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Abstract—The risk of cardiovascular diseases is growing 

worldwide, and its early detection is necessary to reduce 

the level of risk. Structural parameters of the carotid 

artery as intima-media thickness and functional 

parameters such as arterial elasticity are directly 

associated with cardiovascular diseases. Segmentation of 

the carotid artery is required to measure the structural 

parameters and its temporal value that is used to estimate 

the arterial elasticity. This paper has two primary 

objectives: (i) Segmentation of the sequence of carotid 

artery ultrasound to measure temporal value of intima-

media thickness and lumen-diameter, and (ii) Young’s 

modulus of elasticity estimation. The proposed 

segmentation method uses the contextual feature of the 

image pattern and is based on multi-layer extreme 

learning machine auto-encoder network. This 

segmentation method has two parts: (a) region of interest 

localization and (b) lumen-intima interface and media-

adventitia interface detection at the far wall. ROI 

localization algorithm divides the ultrasound frame into 

columns and also divides each column into overlapping 

blocks, ensuring that every column has a region of 

interest block. A multi-layer extreme learning machine 

with auto-encoder is trained with labelled data and in 

testing; system classifies the blocks into ‘region of 

interest’ and ‘non-region of interest’. Pixels belonging to 

the region of interest are classified in the first part and a 

similar network-based method is proposed for lumen-

intima and media-adventitia interface detection at the 

near wall of the carotid artery. Structural parameter of the 

artery, intima-media thickness and lumen diameter are 

measured in a sequence of images of the cardiac cycle. 

The temporal values of structural parameters are used to 

estimate the young’s modulus of elasticity. 

.  

Index Terms—Carotid Artery Segmentation, Extreme 

Learning Machine, Cardiovascular Disease, Auto-

encoder, Overlapping block.   

 

I.  INTRODUCTION 

The principal cause of disease based mortality 

worldwide is cardiovascular diseases (CVD) [1]. 

Consequences of the pathological process in the carotid 

artery give rise to a special CVD, known as 

atherosclerosis. Fundamental cause behind the 

initialization of the cardiovascular diseases is the 

repercussion of biochemical changes in the coronary and 

carotid artery over time [2]. The biochemical changes in 

carotid artery lead to the change in physical parameters 

such as intima-media thickness (IMT), lumen diameter 

(LD) and arterial elasticity [3]. IMT and arterial elasticity 

has clinical significance and have the potential to 

diagnose the disease [4, 5]. IMT and arterial elasticity of 

common carotid artery (CCA) show a significant change 

in its value at the early stage of atherosclerotic disease.  

IMT in CCA is defined as the distance from lumen-

intima (LI) interface to the media-adventitia (MA) 

interface in the far wall and it is shown in Fig. 1. In 

general, measurement of IMT is performed by a doctor 

manually who observes and marks the points 

corresponding to the LI interface and MA interface in the 

carotid ultrasound. Manual observation, extraction, and 

estimation of IMT in CCA ultrasound have subjectivity. 

An algorithmic automatic method of computing the IMT 

in CCA ultrasound can overcome this subjectivity [6]. 

Arterial elasticity is another important parameter of the 

carotid artery, associated with CVD [5]. Arterial elasticity 

of CCA is a functional parameter and it is defined as the 

capacity to oppose the expansion and contraction while 

pressure is applied, and it leads to high blood pressure [7]. 

The artery is anisotropic, and it has deformation in all the 

three directions during a change in pressure; 

circumferential, radial and longitudinal. Circumferential 

elasticity (in terms of Young's Modulus of Elasticity) can 

be defined with the help of temporal value of arterial 

parameters such as IMT, LD and arterial pressure [8]. 
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There is a number of invasive and non-invasive ways 

to estimate the Young's Modulus of Elasticity of the 

artery, but non-invasive methods are always desired [9].   

 

Adventitia

Media

Intima

LUMEN

             
Fig. 1. The cross-sectional view of carotid artery wall (left) and longitudinal view of the carotid artery of B-mode ultrasound image (right). 

Image-based arterial elasticity estimation is one of the 

non-invasive approaches, and the ultrasound image is 

preferred due to its specific nature. Ultrasound imaging 

techniques are cheap, non-invasive and user-friendly 

unlikely the other modality of imaging [10]. The 

ultrasound image has fast reconstruction ability; that's 

why it shows real-time visualization. The ultrasound is 

commonly used for its flexible nature and low-cost 

availability. 

