting iterations. 

The computational cost of CEEMD is reduced in terms 

of number of IMFs and sifting iterations. The set of IMFs 

for Fp2 EEG signal by EMD, EEMD, and CEEMD 

methods have shown in fig. 3(a), 3(b), and 3(c) 

respectively. 

B. Interval Thresholding in EMD, EEMD and CEEMD 

Domains 

The EEG signal x(t) is decomposed into number of 

IMFs using EMD/ EEMD/ CEEMD methods such as   
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Where d(t) is the residue, which is a slowly varying 

function with few extremas. IMF )t(h
k

has zero mean; 

the successive maxima and minima values are positive 

and negative respectively.  

The extremas of )t(h
k

positioned in time instances 

tj=[t1, t2, …tM] and the corresponding IMF points ),t(h
jk

 

j=1,2,…M, will alternate between maxima and minima 

values. It results in a single zero crossing 
j

z between any 

pair of extrema )]t(h),t(h[t
1jkjkj 

 .
j

z is the jth zero 

crossing of kth IMF. The interval of zero crossing for kth 

IMF is ]z,z[z
1jjkj 

 and the corresponding IMF points 

are )z(h
kjk

. Mathematically the soft thresholding 

operation is held by Eq. (11). 
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for j= 1, 2….M, where )z(h
kjk

indicates the samples 

from instants
j

z to 
1j

z


and λk is the threshold at kth IMF 

[13].  

C. Identification of Noisy IMFs 

The Mutual information (MI) scores between IMFs hk(t) 

and x(t) yielding unreliable detection of noisy IMFs. 

Auto Correlation Function (ACF) based approach gives 

preferably distinguished MI scores for the noisy IMFs [8].  

Procedure to recognize the noisy IMFs is described below: 
 

a) Calculate Ri(k) and Rx(k), which denote ACFs of 

)t(h
k

and x(t) respectively. 

b) Compute Ii=I(Ri(k);Rx(k)), where Ii is the MI 

scores between Ri(k) and Rx(k). 

c) Normalize 

maxi

i

i

)I(

I
I  , for I = 1, 2 ,..N. 

d) Determine the threshold, 
2

ii
T 31


   

e) The first ‘n’ IMFs, whose MI is above the 

threshold T are considered as noisy IMFs. 

 

Applied soft thresholding (Eq.11) to the noisy IMFs, 

The EEG signal is reconstructed by adding the modified 

IMFs and the remaining signal IMFs. The reconstructed 

signal )t(x~ is given by Eq. (12). 
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1nk
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(a) 

 

 
(b) 

 

 
(c) 

Fig.3. Decomposition of Fp2 EEG signal by (a) EMD (b) EEMD, (c) 

CEEMD. 

 

IV. EXISTING AND PROPOSED THRESHOLD FUNCTIONS 

The Decision of threshold function is a critical step in 

the denoising process. The clean signal remains noisy if 

the threshold is too small or large as well. So, an adaptive 

threshold function is to be found. The decomposed EEG 

signal coefficients at each IMF must be customized by 

thresholding to separate the artifactual coefficients from 



 Removal of Ocular Artifacts in Single Channel EEG by EMD, EEMD and CEEMD Methods  49 

Inspired by Wavelet Thresholding 

Copyright © 2018 MECS                                                        I.J. Image, Graphics and Signal Processing, 2018, 5, 45-55 

neural signal coefficients. Various threshold functions for 

the artifact correction are described below. 

A. Universal Threshold (UT) 

The Universal Threshold function is proposed by 

Donoho [17]. This is a global threshold function, 

Threshold values are calculated using the universal 

method given by Eq. (13). 

 

Nlog2
kk

                  (13) 

 

Where N is the length of the raw EEG signal, σk is the 

mean absolute deviation and λk is the threshold value of 

kth IMF. σk is expressed as   

 

6745.0
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k
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Where hk denotes the EMD coefficients at kth level. 

The numerator is rescaled by 0.6745 in the denominator 

so that it will be a suitable estimator for Gaussian white 

noise. 

B. Minimax Threshold (MT) 

MT employs a fixed threshold to yield minimax 

performance for root mean square error (RMSE) against 

an ideal procedure [18]. The effective Minimax 

threshold λk is given by  

 

32N
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C. Statistical Threshold (ST) 

Statistical Threshold was proposed by Krishnaveni et 

al., is based on the statistics of the signal [2]. The 

effective statistical threshold λkwould be 

 

)h(std*5.1
kk

                       (16) 

 

Where hk denote the coefficients of kth IMF and factor 

1.5 is an estimator for standard white Gaussian noise.  

D. Proposed Threshold (PT) 

PT is adaptive to different sub-band characteristics by 

analyzing the parameters of the IMF coefficients [19]. 

The new threshold function '

k
 is given by Eq. (17). 
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where Pk is the threshold improvement factor and λk is the 

universal threshold function and 
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Where N represents the number of IMF coefficients at 

each level. 

