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Abstract—This paper proposes Type 2- Interval Fuzzy 

Proportional–Integral–Derivative (T2IFPID) controller 

for a non-linear system. Type 2- Interval fuzzy logic 

controller (T2IFLC) is self-possessed in such a way that 

it is an autonomous process. To decipher the influence, 

the impression of uncertainty on the controller execution 

to two different types of curves are outlined i.e. 

aggressive control curve and smoother control curve. 

Popov-Lyapunov approach is used to define the stability 

of the framework. 

 

Index Terms—Type 2- Interval Fuzzy, PID, CSTR 
 

I.  INTRODUCTION 

In industries, as a whole, it is realized that the most 

normally utilized controllers are regular proportional–

integral–derivative controller since they are basic in 

structure and low in cost [1]. In [2], different 

proportional–integral–derivative controller tuning 

strategies are testified i.e.  Ziegler and Nichols, Cohen 

and Coon, Internal Model Control etc. Pole Placement 

Design Strategies are a portion of the outline systems. 

The use of proportional, integral and derivative 

controllers in controlling direct framework may be a 

successful approach to accomplish wanted execution, yet 

prop-integ-deriv (i.e. PID) controller would not give a 

palatable execution when the procedures have a 

questionable model or if the procedure is non-linear. 

In [3] it is determined that Type 1- Interval Fuzzy 

Logic Controllers(T1IFLC) can be actualized with single 

or multiple inputs. Despite the fact that the significant 

research chip away at fuzzy prop–integ–deriv controller 

fixates is on the customary, either of the two inputs i.e. PI 

or PD. This sort of controller proposed by Mamdani, in 

various works. It demonstrates the solitary information 

that T1IFLC offers additional noteworthy adaptability 

and better useful properties. In three different sorts, fuzzy 

controllers are grouped: the gain scheduling, direct action 

(DA) sort, and a mix of DA and gain scheduling sorts. 

The DA sort generally utilized as a part of fuzzy prop–

integ–deriv controller application; here in the criticism 

control circle fuzzy prop–integ–deriv controller is added, 

and the prop–integ–deriv controller activities computed 

utilizing fuzzy derivation. In gain scheduling sort 

controllers, singular prop–integ–deriv controller pick-ups 

are figured through fuzzy deduction. 

As of late, the fundamental research concentrates on 

T2IFLC [4]. For the most part, T2IFLC finish prevalent 

exhibitions as it gives an extra level of the opportunity 

given by the impression of vulnerability in their Type-2 

Interval Fuzzy Sets (T2IFS). Key contrasts between 

T2IFLC and T1IFLC are adaptive-ness, implying that the 

installed Type 1- Interval Fuzzy Sets (T1IFSs) used to 

register the limits of the type deduced interval change as 

input varies. The upper-side membership functions (UMF) 

and lower-side membership functions (LMF) of a similar 

T2IFS might be utilized at the same time in processing 

each bound of the type deduced interval. T1IFLC lack 

these properties, because of this a T1IFLC is unable to 

execute the intricate control surface of a T2IFLC utilizing 

a similar rule base. Interior structure of the T2IFLC is 

similar to T1IFLC. Principle distinction is desired fuzzy 

membership function (FM), yet advanced algorithms are 

developed for designing T2IFLC for generating the 

control surface [5]. The primary weakness of this 

approach is that it does not clarify how the footprint of 

uncertainty parameters influences the execution and 

robustness of the T2IFLC [6]. In this way, determining 

the scientific structure of a T2IFLC in the system of the 

nonlinear control may be an effective approach to look at 

it [7,8]. However, the orderly outline and strength 

examination of the T2IFLC are yet difficult issues 

because of its generally more intricate structure [9,10]. 