In this paper, we have proposed an ELM-AE based 

CCA segmentation methods. IMT and LD of the CCA are 

estimated in a sequence of frame of the videos. We have 

also collected the minimum and maximum value of IMT 

and LD from the sequence of frames over the cardiac 

cycle. It is also noticed that IMT has its maximum value 

when LD shows it’s minimum and vice versa. Arterial 

elasticity of CCA is defined in terms of the estimated 

IMT and LD value as shown in Eq. 7. The paper is 

organised in six basic sections. Brief introduction of 

disease and its biomarker is discussed in section I. 

Section II covers the data collection procedure for 

proposed research and method used for segmentation of 

CCA image frame. It also discusses Young’s modulus of 

elastic of CCA. The proposed approach of CCA 

segmentation and elasticity estimation is presented in 

section III. Results and performance of the proposed 

system is discussed in the section IV. A brief discussion 

on the related works and the proposed method has been 

done in section V. The paper concludes in section VI. 

 

II.  DATA AND METHODS 

This section contains three subsections. Subsection A 

briefs on image data collection, subsection B gives on 

extreme learning machine, and subsection C explains 

Young's modulus of elasticity. 

A.  Image Data Collection 

The research work presented in this paper uses four 

ultrasound videos of the common carotid artery and each 

video consist of at least 5 cardiac cycles. These videos 

were captured using a GE lagiq 6 pro ultrasound system 

with three different ultrasound probes on frequency range 

2-5 MHz in B-mode. The Prerna Diagnostic Centre at 

Kurukshetra, Haryana India, provided the videos for our 

research. We generate 790 ultrasound frames from the 

four videos at the rate of 20 frames/second. The 

radiologist of the diagnostic centre observed and 

estimated minimum and maximum values of IMT and LD 

of the carotid artery. These values of arterial parameters 

are used as ground truth. 

B.  Extreme learning machine  

An extreme Learning Machine (ELM) is an elementary 

single layer feed-forward neural networks (SLFN). It has 

randomly generated hidden nodes and the numbers of 

nodes at hidden layers depend on the nature of training 

data [11, 12]. It has great generalization potential that 

minimizes data processing time. ELM has very fast 

training capability because it does not train the system 

iteratively and always has faster than the traditional 

neural network-based algorithm [12]. The number of 

parameters required for ELM is less than the number of 

parameters required for any other single layer feed-

forward networks [13]. Lets there is given a distinct 

arbitrary sample of N values (xi, ti), where xi is the input 

value and ti is the target value of the system. Set of values 

of  xi = [xi1, xi2,.....xin] ∈ Rp   represent input vector and set 

of values of ti = [ti1, ti2, .....tin] ∈ Rq  represent target vector. 

If single layer ELM contains M neurons at hidden layer 

and activation function g(.), then its output 𝑦𝑖  is 

mathematically modelled as  

 

1
( ) 1 ., .. ..

M

i j j i j ij
y g w x b o i N


          (1) 

 

where 𝛽𝑗 represents a weight vector and set of values of 

𝛽𝑗 =[𝛽𝑗1, 𝛽𝑗2, … . . , 𝛽𝑗𝑚] connects to the jth hidden node to 

the output layer node of the network and bias 

corresponding to the jth hidden neuron is represented with 

bj. 𝑜𝑖  represents an output vector of the network 

corresponding to the input vector xi.  

Ideally, a standard feed-forward network of a single 

layer, having M number of hidden nodes along with g(.) 

as activation function, approximate, N given samples of 

target value and output values without an error, means 
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∑ ‖𝑜𝑖 − 𝑡𝑖‖ = 0,𝑀
𝑖=1  and variables wi, bi, and βi exits in 

such a way that 
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Weights of the input layer of ELM network and its bias 

are randomly initialized. This machine learning network 

has linear system architecture, and all the N equations 

present in Eq. 2 can be represented compactly as   

 

 H T  ,                                (3) 

 

where T represents the target matrix and T ∈  RN×m, β 

represents the weights matrix of weights of edges from 

hidden to the output layer and β ∈  RM×m. H ∈  RN×M 

represents the output matrix produced at the hidden layer 

and it can be defined as 
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The training process is basically to reduce the 

complexity of the solution of the linear system of 

equations in Eq. 3. The simplest solution with the 

smallest norm, of Eq. 3, is given by Eq. 5 as 

 

                                     
† H T                                (5) 

 

where H† represents the Moore–Penrose generalized 

inverse matrix of H. For improving, the generalization 

performance and robustness of the system, a constant 

term C is used as a regularization factor to get the 

solution [14] and shown below   

 

                   

1

T TI
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C
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               (6) 

 

ELM has dynamic training capability for SLFN, but its 

overall performance depends on the nature of the selected 

features, used to represent the problem. Representation-

learning based solution found with accurate classification 

capability [15]. This perspective of machine learning is 

based on data representation and auto-encoder. It makes 

more capable of the system for accurate classification and 

prediction [15].  

