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Abstract—Objective: This paper presents an automated 

approach that combines Fisher ranking and dimensional 

reduction method as kernel principal component analysis 

(KPCA) with support vector machine (SVM) to 

accurately classify the defects of rolling element bearing 

used in induction motor.  

Methodology: In this perspective, vibration signal 

produced by rolling element bearing was decomposed to 

four levels using wavelet packet decomposition (WPD) 

method. Thirty one Logarithmic Root Mean Square 

Features (LRMSF) were extracted from four level 

decomposed vibration signals. Initially, thirty one 

features were rank by Fisher score and top ten rank 

features were selected. For effective detection, top ten 

features were reduced to a new feature using dimension 

reduction methods as KPCA and generalized 

discriminant analysis (GDA). After this, the new feature 

applied to SVM for binary classification of bearing 

defects. For analysis of this thirty six standard vibration 

datasets taken from online available bearing data center 

website of Case Western Reserve University on bearing 

conditions like healthy (NF), inner race defect (IR) and 

ball bearing (BB) defects at different loads.  

Results: The simulated numerical results show that 

proposed method KPCA with SVM classifier using 

Gaussian Kernel achieved an accuracy (AC) of 100, 

Sensitivity (SE) of 100%, Specificity (SP) of 99.3% and 

Positive prediction value (PPV) of 99.3% for NF_IRB 

dataset, and an AC of 100, SE of 99.8%, SP of 100% and 

PPV of 100% for NF_BBB dataset. 

 
Index Terms—Fisher’s ranking method; inner raceway 

defect; ball bearing defect; kernel principal component 

analysis; support vector machine; wavelet packet 

decomposition 

 

 

 

 

I.  INTRODUCTION 

Bearings are the main part of induction motor that 

keep rotor and stator at equidistance and provide 

frictionless revolution. Due to hazardous operating and 

environment conditions, induction motor may exposed to 

a number of faults that are categorized as stator, rotor, 

bearing and eccentricity related faults. These fault if not 

detected in time then they can cause to complete failure 

of system that results in terms of financial, time and 

quality loss of products.  Almost 40-50% of overall 

machine faults are related to bearings [1]. Thus, bearing 

fault detection is prime prominence and should be 

monitored on priority basis. For this, need effective 

features extracted from vibration signal produced from 

bearing used in induction motor and also need efficient 

classifier.  

Bearings are classified as sleeve and rolling element 

bearing. Sleeve bearings are used in large size machines 

whether rolling-element bearings are usually used in 

small and medium size machines. Rolling element 

bearing fault analysis has become the recent issues of 

many researchers due to wide applications in small size 

induction motors for domestic and agriculture purpose 

[2].  

Bearing defects may be detected using temperature 

monitoring, oil analysis, wear debris analysis, shock 

pulse method, stator current monitoring and vibration 

analysis [3, 4]. Among these, vibration signal is most 

reliable and robust method to detect bearing defects [5, 6]. 

Due to transient nature of vibration signal, frequency 

domain method like FFT is not effective. For this, Time 

frequency methods like Short Time Fourier Transform 

(STFT), Wavelet Transform (WT), Spectrogram, Pseudo 

Wigner–Ville, Empirical Mode Decomposition (EMD) 

etc. may be effective due to its ability to mitigate noise  
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effect present in signal [7, 8, 9]. Among these methods, 

WT is most widely used due to its liberty to select mother 

wavelet [10, 11]. However, it cannot effectively split the 

high frequency band of transient signal that contains rich 

information about bearing defects. Wavelet packet 

transform (WPT) has capability to decompose a given 

signal into low and high frequency bands [12, 13]. WPT 

and Artificial Neural Network (ANN) based fault 

diagnosis of combustion engine is presented by Wu [14]. 

Due to revolution in digital computer, machine learning 

methods like Fuzzy Logic, Artificial Neural Network 

(ANN) and Support Vector Machine (SVM) are 

extensively in use to predict the bearing defects using 

WPT features of vibration signal [14, 15, 16, 17, 18].  In 

Some literatures, multi-scale permutation entropy (MPE) 

of decomposed WPT features of vibration signal was 

calculated [17, 18]. The MPE value of decomposed WPT 

features has found to be computationally efficient and 

robust but it excluded the non-linearity problems of 

signal.  