Conventional PID is not able to give general solution to 

all control problems because the processes involved are 

in general complex and with delays, nonlinear, time-

variant, non-stationary, and often with poorly defined 

dynamic. To overcome these difficulties, various types of 

modified fuzzy controllers are developed. In [12,13] 

T2IFPID controller and Popov Lyapunov method for 

stability analysis is presented which gives better 

performance as compare to traditional prop-integ-deriv 

controller.  
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Fig.1. Demonstration of Type-2 Interval triangular membership function for error 

II.  T2IFLC STRUCTURE 

In this segment, the proposed T2IFLC structures input-

output mapping is determined. For effortlessness, the 

antecedent part for the T2IFLC FM of the fuzzy rule base 

is presented by consistently conveyed symmetrical 

triangular. From the error (𝑒) i.e. the linguistic value of 

the input are indicated as 𝐸̃𝑖 where i = {-n, (-n+1) ,(-

n+2), . . . , -2, -1, 0, 1, 2, . . . ,(n-2), (n-1), n}. The 

presented type-2 fuzzy set (𝐸̃𝑖)   is referred as LMF 

(𝜇𝐸̃𝑖 ) and UMF(𝜇𝐸̃𝑖 ). As appeared in Fig.1, the height 

of the LMF is represented by  𝑙𝑛 though the center of the 

 𝐸̃𝑖  is indicated by 𝑑𝑛. The input T2IFSs are symmetrical, 

subsequently, the information space (𝑒) is separated in 

two fundamental districts which are named as the Left 

wing (𝑒 ∈ [𝑑−𝑛   𝑑0]) and Right wing (𝑒 ∈ [𝑑0    𝑑𝑛]). In 

addition, following properties are controlled by an 

additional type reduction system since T2IFLC utilize 

and process T2IFSs. A few investigations have been 

introduced to examine the impact of the footprint of 

uncertainty and additional type reduction process on 

wanted fuzzy enrolment (i.e., control surface) [5]. The 

type-2 interval fuzzy mapping [4], characterized T2IFLC 

membership functions: 

 

(i)   𝜇𝐸̃𝑖(𝑒) + 𝜇𝐸̃𝑖+1(𝑒) = 1, i = -n, . ,-2,-1, 0, 1,2, . .,n  

(ii) 𝜇𝐸̃𝑖(𝑒)  =  𝑙𝑖* 𝜇𝐸̃𝑖(𝑒), -n, . ,-2,-1, 0, 1,2, . .,n 

(iii) 𝑙−𝑖 = 𝑙𝑖,  i = 1,2,3, . . . ,n 

 

The proposed T2IFLC run development is described as: 

 

𝑟𝑖: IF (𝑒) is 𝐸̃𝑖 THEN (𝑒′
𝑓𝑢𝑧

) is 𝐵𝑖, i = 1,2,…..,N    (1) 

 

 

 

 

The aggregate total sum of rule numbers is given as N 

= 2n + 1, while the resultant part deciphers the crisp 

singleton esteems ( 𝐵𝑖 ) which are consistently 

disseminated in the scope of [−1, 1]. Liang and Mendel 

revealed that the defuzzified output of a T2IFLC can be 

computed as: 

 

     𝑒𝑓𝑢𝑧 =  
𝑒𝑙′

𝑓𝑢𝑧
 + 𝑒𝑟′

𝑓𝑢𝑧

2
                          (2) 

 

where (𝑒𝑟′𝑓𝑢𝑧) and (𝑒𝑙′𝑓𝑢𝑧) projects the endpoints of the 

type deduced set. 

Moreover (𝑒𝑟′
𝑓𝑢𝑧

), (𝑒𝑙′

𝑓𝑢𝑧
) are calculated as below: 

 

𝑒𝑟′𝑓𝑢𝑧= 
∑ 𝜇𝐸̃𝑖(𝑒)∗𝐵𝑖

𝑅
𝑗=1 +∑ 𝜇𝐸̃𝑖 (𝑒)∗𝐵𝑖

𝑁
𝑗=𝑅+1

∑ 𝜇𝐸̃𝑖(𝑒)𝑅
𝑗=1 +∑ 𝜇𝐸̃𝑖 (𝑒)𝑁

𝑗=𝑅+1
           (3) 

 

𝑒𝑙′
𝑓𝑢𝑧

= 
 ∑ 𝜇𝐸̃𝑖(𝑒)∗𝐵𝑖

𝑅
𝑗=1 +∑ 𝜇𝐸̃𝑖 (𝑒)∗𝐵𝑖

𝑁
𝑗=𝑅+1

∑ 𝜇𝐸̃𝑖(𝑒)𝑅
𝑗=1 +∑ 𝜇𝐸̃𝑖 (𝑒)𝑁

𝑗=𝑅+1
            (4) 

 

Here, (R, L) is the emerging set that decreases/ 

increases separately. T2IFLC completely covers the 

triangular T2IFSs in the feeling of upper and lower FM’s. 