The proposed multi-layer neural network with auto-

encoder increases the recognition capability of the 

network. The original work on ELM-AE was proposed 

for solving the problem based on pattern representation 

and learning [16]. An auto-encoder is an SLFN based 

unsupervised learning algorithm means an auto-encoder 

is trained to reconstruct the input in the output (Fig. 2). 

Weights of edges from the hidden layer nodes to the 

output layer node of the ELM are estimated during the 

training of the system using Eq. 5 and Eq. 6. The 

transpose matrix of estimated weight matrix is used for 

input to hidden layer in the testing. Based on the number 

of neurons at hidden layers, compressed data coding and 

sparse data coding is obtained respectively for less 

number of neurons at hidden layer and more number of 

hidden layers compared to the number of neurons in the 

input layer.    

 

 

Fig.2. Generic auto-encoder system. 

C.  Young Modulus of elasticity 

As arterial elasticity is a biomarker for atherosclerosis 

disease [17], its non-invasive estimation is desired to 

diagnose the disease. Ultrasound image-based IMT and 

LD estimation is a non-invasive method, and Young's 

modulus of elasticity is defined in terms of the temporal 

value of arterial parameters; IMT and LD [8]. It also uses 

Peterson’s elastic modulus (Ep) to estimate Young’s 

elasticity modulus and shown in Eq. 7. 
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                         (7) 

 

where 𝐷𝑚𝑖𝑛  and 𝐼𝑀𝑇𝐷𝑚𝑖𝑛
 are minimum diameter and 

intima-media thickness when the diameter is minimum, 

respectively. 𝐸𝑝  is computed as 𝐸𝑝  =  
𝑃𝑃

𝐷𝐷
,  where 𝐷𝐷 =

 (
𝐷𝑚𝑎𝑥 – 𝐷𝑚𝑖𝑛

𝐷𝑚𝑖𝑛
 ) and PP is the pulse pressure, calculated as 

PP = (Ps – 𝑃𝑑 ). Ps and 𝑃𝑑  represent the systolic blood 

pressure and diastolic blood pressure, respectively. 

𝐷𝑚𝑎𝑥 is the maximum and minimum arterial diameter, 

respectively. 

 

III.  PROPOSED APPROACH 

An overview of the architecture of proposed system is 

presented with the Fig. 3. There are two primary 

objectives of this system: measurement of IMT and LD, 

which require the segmentation of CCA followed by 

arterial contour extraction. CCA segmentation 

methodology has four necessary steps in order to estimate 

IMT and LD: (1) Cropping the CCA frames for removing  
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Fig. 3. Proposed method of CCA segmentation for IMT and LD estimation 

unwanted region as dark pixels at the boundaries and 

image de-noising; (2) ROI localization in the cropped 

frame; (3) Detection of the LII and MAI in the ROI; (4) 

Measurement of the IMT and LD from the delineated 

interfaces. Ultrasound frames have additional information 

at its border that contains patient information and 

ultrasound specification. This information has no use in 

arterial parameter estimation. At the first stage, the input 

frame is pre-processed to crop it for removing the 

unwanted information at boundaries automatically. All 

frames are generated from the videos of the same 

machine, and it has the same approximate coordinate of 

the unwanted region. The coordinate corresponding to the 

boundaries of unwanted information are detected 

automatically using morphological features which have 

three necessary steps; (i) Initially, binaries the input 

frame; (ii) Use morphological operations: opening and 

closing to make it smooth by filling holes and breaks; (iii) 

Detection of the two horizontal and two vertical 

coordinate corresponding to the two vertical line and to 

horizontal line in the binary image frame. Now, these 

coordinates are used to crop the original image frames. 

The coordinate of the first frame is used to initialise the 

process of cropping in the successive frames. Once the 

first part of pre-processing (cropping and de-noising) 

completes, it moves for automatic ROI detection that lies 

at far wall (Fig. 1) of the artery. ROI localization system 

uses pattern recognition concept. Now, ROI contains 

pixel belonging to the interfaces (MA and LI) of the far 

wall. An ELM-AE based fully automatic system is 

proposed to recognize the pixels corresponding to the 

MA interface and LI interface in the ROI. ELM-AE has 

recognition and classification capability. Finally, the 

outputs of the trained classification system are used to 

extract the contour containing LI and MA, followed by 

IMT estimation. 