In this study, logarithmic root mean square features 

(LRMSF) of decomposed vibration signal have been used 

to detect inner race and ball bearing defects due to its 

capability to reduce the nonlinearity problems of signal. 

The performance of any classification technique depends 

on the selection of appropriate number of features and 

discriminating capability of features [19, 20, 21].  For 

this, Fisher’s ranking method[22] was employed to select 

top ten features out of thirty one WPT features extracted 

from vibration signal. In further study, top ten features 

were reduced to a new feature using dimensional 

reduction technique as kernel principal component 

analysis (KPCA) [23, 24, 25]. The new feature was 

classified using SVM technique with Gaussian kernel 

function to predict the bearing defects in early stage.  

The performance of proposed method was evaluated 

using confusion matrix parameters like accuracy (AC), 

sensitivity (SE), specificity (SP) and positive prediction 

value (PPV) for training and testing datasets. The 

flowchart of proposed algorithm is shown by fig.1. 

 

 
Fig.1. Flowchart of the proposed methodology to detect bearing condition 

II.  VIBRATION DATABASE 

The vibration database used in this study taken from 

online available bearing data center website of Case 

Western Reserve University (CWRU)[26]. The 

experimental setup was consists of a 2HP Reliance made 

induction motor, a torque transducer/encoder, a 

dynamometer and control electronics circuit. Four types 

of single point inner raceway (IR) and ball bearing (BB) 

defects were seeded separately to SKF made bearing 

mounted to drive end (DE) of induction motor with fault 

diameters 0.007 inch, 0.014 inch, 0.21 inch and 0.028 

inch using electro-discharge machining (EDM) 

technology. Thirty six data sets related to no fault (NF), 

IR and BB defects have been considered at machine 

operating loads 0HP, 1HP, 2HP and 3 HP. The vibration 

digital data was collected using accelerometer attached to 

the housing of induction motor with magnetic bases at 

12000Hz sampling frequency. In this work, vibration 

samples were taken for 10 seconds i.e. 120000 samples 

of each datasets.  

The vibration data sets considered to study bearing 

health condition are reported in Table 1. Where DS 

represents Dataset, NF means No Fault, IRA, IRB, IRC 

and IRD represent inner raceway bearing defects and  

 

BBA, BBB, BBC and BBD symbolize ball bearing 

defects at fault levels respectively 0.007 inch, 0.014 inch, 

0.21 inch and 0.028 inch in diameter. Fig. 2. represents 

the amplitude vs number of samples plot of vibration 

signal for bearing conditions NF, IRA, IRB and IRC at 

machine load 0HP. 

Table1. Vibration datasets related to various bearing conditions at 

different operating loads of machine 

 
 

Top ten rank 

features 

reduced to a 

new feature 

using KPCA 

Vibration 

data Sets 

collected 

from faulty 

and healthy 

bearing of 

2HP motor 

Vibration 

data 

segmented 

into equal 

size of 20 

samples 

Features 

extraction 

from 

segmented 

data by WPT 

SVM 

Classifier 

with 

Gaussian 

Kernel 

Faulty  

Healthy 

Features rank 

by Fisher’s 

Score  

Bearing 

status 
0HP 1HP 2HP 3HP 

NF DS-I DS-II DS-III DS-IV 

IRA DS-V DS-VI DS-VII DS-VIII 

IRB DS-IX DS-X DS-XI DS-XII 

IRC DS-XIII DS-XIV DS-XV DS-XVI 

IRD DS-XVII DS-XVIII DS-XIX DS-XX 

BBA DS-XXI DS-XXII 
DS-

XXIII 
DS-XXIV 

BBB DS-XXV DS-XXVI 
DS-

XXVII 

DS-

XXVIII 

BBC DS-XXIX DS-XXX 
DS-

XXXI 

DS-

XXXII 

BBD 
DS-

XXXIII 

DS-

XXXIV 

DS-

XXXV 

DS-

XXXVI 
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Fig.2. Representation of vibration signal for bearing conditions (a) NF (b) IRA (c) IRB (d) IRC at 0HP load 

III.  FAULT FREQUENCIES OF ROLLING ELEMENT BEARING 

Rolling element bearing is most commonly used 

bearing that consists of four essential parts: cage 

(separator), inner raceway, outer raceway and rolling 

element (roller or ball). Lubricant contamination, 

lubricant loss or excess lubrication, brinelling, excess 

loading, overheating and corrosive environments are 

some basic cause to bearing failure. Bearing faults can be 

categorized into distributed and localized defects. 