Subsequently, it can be constantly ensured that a crisp 

estimation of 𝑒 has a place with two progressive T2IFSs, 

i.e. 𝐸̃𝑖and 𝐸̃𝑖+1 . Subsequently, for any crisp information, 

simply two rules (N = 2) are constantly operated as the 

points (R, L) are constantly equivalent to "1". A 

triangular shape FM of T2IFLC is obtained in the form of 

LMF and UMF. The reduced type set are determined as: 
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𝑒𝑟′
𝑓𝑢𝑧

 = 
𝜇𝐸̃𝑖(𝑒)∗𝐵𝑖 + 𝜇 𝐸̃𝑖+1 (𝑒)*𝐵𝑖+1

𝜇𝐸̃𝑖(𝑒) + 𝜇 𝐸̃𝑖+1 (𝑒)
  , 

  𝑒𝑙′
𝑓𝑢𝑧

 = 
𝜇 𝐸̃𝑖 (𝑒)*𝐵𝑖  + 𝜇𝐸̃𝑖+1(𝑒)∗𝐵𝑖+1 

𝜇 𝐸̃𝑖 (𝑒) + 𝜇𝐸̃𝑖+1(𝑒)
                 (5) 

 

After replacing (5) in (2), proposed T2IFLC closed 

form mapping is obtained. Following are the properties of 

the presented a T2IFLC output. 

 

(i) In relation to  ‘𝑒’, ‘𝑒′𝑓𝑢𝑧’ has a continual function. 

(ii) In relation to the input ‘𝑒’, ‘𝑒′𝑓𝑢𝑧’ is proportional, 

i.e.  𝑒′𝑓𝑢𝑧(𝑒) = −𝑒′𝑓𝑢𝑧(−𝑒).  

(iii) In an event that if an input error equivalent to zero 

then fuzzified error equivalents to be zero. It is 

mandatory to have zero error i.e.  (𝑒) = 0 then  

𝑒′𝑓𝑢𝑧= 0 

 

III.  DESIGN STRATEGY FOR T2IFPID CONTROLLER 

In this section, the outlined procedure for singular 

input T2IFLC is presented. The output is expressed in the 

error (𝑒) domain since the T2IFLC has singular input. 

This clarifies the design method of T2IFLC to the 

generation of non-linear control curve.  In this strategy, 

the height (𝑙𝑖) of lower-side FM’s of  𝐸̃𝑖are considered as 

design parameters. Firstly, design parameters effect on 

T2IFLC are scrutinised and then an autonomous design 

method is proposed to generated control curves/curves. 

The parameters for T2IFLC structure are set as 𝐵−1 = 

−1, 𝐵+1 = +1, 𝐵0 = 0, 𝑑−1= −1, 𝑑+1 = +1 and 𝑑0 = 0 [11]. 

For the information Left-wing ( 𝑒  ∈ [−1, 0]), the end 

purposes of the type decreased set would then be able to 

be inferred as takes after: 

 

𝑒𝑙′
𝑓𝑢𝑧

 = 
−𝜇𝐸̃−1(e)

𝜇𝐸̃−1(e) + µ𝐸̃0(e)
  , 

𝑒𝑟′
𝑓𝑢𝑧

 = 
−𝜇𝐸̃−1(e)

µ𝐸̃−1(e)  + 𝜇𝐸̃0(e)
                     (6) 

 

For the Right-wing (𝑒 ∈ [0, +1]), the end point of the 

type deduced sets reduces to: 

 

𝑒𝑙′𝑓𝑢𝑧 = 
µ𝐸̃1(𝑒)