LD is defined as the distance from LI interface of the 

far wall to the LI interface of near wall. LI interface at the 

far wall is marked, and its coordinate is recorded during 

IMT estimation. For extracting the LI interface at the near 

wall, there is need to define ROI at the near wall that 

contains LI interface. An overlapping block-based 

approach is adapted to define near wall ROI, similar to 

the far wall ROI. ELM-AE based deep network system is 

used to classify the pixels belonging to the LI interface in 

the ROI, and its coordinate is recorded. Once the 

coordinates of LI interface at the near wall and the far 

wall is recorded, the MAD metric is used to measure the 

distance between LI interface of both the wall that it is 

LD. This process of LD estimation is done for a sequence 

of images of a cardiac cycle, and temporal values of LD 

is analysed. 

A.  Localization of ROI 

In CCA, there are two walls; near-wall and far-wall 

(Fig. 1). The arterial layer is extracted at the far wall for 

IMT estimation, and far-wall ROI is defined as the block 

containing far-wall. Near-wall is also essential to detect 

LI interface of near-wall that is used to estimate LD of 

the artery, and at the near wall, ROI is defined as the 

block containing LI and MA interface including part of 

lumen. ROI localization is the primary task of the 

proposed ELM-AE based methodology. Here, the 

objective of the system is to automatically localise a 

block of size 42×42 containing arterial layers of the far 

wall almost at the centre of the block. The proposed 

system uses the concept of representational-learning 

based pattern recognition. Representational-learning 

keeps the feature of the input system to predict the ROI 

block during testing. Fig. 4 shows an overview of the 

ROI detection system. 

 

 

Fig. 4. ROI detection in CCA Ultrasound 

Firstly, the cropped frame of size 378×232 is divided 

into 9 columns having 42 horizontal pixels in each. Each 

column of the frame is divided into the overlapping block 

of size 42×42 from top to bottom. From top, the second 
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block has 32 vertical overlapping pixels and 10 non-

overlapping vertical pixels to the first pixel. In each block 

have 420 non-overlapping features that are used to 

localize the far wall ROI. There are 1764 input features to 

ELM-AE system for training and testing. The 

overlapping block is defined to ensure that there must be 

a block containing the far wall arterial layer in its centre.  

These blocks are marked as ‘ROI-block' if it contains 

far wall arterial layer and ‘non-ROI-block’ otherwise. 

The proposed system is trained with manually labelled 

data, where block size 42 × 42 is provided as input to the 

system. The adopted block-size ensures that it will 

contain the whole intima-media complex even if it has 

thick IMT. The ELM system has an input data with 1764 

features out of which 420 features are unique concerning 

the other block. An intensive search is made to find 

optimal the number of neurons at the hidden layer for 

optimal result. Regularization parameter is also tuned for 

optimal performance with a wide range of comparison, 

and these values are validated with manually defined data. 

The optimal number of neurons at first and second hidden 

layers is 980 and 550. After defining the architecture of 

the ELM-AE with hidden neurons and regularization 

factor, all the calculation of weights of edges of the 

network is done using Eq. 6. These weights are estimated 

with the help of auto-encoder and weights of edges 

corresponding to the hidden layer and output layer are 

estimated using target value during the training. A similar 

approach is defined for extraction near-wall ROI. 

Overlapping blocks of size 42×42 is passed to the ELM-

AE system having two hidden layers with 980 and 550 

neurons. The system is trained with a manually labelled 

block that is considered in two classes; near-wall ROI-

block and near-wall non-ROI block. All the weights of 

the edges of different layers of the ELM-AE system are 

estimated, considering SLFN auto-encoder and Eq. 6. In 

testing, the input blocks are classified as ‘ROI-block’ and 

‘non-ROI-block’.    

The dataset contains 790 CCA frames where each 

frame has been divided into 180 blocks out of which 9 

blocks are ‘ROI-block’ as each column contains one ROI 

bock and rest 171 are non-ROI-block’. A similar strategy 

is defined to detect ROI at the near wall and ROI at the 

far wall. The algorithm uses 70% data for the training 

purpose and the remaining 30% for testing. The samples 

of CCA frames are collected from 4 different videos that 

are heterogeneous. 

B.  LII and MAI detection in the far wall  

Segmentation of ROI for extracting LII and MAI is the 

task of pixel classification. LII and MAI in the ROI of 

carotid ultrasound are detected using learning-based 

representational contextual features of the neighbourhood 

pixels. To extract the arterial interfaces, a group of 

neighbouring pixels are considered as a block having size 

5×42 where centre pixel (vertically 3rd pixel) belongs to 

the interface. These blocks of neighbourhood pixels are 

considered into three different classes: a block containing 

LII; ‘LII-block’, a block containing MAI; ‘MAI-block’,  

and NI-block (non-interface block). The ROI region is 

decomposed into the labelled blocks from top to bottom. 