Distributed defect affects the whole region of bearing and 

difficult to characterize by distinct frequencies, while 

single-point defect is confined to a small area that 

generate a harmonic series with fundamental frequency 
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equal to one of four characteristic frequencies: cage 

defect frequency cfF , inner race defect irfF , outer race 

defect orfF
 
and ball defect bfF  frequencies[2]. The 

construction of rolling element ball bearing is shown by 

Fig.3.  Let 
rF  is rotational frequency, 

bZ  is total no of 

balls, 
bd  is ball diameter, pd   is pitch diameter and  is 

contact angle then the characteristic fault frequencies are 

represented as 
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Fig.3. Internal structure of rolling element bearing 

The dimensional parameters of SKF bearing are: 

09bZ  , Ball diameter 0.3126bd   inch, Pitch diameter 

1.537pd  inch, so fundamental fault frequencies related 

to this bearing are given as 

 

0.39828cf rF F   

5.4152irf rF F   

3.5848orf rF F   

4.7135bf rF F   

 

These frequencies are used for decomposition of 

vibration signal using WPT. 

 

 

 

 

IV.  FEATURE EXTRACTION USING WAVELET PACKET 

TRANSFORM 

Wavelet Packet Transform (WPT) is the extension of 

wavelet transform that provides more flexible time 

frequency decomposition in high frequency region[13]. A 

wavelet packet consists of a set of linearly combined 

wavelet functions that are generated by the following 

recursive relationship 

 
2 ( ) 2 ( ) (2 )k k

n

W t s n W t n                 (5) 

 
2 1( ) 2 ( ) (2 )k k

n

W t g n W t n              (6) 

 

Here first two wavelet packet functions 
0( ) ( )W t t  and 

1( ) ( )W t t  are known as scaling 

function and wavelet function. The symbol ( )s n  and 

( )g n are related to each other 

by ( ) ( 1) (1 )ng n s n    is coefficients of a pair of 

Quadrature Mirror Filters associated with the scaling 

function and wavelet function. WPT recursively 

decomposed the input discrete signal into low frequency 

known as Approximation and high frequency known as 

Details components. The input signal ( )x t can be 

decomposed recursively as:  

 

1,2 ,( ) ( 2 ) ( )j k j k

m

x t s m n x t                 (7) 

 

1,2 1 ,( ) ( 2 ) ( )j k j k

m

x t g m n x t              (8) 

 

Where , ( )j kx t denotes the wavelet coefficients at the 

jth level, kth sub frequency band. Therefore the signal 

( )x t  can be expressed as 
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Three level decomposition of the signal ( )x t using the 

WPT is given in Fig.4. In this Figure solid line represents 

low frequency components (Approximation Coefficients) 

and dotted line indicates high frequency (Details 

Coefficients) components. The variation of amplitude 

with respect to time  of energy content 
k

jE of each sub 

frequency band is chosen as  vibration signal [13].  
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In this work log root mean square feature (LRMSF) of 

decomposed signal using WPT is chosen as feature to 

diagnose the bearing defects[27].  

2 2 2

1 2log NX X X
LRMSF

N

 
     ( 11) 

Where
1X , 

2X  etc are samples of decomposed signal 

and N is number of samples in decomposed signal. 

 

 

Fig.4. Three stage wavelet packet decomposition of signal x(t) 

V.  FEATURE RANKING AND DIMENSION REDUCTION 

METHODS 

Features extracted from vibration signal by WPT 

contain significant information about the bearing defects. 

On the basis of information contained in the features, 

they can be categorized as strongly relevant, weakly 

relevant, irrelevant and redundant[7]. Irrelevant and 

redundant features reduced the efficiency and increases 

the processing time of fault classification algorithm. In 

this case, ranking method is very useful to select relevant 

features. For this study, we have employed Fishers 

ranking method to select top ten rank features on the 

basis of Fisher score[28].  The Fisher score is obtained by 

using equation (12). The Fisher score of 
thi feature in  

thj  class matrix is define as   
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Where 
i  represents mean value of 

thi  feature, 

ij represents mean value of 
thj  feature in 

thi matrix, 

jN represents number of samples of 
thj class matrix of 

thi  feature and  represents standard deviation. 