 

V. PERFORMANCE METRICS 

The performance of various methods using different 

threshold functions are evaluated in terms of the 

following metrics: ΔSNR, ARR, CC, RMSE and Power 

Density Spectrum. SNR is defined as the ratio of signal 

power to the noise power, often expressed in dB as 

ARR is the ratio of the power of the removed artifacts 

to the power of the clean EEG signal given by 

Where x[n]and y[n] denote the contaminated and clean 

EEG signals respectively.  

CC is a statistical quantity that shows the degree of 

similarity or relatedness between two signals expressed as 

RMSE estimates the difference between the raw and 

clean EEG signal and computed by the following 

equation 

Where x1[n] and y1[n] denote the samples of input and 

reconstructed signals respectively in the originally 

artifact-free region. PSD gives the energy of the signal as 

a function of frequency.  It has been implemented in this 

study using power spectral density estimate via Welch's 

method (pwelch). 

 

VI. RESULTS AND DISCUSSION 

A. IMF-Thresholding in EMD, EEMD and CEEMD 

Domains 

Direct application of thresholding to the decomposition 

modes is incorrect and can have catastrophic 

consequences for the continuity of the reconstructed 

signal. Before showing the results of the simulation, an 

example will be given to illustrate the modified IMF 

coefficients by thresholding.  Fig.4(a) demonstrates the 

difference between modified IMF by interval 

thresholding and direct thresholding using various 

threshold functions. 12th IMF of the signal shown in 

fig.2(a) has been used as an example. Clearly, EMD-DT 

introduces the discontinuity in the vicinity of zero 

crossings, which results in loss of neural activity in non-

blink regions and errors in signal reconstruction. Hence, 

EMD-DT is not suggested to correct artifacts from single-

channel EEG signals.  Similarly, Fig.4(b) and 4(c) 

represent the 6th IMF before and after thresholding by 

EEMD and CEEMD methods. Table 1 depicts the 

threshold values at each IMF by various methods. From 

Fig.4 and based on Table 1, it is clear that threshold 

function ST shrinks the coefficients better than other 

thresholds and threshold function PT is good after ST in 

all methods. 

B. Discussions 

In this work, a new threshold is proposed for the 

correction of OAs from single-channel EEG signals by 

EMD, EEMD and CEEMD methods and compared their 

performance with the existing threshold functions (UT, 
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MT, and ST). Extensive computations are carried out on 

frontal and frontopolar channel EEG epochs of five 

subject’s in-terms of standard metrics: ΔSNR, ARR, CC, 

and RMSE. Table 2 depicts the values of ΔSNR and ARR 

of different methods. Based on Table 2 CEEMD is 

outperformed than other methods whereas EEMD is 

better after CEEMD. Based on ΔSNR and ARR, ST has 

shown superior performance than other threshold 

functions indicating that it is aggressive in removing the 

probable artifacts. PT is better next to ST.  

An ideal eye blink removal algorithm should correct 

the artifacts in the blink region while preserving the 

background neural information in artifact free regions. In 

this context, there is a need to segregate the EEG signal 

into blink and non-blink regions [3] and Metrics CC, 

RMSE between raw and clean EEG signals over 

nonblank regions are evaluated and tabulated (Table 3). 

High CC and low RMSE for the non-blink regions are 

chief requisites for an efficient algorithm. Based on 

Table 3, CEEMD is outperformed than other methods 

whereas EEMD is better after CEEMD. It is noticed 

from Table 3, that MT has given better results than other 

thresholds. However, UT and PT methods have shown 

the acceptable performance. 

The clean EEG signal computed by various methods 

using different thresholds is shown in fig.5. All the 

methods are effective in correcting the artifacts, but 

careful perception demonstrates that CEEMD inspired 

by wavelet thresholding corrects the artifacts better than 

other methods and EEMD performed better than EMD 

method. ST has shown superior performance for artifact 

correction in EMD, EEMD and CEEMD methods, and 

PT is next to ST.  

Fig.6 (a) and 6(b) illustrated the power spectra of 

contaminated and clean EEG signals by EMD, EEMD 

and CEEMD methods using ST and PT limits. It is clear 

that the power of the spectral components belonging to 

low-frequency range is fully reduced by CEEMD and 

EEMD with ST and PT thresholds respectively; 

indicating the effective removal of artifacts in that region. 

An optimum artifact removal technique must have high 

ΔSNR, ARR, CC and low RMSE. CEEMD method is 

superior in terms of metrics ΔSNR, ARR, CC and RMSE 

whereas EEMD is better than EMD. 

Threshold function ST has shown outstanding 

performance in terms of ΔSNR and ARR but the neural 

activity in the nonblank regions is slightly affected. 

Though thresholds UT and MT are preserving the 

background EEG activity but unable reject the artifacts 

fully in-terms of ΔSNR, ARR. Hence threshold PT is an 

optimum choice, which shows an acceptable performance 

in artiafct correction by EMD, EEMD and CEEMD 

methods. The execution time of different methods of 

artifact removal is given in Table 4. It clearly depicts that 

EMD based denoising technique is faster than EEMD and 

CEEMD methods. The process of decomposition for 

getting IMFs makes the CEEMD is slower than EMD and 

EEMD methods. 