The blocks of size 5×42 are overlapping with another 

block of the same column. There are two non-overlapped 

vertical pixels in each block which has 82 unique features. 

These blocks are classified by the representational 

learning-based classifier to predict the block having LI 

interface and MA interface. There are two separate 

systems for LI and MA interface detection as in Fig. 5. 

Both the systems are a multi-layer ELM where weights of 

layers are defined by auto-encoder, and complete system 

is ELM-AE. The intensive search for optimal output 

estimates the number of neurons at hidden layers and 

regularization parameters (M and C, respectively). The 

number of neurons at first, second and third hidden layers 

are 1000, 1650 and 2500, respectively. The whole system 

is trained for manually defined labelled blocks. During 

testing, each block of the ROI is passing to the ELM-AE 

system, and it predicts the blocks into two classes; ‘LII-

block’ and ‘NI-block’. The coordinates of the LI interface 

are recorded.  

Second multi-layer ELM-AE system is designed to 

detect MA interface in the ROI (Fig. 5). This system has 

the exact same structure of hidden layer neurons. The 

system is trained for manually defined labelled blocks. 

There are 210 input features to the system and weights of 

edges corresponding to hidden layer and output layer are 

estimated using auto-encoder (Eq. 6). The network is 

fixed with the calculated weights during the training.  The 

system categorises pixels into ‘MAI-block' and ‘NI-block' 

during testing. The coordinates of the MAI is recorded 

for further processing.   

Proposed ELM-AE system is trained with a database of 

75 images where the first 25 sequences of the frame from 

each of three videos are selected. Each image has 9 ROI 

block, and each ROI is containing 19 overlapping block. 

A total of 12825 manually labelled block of size 5×42 is 

collected and used for training. An ROI have one ‘LI-

block’, one ‘MA-block' and the remaining 17 ‘NI-block’. 

Testing is performed with a sequence of 25 image frames, 

which is selected from the fourth CCA ultrasound video. 

The reason behind considering 25 sequences of images in 

testing is to ensure that more than one cardiac cycle is 

included. The output of the system is validated for 15 

images of the testing videos, 5 from each.  

The architecture of the ELM-AE system is trained with 

the layer-wise unsupervised learning manner where 210 

input features are provided, and each hidden layer 

weights is estimated using auto-encoder (Fig. 2) by 

taking input as output (tn = xn). In Fig. 5, it is shown that 

the overall system of ELM-AE has three hidden, and each 

is designed with SLFN auto-encoder. The input feature is 

mapped in the 2500 dimensions of the new feature. This 

new feature is used to classify the block as ‘LII-block’ by 

the first ELM-AE system and ‘MAI-block’ by the second 

ELM-AE system, with optimal pattern match of feature in 

a column of 19 blocks. Middle pixel is interpreted as the 

interface, and its coordinate is recorded to use further.  
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C.  LII detection in the near-wall  

As we have detected LI and MA interface in the far 

wall, a similar approach is defined to extract LI interface 

in near-wall ROI (Fig. 6). Multi-layer ELM-AE system 

having three hidden layers is tuned for an optimal number 

of neurons in each hidden layer. The pattern of neurons in 

the proposed ELM-AE system is 210-1000-1650-2500. 

Overlapping blocks of neighbourhood pixels size 5×42 is 

used for training and testing. Proposed ELM-AE is fixed 

with its weight using auto-encoder by Eq. 6. Each block 

is considered in two classes as ‘LII-block’ and ‘NI-block’. 

Manually labelled blocks are used to train the system. 

The output of the system during testing is ‘LII-block’ and 

‘non-LI-block’. Coordinates of LI interface is recorded 

for LD estimation. 

 

 

Fig. 5. Architecture of 3 hidden layers ELM-AE systems for LII and MAI detection in the far wall. 

 

IV.  RESULTS AND PERFORMANCE 

The proposed representational ELM-AE network for 

localization of ROI in the ultrasound frame and detection 

of arterial layers has been trained on the MATLAB 16 

and tested on the same. The specification of PC is as Intel 

Core i7 processor at 3.60 GHz with 8 GB RAM. The 

classification performance of the network has been tested 

using different performance metrics like accuracy, 

specificity, and sensitivity. These metrics are defined as 

performance related to the classification capability of the 

system. Metrics are mathematically presented as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                        (8) 

   

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
                             (9) 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                           (10) 

 

where TP, FP, TN and FN presents true positive, false 

positive, true negative, and false negative respectively. 