𝜇𝐸̃0(𝑒) + µ𝐸̃1(𝑒)
  , 

𝑒𝑟′
𝑓𝑢𝑧

 = 
µ𝐸̃1(𝑒)

µ𝐸̃0(𝑒)  + 𝜇𝐸̃1(𝑒)
                        (7) 

Table 1. Expressions of 𝑒𝑙
𝑓𝑢𝑧

 and 𝑒𝑟
𝑓𝑢𝑧

 

 Left wing 

 ‘𝑒’ ∈ [−1, 0] 

Right wing  

‘𝑒’ ∈ [0,+1] 

𝑒𝑙′
𝑓𝑢𝑧

 −𝜇𝐸̃−1 (𝑒)

𝜇𝐸̃−1(𝑒) + µ𝐸̃0(𝑒)
   

µ𝐸̃1(𝑒)

𝜇𝐸̃0(𝑒) + µ𝐸̃1(𝑒)
   

𝑒𝑟′𝑓𝑢𝑧 −𝜇𝐸̃−1 (𝑒)

µ𝐸̃−1 (𝑒)  +  𝜇𝐸̃0 (𝑒)
  

µ𝐸̃1(𝑒)

𝜇𝐸̃0(𝑒)  +  𝜇𝐸̃1(𝑒)
        

 

To inspect the impact of the design parameters 

( 𝑙−1 ,  𝑙0 ,  𝑙1 ) on the output effectively the inferred 

explanatory articulations of 𝑒𝑙′𝑓𝑢𝑧   and 𝑒𝑟′
𝑓𝑢𝑧

  for a 

"three rule" interval T2IFLC are organized in Table 1. In 

this examination, the just Right-wing will be assessed in 

detail. Because of symmetrical and uniformly distributed 

nature of input and output FM, the evaluation of Right-

wing can be extended for Left-wing in detail. The 

accompanying meta-rules inferred to shape a control 

activity from the determined articulations of 𝑒𝑙′
𝑓𝑢𝑧

 and 

𝑒𝑟′
𝑓𝑢𝑧

 for Right-wing, to get a palatable framework 

execution. 
 

a. The values of ‘𝑒𝑙′𝑓𝑢𝑧 ’ decrements/increments, if 

the values of 𝜇𝐸̃1(𝑒) (i.e.𝑙1) decrements/increments 

respectively.  

b. The  values of   ‘er′fuz ‘ increments/decrements, if 

the values of μẼ0(e)  (i.e. l0)  

decrements/increments respectively. The 

defuzzified output of a T2IFLC  (e′fuz  ) is the 

mean value of ‘er′fuz’ and ‘el′
fuz

’ values.  

c. If the values of ‘𝑙1’ is incremented while ‘𝑙0’ is 

decremented then the values of  ‘ 𝑒′𝑓𝑢𝑧 ‘ is 

incremented since the values of both  ‘𝑒𝑟′
𝑓𝑢𝑧

’ and 

‘ 𝑒𝑙′𝑓𝑢𝑧 ‘ are incremented. Hence, we obtain an 

aggressive control action. 

d. If the values of ’𝑙1’ is decremented while ‘𝑙0’  is 

incremented then the values of ‘ 𝑒′𝑓𝑢𝑧 ‘ is 

decremented since the values of both ‘𝑒𝑟′
𝑓𝑢𝑧

’ and 

‘ 𝑒𝑙′
𝑓𝑢𝑧

 ‘ are decremented. Hence, we obtain a 

smooth control action. 
 

By choosing 𝑙1  moderately greater then 𝑙0 , a forceful 

nonlinear control activity can be produced i.e. 1 

≥  𝑙1 =  𝑙−1 ≥  𝑙0 ≥ 0. To get aggressive control curve, 

selecting  𝑚1 =  𝑚−1 = 0.9 and  𝑚0 = 0.2 , the control 

curve showed in Fig.2. At the point when 𝑒 is near zero, 

the control curve has a high affect ability. For quick 

transient framework response, aggressive control curve is 

favoured. At set point value, i.e. 𝑒  equals to zero 

aggressive control action is sensitive to noises. 