Due to similarity in various WPT features of vibration 

signal which are obtained from different bearing 

conditions, the feature ranking method is not appropriate 

to select most discriminant features.  In this circumstance, 

dimension reduction techniques like GDA and KPCA 

will be very constructive. The GDA is a kernel based 

non-linear dimension reduction technique used to 

transform original training or validation features space to 

a new high-dimensional feature space where dissimilar 

classes label of features are made-up to be linearly 

distinguishable [29]. If there is α classes label in the 

given features, the dimension of feature space of 

vibration signal can be reduced to α-1 by GDA method. 

In this paper, 2 numbers of classes (i.e. binary classes) 

are taken and the top 10 features are reduced to a new 

feature by GDA. The mathematical expressions of GDA 

are given in[30].  

KPCA is the non-linear extension of principal 

component analysis (PCA) that map the original data 

sample into high dimensional space using nonlinear 

mapping [31, 32, 33]. In the feature space then, a linear 

PCA is performed estimating the eigenvectors and Eigen 

values of a matrix of outer products, called a scatter 

matrix. The mathematical expression of KPCA is given 

in [31]. In this work, radial basis function (RBF) and 

Gaussian kernels have been used to reduce the top 10 

WPT features to a new feature.  

 

VI.  SUPPORT VECTOR MACHINE 

SVM is a statistical learning theory based 

computational technique developed by Vapnik [34] for 

solving supervised classification and regression problem. 

SVM developed an optimal separating boundary with 

maximum margin between two classes of data. The 

nearest data points to boundary are known as support 

vectors [11][35].  

Let a training set 1( , )n

i i iS x y   where data points 

N

ix R belong to two classes { 1, 1}iy    . Then the 

hyper plane used to separate linearly separable training 

data into two classes can be given as[36] 
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( ) T

iH x w x k  , Where w is weighting vector and 

k is a scalar quantity known as bias  

In such way that ( ) 0H x  if 1iy   and 

( ) 0H x  if 1iy    

In this case the optimal hyper plane can be determined 

by solving following quadratic optimization problem. 

 

21
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 y ( ) 1T

i isubject to w x k   

If the data is linearly non-separable then it is mapped 

onto a higher dimensional feature space where data is 

linearly classified by using a transformation matrix ( )x . 

In this case optimized hyper plane can be determined by 

solving following equation 
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Where p is constant and 0  is known as slack 

variable. 

After solving equation (14) the hyper plane H(x) can 

be expressed as 
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Where 
i  is Lagrange multiplier, ( , )iK x x  is kernel 

function. In this paper, Gaussian function is used as 

kernel function due to its performance. The Gaussian 

kernel [37] is given as 
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VII.  PERFORMANCE INDEX 

Let AN is true positive, BN is false positive, CN is 

false negative and DN is true negative result then the 

performance parameters like Accuracy (AC), Sensitivity 

(SE), Specificity (SP) and positive prediction value (PPV) 

can be defined as 
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VIII.  SIMULATION PARAMETERS 

The classification performance of SVM generally 

depends on the selection of kernel function. In this work, 

Gaussian kernel based SVM is used to map the original 

feature samples to higher-dimensional space due to its 

ability to deal with nonlinearity. The generalization 

ability of Gaussian kernel based SVM mainly depends on 

three parameters C, S and ξ (epsilon)[37]. Where S 

represents the width of Gaussian function, C denotes the 

error/trade-off parameter between training error and the 

flatness of the solution.  If value of C is high then 

training error will be less but training time becomes high. 

To overcome this problem, an optimized parameter has 

been obtained using 10 cross validation method. The 

training and validation classification performance were 

calculated using 10 trials-10-folds cross validation 

technique to ensure robustness of classifier. For each trial 

of the 10- fold cross-validation, the data was randomly 

divided into ten parts of full dataset.  

 

IX.  SIMULATION RESULTS 

In this work, 36 vibration data sets as given in Table 1 

related to different bearing conditions ( healthy, inner 

race and ball bearing defect) was processed and analysed 

using WPD and SVM technique. Each bearing conditions 

are studied at machine load 0HP, 1HP, 2HP and 3HP. 