Far wall ROI Localization 

The ROI localization method shows high accuracy and 

blocks are classified in ROI-block and non-ROI-block 

during testing of proposed ELM-AE network. A total of 

790 ultrasound frames are used in experiment out of 

which 553 frames are kept for raining and the remaining 

237 frames for testing. The system is tested with 42660 

blocks that contain 2133 ROI-block and remaining 40527 

non-ROI block as each column has a single ROI-block. 

The ELM-AE network has correctly classified 2096 

blocks as ROI-block, and 37 blocks are classified as ROI-

block incorrectly. 

Similarly, out of 40527, 40490 blocks is correctly 

classified as non-ROI-block, and 37 blocks are 

incorrectly classified as non-ROI-block. The confusion of 

Table 1, represents the testing output of the proposed 

network. Accuracy of the proposed system that classifies 

input blocks into ROI and non-ROI block is 99.82%. 

Specificity represents the system's ability to recognize the 

uniqueness of ROI and non-ROI and is 99.90%. The 

sensitivity of the system is 98.26%. The performance of 

the ROI system, proposed in this paper, is better than the 

existing system [16]. 

Table 1. Confusion matrix of the ELM-AE based ROI extraction system 

 

Original class 

Predicted class 

ROI-block Non-ROI-block 

ROI-block 2096 37 

Non-ROI-block 37 40490 

Near-wall ROI Localization 

Near-wall ROI localization is trained with labelled 

blocks containing LII of near-wall and tested with the 

blocks of the image data set the same as for far wall ROI. 
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The system classifies each block as ‘ROI-block' and 

‘non-ROI-block'. The testing data contains 2133 ‘ROI-

blocks’ and 40527 ‘non-ROI-blocks'. The system has 

correctly classified 2075 blocks as ROI, and 58 blocks 

are incorrectly classified as ROI blocks. Similarly, out of 

40527, 40469 blocks is correctly classified as non-ROI-

block, and 58 blocks are incorrectly classified as non-

ROI-block. A confusion matrix represents the 

performance of the system in Table 2. Accuracy of the 

proposed system that classifies input blocks into ROI and 

non-ROI block is 99.72%. Specificity represents the 

system's ability to recognize the uniqueness class ROI 

and non-ROI and is 99.85%. The sensitivity of the system 

is 97.28%.  

LI and MA detection in the far wall    

Two multi-layers ELM-AE systems for arterial layer 

detection is the part of the proposed methods (Fig. 3). 

Table 2. Confusion matrix of the ELM-AE based near wall ROI 

detection system 

 

Original class 

Predicted class 

ROI-block Non-ROI-block 

ROI-block 2075 58 

Non-ROI-block 58 40469 

 

The whole ROI is also divided into the overlapping 

block of size 5 × 42, where each next block two rows 

common to the previous block. The ROI region is 

categorized into two basic types: LII-block (lumen-intima 

interface block), and NI-block (non-interface block) by 

the first system and another two classes: MAI-block 

(media-adventitia interface block) and NI-block (non-

interface block) by the other system. The first hidden 

layers have 1000 neurons that make its feature sparse and 

second hidden layer has 2500 neurons. All the blocks 

corresponding to ROI of 25 testing image frames are 

passed to the first ELM-AE system that classifies it into 

‘LII-block’ and ‘NI-block’. Coordinates, corresponding 

to the 225 ‘LII-blocks' are recorded. The same set of 

blocks are passed to the second ELM-AE system to 

classify it into ‘MAI-block' and ‘NI-block'. The 

coordinates, corresponding to the ‘MAI-block' is 

recorded.    

LI detection in near-wall 

A multi-layer ELM-AE system is defined for LI 

interface detection at the near wall and total neurons at 

hidden layers, and the regression parameter is 

exhaustively searched for optimal results (Fig. 6). It has a 

similar structure and number of hidden neurons as the 

previous system for LI and MA interface detection. For 

testing of the system ROI, the same 25 images are 

considered as in LI and MA interface detection method at 

far wall. Out of 4247 blocks of neighbourhood pixels, 

225 are classified as ‘LII-block’ and coordinates 

corresponding to the centre pixel of the blocks are 

recorded. 

 

Fig. 6. Architecture of 3 hidden layers ELM-AE systems for LII 

detection in the near wall. 

IMT and LD Measurement  

Once, the coordinates of the arterial wall boundary are 

recorded, its distance is measured using mean absolute 

difference metrics [20]. It is one of the most used 

methods for IMT and LD measurement if the same 

numbers of coordinate in both the contours are available. 