Smooth control action is acquired by choosing  𝑙0  

moderately greater than 𝑙1 , i.e. 1 ≥ 𝑙0 ≥ 𝑙1= 𝑙−1 ≥ 0. To 

acquire smooth control curve given in Fig. 3, selecting 

 𝑙1= 𝑙−1 = 0.2 and 𝑙0 = 0.9. At the point when 𝑒 is near to 

zero, it has low affectability. For robust control 

performance against parameter vulnerabilities and 

additionally background noises, smooth control curve is 

favoured. 

The secondary part of proposed controller structure is a 

traditional prop-integ-deriv controller. The control law 

for T2IFPID controller is given by 
 

u(t) = 𝐾𝑃(𝑡)𝑒𝑓𝑢𝑧(𝑡) + 𝐾𝐼(𝑡) ∫ 𝑒𝑓𝑢𝑧(𝑡) + 𝐾𝐷

𝑑𝑒𝑓𝑢𝑧(𝑡)

𝑑𝑡
   (8) 

 

where, 

𝐾𝑃 = Proportional gain 

𝐾𝐷 = Derivative gain 

𝐾𝐼  = Integral gain
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Fig.2. Linear control curve versus Aggressive control curve 

 

Fig.3. Linear control curve versus Smooth control curve 

 

IV.  STABILITY ANALYSIS 

Robust Stability Analysis for fuzzy based systems is 

carried out through Popov-Lyapunov method [13]. In this 

approach initially, expand a nonlinear system into a 

Taylor series. As presented in [13] the system is 

described in terms of Perturbed Lur’e system. Following 

are the steps to determine the robust stability. 

 
1. Plot the Popov’s plot for the nominal system. If 

the Popov’s criteria are pleased, then find the 

significant slope (r). The r should be scalar such 

that value of r > 0.  

2. Calculate ‘v’ and ‘𝛾’ from [13]. 

3. Choose a symmetric positive-definite matrix E 

and a positive real number ‘ϵ’, then the ‘𝑃’ matrix 

is acquired by solving the following Ricatti 

equation: 

 

𝐴𝑟 
𝑇 𝑃 + 𝑃𝐴𝑟 − 𝑃𝑅𝑟 + 𝑄𝑟 = 0           (12) 

 

 

where 

 

𝐴𝑟 = 𝐴 −
1

γ
 b𝑣𝑇, 𝑄𝑟 = ϵE + 

𝑣𝑣𝑇

γ
 , 𝑅𝑟 =  −

𝑏𝑏𝑇

γ
 

 

4. Choose a positive-definite matrix ‘𝐸0 ’ such that 

ϵE= ϵ𝐸0  + 𝛅I, then the proper value of ‘𝛅’ can be 

obtained. 

5. ‘ 𝛽 ’ i.e. measurement of robustness can be 

obtained can be obtained from inequality [13]. 

 

V.  SIMULATION RESULT AND STABILITY ANALYSIS  

For calculating transfer function of CSTR cooling 

process, the step response is taken into consideration. For 

the step response, the input is step input, the initial 

temperature is taken as 57𝑜C and the set point is taken as 

45𝑜C. The process has very large dead time and is highly 

damped. Therefore, the step response can be fitted into a 

simple first-order model with dead-time. 

Therefore, the transfer function of the CSTR process is 

given by  

 

𝐺(𝑠) =
0.12𝑒−2𝑠

3𝑠+1
                         (13) 

 

Tuning of  prop-integ-deriv  for CSTR is done by 

Ciancone correlation [12], it is resulting as follows:   

𝐾𝑃 =6.667,  𝐾𝐷 = 2 and  𝐾𝐼 = 1 .9. Simulation result of 

CSTR is shown in fig.4 has comparison between 

T2IFPID with aggressive, smooth control action and PID 

controller.  Initially unit step input is applied to the 

process. It can be seen in Fig. 4 and Fig. 5, three different 

types of controller are able to track the reference with 
different rise time and settling time. Response due to 

Aggressive control action Fuzzy controller has less rise 

time compared to other controller; while response due to 

Smoother control action Fuzzy controller has higher 

settling time compared to other controller performance. 