Initially, each data set was segmented to equal size 

samples of 20 segments of approximately 6000 data poits 

each. The result was analysed by comparing NF with 

IRA, IRB, IRC, IRD, BBA, BBB, BBC and BBD bearing 

datasets. This paper presents the comparative study of 

NF_IRA, NF_IRB, NF_IRC, NF_IRD, NF_BBA, 

NF_BBB, NF_BBC and NF_BBD data sets using WPT 

features in terms of mean ±standard deviation, box plot 

and SVM classification performance. Initially, four levels 

WPD have been adopted to decompose the signal into 31 

sub frequency bands. In order to enhance the 

effectiveness and signal differentiation capability of 

WPD, log root mean square (LRMS) value of each sub 

band has been calculated. Further these 31 features were 

ranked to select top 10 features using Fisher’s Ranking 

Method. The top 10 features with their score 

corresponding to each data set have been shown in Table 

2. 
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Table 2 shows the Fisher score of top 10 features 

extracted from considered four levels decomposed WPT 

features of data sets. The result of this table reflects that 

approximate (App.) LRMSF at fourth level 

decomposition of each data sets having highest score 

compared to third, second and first level decomposition 

of data sets. It indicates that four levels decomposition 

are appropriate for detection of bearing faults. The results 

also show that after App LRMSF at four levels, the App 

LRMSF at third level achieved high fisher score 

compared to App and Detailed (Det.) LRMSF at second 

and first level decomposition. It also observed that 

feature no 28 (high frequency sub band i.e.  App level 4) 

has highest ranking. 

Table 2. Fisher’s score of top 10 features of each data set arrange in descending order 

Feature Level NF_IRA Feature NF_IRB Feature NF_IRC Feature NF_IRD 

28-LRMSF-L4-App. 1087.225 28-LRMSF-L4-App. 214.834 28-LRMSF-L4-App. 626.6247 30-LRMSF-L4-App. 1680.593 

10-LRMSF-L3-App. 689.8496 10-LRMSF-L3-App. 191.4358 10-LRMSF-L3-App. 418.0746 10-LRMSF-L3-App. 1103.967 

3-LRMSF-L2-Det. 654.8227 8-LRMSF-L3-App. 112.6659 20-LRMSF-L4-App. 356.2528 20-LRMSF-L4-App. 785.1135 

14-LRMSF-L3-App. 648.217 7-LRMSF-L3-Det. 109.0078 3- LRMSF-L3-Det. 342.8257 16-LRMSF-L4-App. 723.6063 

5-LRMSF-L2-Det. 442.8577 14-LRMSF-L3-App. 108.4772 30-LRMSF-L3-App. 333.2266 3-LRMSF-L2-Det. 594.7487 

1-LRMSF-L1-Det. 314.7318 20-LRMSF-L4-App. 88.99039 5- LRMSF-L2-Det. 280.1559 5-LRMSF-L2-Det. 563.8906 

12-LRMSF-L3-App. 257.535 30-LRMSF-L4-App. 83.46755 1-LRMSF-L1-Det. 237.231 30-LRMSF-L4-App. 534.1041 

21-LRMSF-L4-Det. 230.5468 29-LRMSF-L4-Det. 60.95911 21-LRMSF-L4-Det. 207.2584 21-LRMSF-L4-Det. 491.0051 

2-LRMSF-L1-App. 214.1689 15-LRMSF-L4-Det. 58.29484 7-LRMSF-L3-Det. 205.0714 11-LRMSF-L3-Det. 465.1864 

7-LRMSF-L3-Det. 213.4095 12-LRMSF-L3-App. 57.13446 14-LRMSF-L3-App. 203.8349 12-LRMSF-L3-App. 387.4896 

Feature Level NF_BBA Feature NF_BBB Feature NF_BBC Feature NF_BBD 

28-LRMSF-L4-App. 959.1302 28-LRMSF-L4-App. 68.74115 28-LRMSF-L4-App. 163.9424 28-LRMSF-L4-App. 2652.55 

10-LRMSF-L3-App. 330.6345 10-LRMSF-L3-App. 30.52219 14-LRMSF-L3-App. 59.31873 7-LRMSF-L3-Det. 1983.119 

20-LRMSF-L4-App. 267.6505 20-LRMSF-L4-App. 27.84341 20-LRMSF-L4-App. 58.11447 20-LRMSF-L4-App. 1781.732 