It uses the concept of vertical difference along the 

longitudinal axis of the artery. The mathematical 

formulation of MAD is defined as follows:  

 

1

1
| ( ) ( ) |M

N

A xDIMT LII x MAI x
N 

           (11) 

 

1

1
| ( ) ( ) |

N

nearwalMAD l farwallx
LD LII x MAI x

N 
      (12) 

 

Where N presents, the number of points corresponding 

to the whole length of the image and x is the points 

starting from 1 to N.  

We have measured the IMT for each automatically 

segmented image frame using MAD that is the distance 

from MA interface to LI interface. It is observed that the 

IMT has different values for sequence images. The 

temporal values (max/min) of the IMT are recorded. For 

obtaining the average value of a sequence of 25 images, 

all the boundary points corresponding to 225 blocks of 25 

images are considered together, and IMT was measured 

using Eq. 11. The average value of the IMT in a sequence 

of 25 images is 0.57 ±0.05 mm in four times repeated 

experiment of automated detection of LII and MAI 

coordinates. The maximum and minimum value of the 

IMT is measured as 0.61 ±0.40 mm and 0.52 ±0.05 mm, 

respectively. We have summarised the results of IMT in 

Table 3, along with existing methods. The absolute error 

of estimated with respect to ground truth is shown in 

Table 3. The proposed, overlapping block-based system 

outperforms in ROI detection to [18, 19]. However, IMT 

estimation underperforms with some existing method [18, 

21, 22]. 
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We have measured LD of the CCA with MAD metrics 

[20]. The coordinates of the LI interface in far and near-

wall has already extracted in ‘LI and MA detection in far 

wall' sub-section and ‘LII detection in near-wall' sub-

section respectively. LD is measured between the equal 

number of points present at the far wall and 

corresponding points present at near wall of the CCA 

using Eq. 12. LD value also varies in the sequence of an 

image frame of the cardiac cycle. It is measured for 25 

images and value is recorded for individual images. LD 

has temporal value in the cardiac cycle and its maximum 

and the minimum value are measured as 6.25 ±0.85 and 

5.71 ±0.15, respectively. The average value of the 

automated method is measured by considering all the 

coordinates corresponding to 225 ROI of 25 images, of 

LII in near-wall and LII in the far-wall, in a single 

calculation using Eq. 12.  

Arterial Elasticity Estimation 

As IMT and arterial elasticity have a strong association 

with atherosclerosis disease [5]. Once arterial parameters 

with its temporal values are estimated, we calculated 

arterial elasticity using Eq. 7. The values of automatically 

estimated arterial parameters along with ground truth are 

shown in Table 4. 

Table 3. Comparison of IMT measurement by different techniques. 

     
SN 

Reference, year IMT (mm) 

Ground truth 

IMT (mm) 

Method  

Error (µm) 

IMT 

Number of 

Images  

Fully Automatic  

1       [23], 2000 0.88±0.25  0.93±0.25  42±25 50 No  

2  [24], 2001 0.92±0.19 0.92±0.20 15.6±4.2 20 No 

3  [25], 2008 0.56±0.14  0.57±0.14  10±35 150 No  

4  [26], 2010 0.92±0.30  0.75±0.39  54±35 182 Yes  

5  [20], 2012 0.63±0.14  0.65±0.16  38.1±16.4 50 No  

6  [28], 2012 0.67±0.14  0.61±0.15  95.0±61.5 100 No  

7  [21], 2013 0.60±0.10  0.60±0.11  - 40 Yes  

8  [29], 2014 0.64±0.19  0.61±0.19  37.6±25 60 Yes  

9  [22], 2015 - - 13.8±32 

(differences) 

46 Yes 

10  [19], 2015 0.62±0.19  0.60±0.19  49.9±50 55 Yes  

11  [18], 2016 0.62±0.18  0.62±0.17  27.3±21 67 Yes  

12 Proposed 

Method  

0.55±0.15  0.57±0.05  22±35 100 Yes  

Table 4. Carotid artery parameters and Young modulus of elasticity parameter for analysed data 

SN Parameter Ground Truth Estimated Error 

1 Maximum diameter, Dmax (mm) 5.60±0.30 5.71±̀0.15 91×10-3 

2 Minimum diameter, Dmin (mm) 6.20±0.10 6.25±0.85 82×10-3 

3 Maximum IMT, IMTmax (mm) 0.60±0.15 0.61±0.40 20×10-3 

4 Minimum IMT, IMTmin (mm) 0.50±0.25 0.52±0.05 23×10-3 

5 Systolic Blood Pressure, Ps (mmHg) 121 - - 

6 Diastolic Blood Pressure, Pd (mmHg) 80 - - 

7 Pulse Pressure, PP (mmHg) 41 - - 

8 Young’s modulus of elasticity, Ym (kPa) 238.95 248.57 9.62 

1 kPa = 7.6 mmHg. 