Table 2 shows step response characteristics of prop-integ-

deriv controller, T2IFPID controller (Smooth) and 

T2IFID controller (Aggressive); where unit step input is 

applied to the process. 

To find out the stability of fuzzy system using Popov-

Lyapunov method first system is converted into perturbed 

Lur’e system [13], which is represented by transfer 

function as follows- 

 

 𝐺𝑆−𝐼𝑇2(𝑠) =  
−0.1067𝑆+0.32

𝑆2+1.269𝑆+0.525
                  (14) 

 

𝐺𝐴−𝐼𝑇2(𝑠) =  
−0.1067𝑆+0.32

𝑆2+1.226𝑆+0.653
                  (15) 
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Fig.4. Setpoint tracking of T2IFPID (smooth) controller and Prop-Integ-Deriv controller 

 

Fig.5. Setpoint tracking of T2IFPID (aggressive) controller and Prop-Integ-Deriv controller

Table.2. Step response characteristic of continuous stirred tank reactor 

with the controller 

 Prop-Integ- 

Deriv 

controller 

T2IFPID 

controller 

(Smooth) 

T2IPID 

controller 

(Aggressive) 

Rise 

Time(sec.) 

4.540 7.913 4.195 

Settling 

Time(sec.) 

42.273 32.668 36.972 

Overshoot 

(%) 

0.000 0.502 8.152 

IAE 4.386 5.488 4.585 

 

Transfer function 𝐺𝑆−𝐼𝑇2(𝑠) represent perturbed Lur’e 

system of fuzzy system which implement smoother 

control action while Transfer function 𝐺𝐴−𝐼𝑇2(𝑠) 

represent perturbed Lur’e system of fuzzy system which 

implement aggressive control action. Fig. 6 represent 

popov plot of the system represented by transfer function 

(14), from that plot it can be concluded as given system 

satisfies popov criterion for slope of line  𝑟 ≥ 1.45 . 

Similarly, popov plot, of system represented by (15) is 

shown in Fig. 7, from that it can be seen that given 

system satisfies popov criterion for slope of line 𝑟 ≥ 1.44. 

Appling Lyapunov stability method 𝑃 matrices are given 

as follows-; 

 

𝑃𝑆−𝐼𝑇2 =  [
1.4766 −0.1342

−0.1342 0.4102
]                  (16) 

 

𝑃𝐴−𝐼𝑇2 = [
1.3204 −0.3408

−0.3486 0.2845
]                 (17) 

 

Given 𝑃 matrices are symmetric positive-definite, from 

this popov criterion and Lyapunov stability method its 
can be concluded that equilibrium point zero is uniformly 
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asymptotically stable. Robustness measure 𝛽  can be 

calculated using [13], which are 𝛽𝑆−𝐼𝑇2 = 0.7015  for 

smoother control action fuzzy system and 𝛽𝐴−𝐼𝑇2 =

0.4627 for aggressive control action fuzzy system. From 

this it is stated that smoother control action fuzzy system 

is more robust than aggressive control action fuzzy 

system. 

 

 

Fig.6 Popov plot of  GS−IT2(s) 

 

Fig.7 Popov plot of  GA−IT2(s) 

 

VI.  CONCLUSION 

The proposed design method is the simplest method to 

design T2IFLC. The proposed controller possesses the 

properties of Prop-Integ-Deriv controller. The T2IFLC 

controller output is completely expressed in error. Hence, 

an autonomous design method is proposed to generate 

nonlinear control curves. The performance of the T2IFLC 

is compared with different controllers to investigate 

transient state performance and disturbance rejection. 

 

 

 

 

 

 

Stability analysis is carried through Popov-Lyapunov 

method to define the robustness of the proposed 

controller.    

Aggressive control action is favored for quick transient 

reaction since it is delicate to the commotion, particularly 

around setpoint esteem. At relentless state, controller, 

which has a smooth control surface, is conceivably more 

powerful against non-linearity and vulnerabilities. 

T2IFLC gives a diverse reaction to the various footprint 

of uncertainty parameters. T2IFPID controller beats the 

prop–integ–deriv controller. 
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