13-LRMSF-L3-Det.. 215.9525 13-LRMSF-L3-Det. 25.34067 19-LRMSF-L4-Det. 56.47606 26-LRMSF-L4-App. 1698.034 

30-LRMSF-L4-App. 186.3967 14-LRMSF-L3-App. 21.35266 30-LRMSF-L4-App. 54.40991 5-LRMSF-L2-Det. 1381.877 

14-LRMSF-L3-App. 127.1904 3-LRMSF-L2-Det. 19.31914 7-LRMSF-L3-Det. 46.23516 1-LRMSF-L1-Det. 1306.337 

7-LRMSF-L3-Det. 122.593 11-LRMSF-L3-Det. 15.49607 10-LRMSF-L3-App. 43.88368 30-LRMSF-L4-App. 1032.959 

5-LRMSF-L2-Det. 108.461 29-LRMSF-L4-Det. 15.11445 29-LRMSF-L4-Det. 34.46028 2-LRMSF-L1-App. 946.3658 

21-LRMSF-L4-Det. 78.80587 5-LRMSF-L2-Det. 8.265045 21-LRMSF-L4-Det. 24.89299 21-LRMSF-L4-Det. 787.2208 

29-LRMSF-L4-Det. 62.5694 24-LRMSF-L4-App. 7.455203 12-LRMSF-L3-App. 21.48748 LRMSF-L3-App. 707.4679 

 

Fig.5. illustrate the box plot of top ten features of 

considered datasets in terms of minima, maxima, IQR 

and median value. Fig.5. (a) shows that the median value 

of decomposed features of NF bearing are between -2.5 

to -4, while it is around -1 for IRA bearing. However in 

case of features LRMSF-L4-App the median value is less 

than -4 and feature LRMSF-L1-App. is more than -2.5 

for NF bearing. Fig.5. (b) reveals the box plot of top ten 

decomposed features of dataset NF_IRB. The graph 

illustrate that median value of NF bearing for all top ten 

data sets are between -3 to -4 except highest scored 

feature LRMSF-L4-App. has its value less than -4. The 

plot also shows that median value of decomposed 

features of IRB bearing is between -1 to -2. Only in case 

of 7th featureLRMSF-L4-App. and 10th feature LRMSF-

L3-App the median value  is less than -2. Fig. 5. (c) 

Represents the box plot of top ten decomposed features 

of dataset NF_BBA. The median value of top ten features 

of NF bearing is less than -3 except 8th and 9th feature 

which value is between -2.5 to -3. The graph also 

indicates that the median value of all ten features of BBA 

bearing is more than -2. Thus the median value of top 10 

features of BBA bearing is always higher than the NF 

bearing. Fig. 5. (d) Describe the box plot of top ten 

decomposed features of dataset NF_BBB. The graph 

shows that the median, IQR and max to min variation of 

decomposed features of BBB bearing is more than the 

NF bearing.  Thus from box plot of top 10 features of all 

considered dataset it is concluded that the median value 

of NF bearing is always less than the faulty bearing. 

Table 3 presents the analysis of bearing defects in terms 

of mean value ( ) and standard deviation (SD) of top ten 

decomposed features. The table depicts that mean of 

WPD features for NF bearing is always higher than 

defective bearing. The table also demonstrates that mean 

value of top 10 WPD feature of inner race bearing defect 

is higher than ball bearing defect. The SD of top ten 

WPD features of NF bearing is lower than IR and BB 

bearing. From mean and SD representation of WPD 

features it can be concluded that mean of WPD features 

can play a significant role in bearing defect analysis. 
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(d) 

Fig.5. The box plot of top 10 features of data sets (a) NF_IRA (b) NF_IRB (c) NF_BBA (d) NF_BBB 

Table 3. Mean and standard deviation representation of top 10 features of all datasets 

NF IRA IRB IRC IRD 

μ ±SD μ ±SD μ ±SD μ ±SD μ ±SD 

-4.3935209 0.0546042 -0.8298721 0.0527802 -1.2815053 0.1388397 0.085817 0.113262 -0.75506 0.058309 

-3.0929496 0.0557392 -0.8082593 0.0250827 -1.7465479 0.0852397 -0.11966 0.085637 -0.18219 0.157394 