 

V.  DISCUSSION 

In this work, a deep learning machine based CCA 

segmentation method is proposed. LII and MAI interface 

of far wall defines IMT, and LII at near wall and LII at 

far wall define LD of the CCA. IMT and LD are 

estimated in the sequence of the arterial frame, which 

provides temporal values as in Table 4. Temporal values 

of IMT and LD are directly used to estimate Young's 

modulus of elasticity of CCA using Eq. 7. 

There are different existing methods of CCA 

segmentation using carotid ultrasound [30]. These 

existing methods can be categorized in two ways: (i) 

working approach and (ii) fundamental technique used to 

CCA segmentation. The approach of working is fully 

automatic [19, 26] that does not require any manual 

interaction and semi-automatic [18, 20, 23, 24, 26] which 

require manual interaction in intermediate steps. All 

earlier method can also be categorised based on 

techniques. Arterial layers are delineated by analysing the 

intensity distribution, edge-detection and gradient-based 

methods. A combination of dynamic programming and 

properties of edge-based approach defines arterial layer 

followed by IMT and LD [31, 32]. Active contours and 

its variation based methods have better performance [22, 

28]. There are techniques based on statistical modelling 

[11, 14], Haugh transforms [15, 22] and Nakagami 

distribution [33]. Recently, most of the techniques are 

based on deep learning methods [18, 19, 29, 34]. 

Menchen-Lara et al. has used ELM-AE with SLFN and 

estimated IMT, but the performance of the system is still 

below the active contour-based method proposed by the 

same group [22]. A detailed analysis of the techniques is 
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covered in the review article by Loizou [35] and Kumar 

et al. [30].  

In this paper, the overall architecture of CCA 

segmentation and IMT/LD measurement is presented in 

Fig. 3. There are five basic steps in the proposed methods. 

An automatic image cropping method identifies the 

coordinate and performs image crop operation followed 

by noise removal. ROI localization is done by defining an 

overlapping block, and each column in the image has 

only one ROI block that is classified with a maximum 

match in the column. Performance of ROI localization of 

the proposed system is better than other learning-based 

methods and tradition methods [18, 19, 20]. IMT 

detection has been done with overlapping block-wise 

neighbourhood pixels approach that locate LII and MAI 

accurately in the far wall ROI and LII in the near wall 

ROI. Its performance is better than many approaches [18, 

19, 29]. Measurement of IMT and LD is made with the 

MAD method using Eq. 11 and Eq. 12. Young’s modulus 

of elasticity is defined in terms of pulse pressure and 

temporal value of IMT and LD as in Eq. 7. 

Here, throughout the paper, it is clear that each step of 

the proposed system is carried out without user 

interaction. Our method is a fully automatic IMT 

estimation followed by calculation of Young's modulus 

of elasticity. ROI localization in the proposed method 

carried out in each frame and 9 such ROI block are kept 

together to estimate IMT and LD in an image. There is 

more than one block in a column which contains arterial 

layer, but only one block is selected from the column 

with a maximum match. Our overall system has both the 

biomarkers (IMT and elasticity) of atherosclerosis disease 

and can be directly used in risk assessment.        

 

VI.  CONCLUSION 

This paper accomplished two major objectives (a) 

region of interest localization and (b) lumen-intima 

interface and media-adventitia interface detection at the 

far wall. The proposed overlapping the block based 

methods reduces the errors in ROI localization. It ensures 

that only one block in a column will represent the ROI. It 

is detected by the trained system with ground truth and 

have optimal feature match in a column. Optimal 

classification of ROI reduces overall errors in IMT 

measurements. Overlapping blocks in pixels 

classification of LII and MAI in ROI also ensure about 

the unique detection of the interface in an ROI region. 

Unique pixel corresponding to a column reduces the 

ambiguity in measurement of IMT and LD. It is a fully 

automatic system and extracts boundaries of LII and MAI 

with high accuracy. The error estimated in IMT 

measurement with respect to ground truth is 22±35 (µm). 

The average estimated value of IMT is 0.57±0.05 mm, 

and the ground truth value of IMT provided by the doctor 

is 0.55±0.15 mm. Young's modulus of elasticity of the 

artery is estimated as 248.57 kPa. The proposed system 

may be improved in future by de-noising the input frame 

keeping its original features. Different other functional 

parameters can be computed followed by risk assessment.  
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