 

 
(a) 

 

 
(b)
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(c) 

Fig.4. (a) Comparison of IMF Coefficients Before and After Thresholding by (a) EMD-IT and EMD-DT Methods. (b) EEMD-IT Method (c) 

CEEMD-IT Method. 

Table 1. Threshold Values by EMD, EEMD and CEEMD Methods Using Various Threshold Functions 

Method IMF 
Threshold Values 

      UT   MT      ST        PT 

EMD-IT 
'

12  11.96 4.81 16.21 12.59 

EEMD-IT 
'

6  12.12 7.39 22.51 15.75 

CEEMD-IT 
'

6  8.58 5.22 24.03 15.66 

Table 2. Average ΔSNR (dB) and ARR by EMD, EEMD and CEEMD Methods using Various Threshold Functions 

 

 

Method Threshold 

Channels 

F7 F8 Fp1 Fp2 

ΔSNR (dB) ARR ΔSNR(dB) ARR ΔSNR(dB) ARR ΔSNR(dB) ARR 

EMD 

UT 12.38 2.45 10.5 1.92 12.81 1.92 12.65 2.10 

MT 11.72 1.47 7.87 1.24 9.70 1.34 10.22 1.44 

ST 16.75 5.57 13.42 4.26 15.28 5.23 15.58 4.75 

PT 13.76 3.87 11.76 3.28 13.54 3.36 14.18 2.80 

EEMD 

UT 13.52 2.68 11.75 2.18 13.56 2.52 13.08 2.20 

MT 11.97 1.64 9.28 1.38 10.65 1.56 10.91 1.58 

ST 17.55 6.12 15.62 5.26 17.34 6.37 16.68 5.98 

PT 15.52 4.76 13.19 3.89 15.28 4.88 14.88 4.42 

CEEMD 

UT 14.25 2.98 13.64 2.64 13.76 2.32 14.38 3.28 

MT 12.25 1.88 11.58 1.64 11.44 1.68 11.68 1.72 

ST 18.36 6.88 17.74 6.52 17.32 7.44 19.24 7.28 

PT 17.24 5.46 14.88 4.78 15.78 6.12 17.45 6.22 
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Table 3. Average CC and RMSE by EMD, EEMD and CEEMD Methods using Various Threshold Functions 

Method Threshold 

Channels 

F7 F8 Fp1 Fp2 

CC RMSE CC RMSE CC RMSE CC RMSE 

EMD 

UT 0.922 14.16 0.914 13.80 0.918 15.71 0.936 14.21 

MT 0.948 12.28 0.954 12.08 0.941 13.74 0.962 12.46 

ST 0.721 16.30 0.712 16.08 0.702 17.40 0.716 16.48 

PT 0.915 14.90 0.915 14.62 0.908 17.02 0.912 14.76 

EEMD 

UT 0.936 13.25 0.928 13.11 0.930 14.45 0.944 13.38 

MT 0.956 11.28 0.960 11.73 0.960 11.56 0.972 11.64 

ST 0.748 15.96 0.752 15.61 0.740 16.76 0.740 16.07 

PT 0.924 14.88 0.912 14.38 0.918 16.08 0.925 14.35 

CEEMD 

UT 0.942 12.84 0.930 12.42 0.954 12.64 0.942 13.37 

MT 0.965 10.92 0.958 11.00 0.978 11.31 0.964 11.23 

ST 0.762 15.28 0.780 15.84 0.772 15.65 0.764 16.62 

PT 0.932 14.08 0.918 14.14 0.935 14.26 0.928 15.86 

Table 4. Average Execution Time of Various Methods 

Method EMD-IT EEMD-IT CEEMD-IT 

Average Execution Time (Sec) 16 25 40 

 

 
(a) 
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(b) 

 

 
(c) 

Fig.5. Clean EEG Signals Using Different Thresholds During the Samples (600-1200) for the Signal on Electrode Fp2 By (A) EMD-IT, (B) EEMD-

IT and (C) CEEMD-IT Methods. 

   
(a)                                                                                                                 (b) 

Fig.6. Spectra of Clean and Raw EEG Signals by EMD-IT, EEMD-IT and CEEMD-IT Methods by (a) ST and (b) PT Functions 

 

VII. CONCLUSIONS 

This study focuses on comparing the effectiveness of 

various methods (EMD, EEMD, and CEEMD) of artifact 

correction in single-channel EEG signals using different 

threshold functions. Results of this study reveal that PT 

has shown acceptable performance for the removal of 

artifacts from single-channel EEG in all methods. 

CEEMD+PT correct the artifacts in blink regions and 

thereby keeping the neural activity in non-blink regions. 
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Hence, it is an optimum method of artifact correction 

though it is time-consuming than EMD+PT and 

EEMD+PT methods. 
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