-3.6505954 0.0456595 -1.2566792 0.0472904 -1.2296049 0.0858834 0.111343 0.095796 0.00384 0.055868 

-3.9155697 0.0383026 -1.6529648 0.049319 -1.4422484 0.0853146 -0.80102 0.098031 0.266525 0.108794 

-2.8135806 0.0562328 -0.969671 0.0250718 -1.3018046 0.1072182 -1.44906 0.086875 -0.49001 0.078792 

-2.700389 0.0503351 -1.2065993 0.0310966 -1.2776022 0.1375687 -0.42495 0.083027 0.044615 0.063174 

-3.5284361 0.0958343 -0.7966947 0.071574 -2.2158098 0.1249952 -0.74931 0.073412 0.198377 0.083111 

-2.868351 0.0693457 -0.8364299 0.0635091 -1.2249752 0.1213095 -0.57762 0.087705 -0.03287 0.057237 

-2.3931349 0.0542599 -1.1629959 0.0233351 -1.8404476 0.1049465 -0.46586 0.098945 -0.18642 0.039455 

-3.6111715 0.1184449 -0.9633122 0.046819 -2.6435599 0.1032444 -0.15302 0.102208 -1.47832 0.050379 

NF BBA BBB BBC BBD 

μ ±SD μ ±SD μ ±SD μ ±SD μ ±SD 

-4.3935209 0.0546042 -1.21651 0.047057 -1.33085 0.253756 -1.4828 0.150115 1.58294 0.060556 

-3.0929496 0.0557392 -1.92059 0.048833 -1.52732 0.252954 -1.59644 0.139275 0.716873 0.051618 

-3.6505954 0.0456595 -1.42788 0.044807 -1.37449 0.270348 -1.57656 0.152265 1.385706 0.049514 

-3.9155697 0.0383026 -1.30728 0.045779 -2.55267 0.186347 -2.16894 0.130797 0.120531 0.057181 

-2.8135806 0.0562328 -2.31548 0.072904 -1.82001 0.24527 -2.45972 0.133292 1.076836 0.04739 

-2.700389 0.0503351 -1.31902 0.046774 -2.13974 0.237182 -1.86416 0.136249 0.732469 0.043824 

-3.5284361 0.0958343 -1.59586 0.048256 -1.56983 0.266105 -1.6955 0.137351 1.61373 0.058778 

-2.868351 0.0693457 -1.69571 0.050265 -1.87545 0.255346 -1.76022 0.13167 0.742551 0.046753 

-2.3931349 0.0542599 -1.6019 0.072389 -1.82358 0.235348 -1.86821 0.122604 0.935344 0.065312 

-3.6111715 0.1184449 -1.46392 0.071396 -3.3529 0.232347 -3.15388 0.107266 -0.66104 0.046719 

 

The classification performance of SVM with Fisher’s 

ranking method and dimension reduction methods like 

KPCA and GDA was evaluated in terms of AC, SE, SP 

and PPV. Each binary classification process was carried 

out on 160 data points in which 100 data points were 

used to train the classifier and remaining 60 data points 

were used to validate the result. The performance 

parameters of each datasets achieved by classifier are 

reported in Table 4. The results show that SVM with 

Gaussian kernel function achieved training parameters as 

AC (89.52 to 96.83), SE (86.44-94.83), SP (87.54-94.1) 

and PPV (88.51-95.9), while validation parameters AC 

(88.6-94.7), SE (80.12-92.3), SP (85.5-92.2) and PPV 

(86.4-94.84) for all datasets using top ten rank features. 

In order to improve the classification performance of 

SVM with Gaussian kernel function, the top 10 features 
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were reduced to a new feature using GDA and KPCA. 

The SVM with GDA (having RBF kernel) attained 

performance parameters as AC (training (92.3-97.52), 

validation (92.2-96.8)), SE (training (91.52-96.9), 

validation (90.6-94.6)), SP (training (94.51-98.56), 

validation (93.4-95.82)) and PPV (training (91.34-98.32), 

validation (90.2-96.8)), while SVM with GDA (having 

Gaussian kernel) provides performance parameters as AC 

(training (96.34-100), validation (94.7-99.7)), SE 

(training (89.5-100), validation (86.6-97.2)), SP (training 

(97.4-100), validation (89.6-96.8)) and PPV (training 

(95.1-100), validation (95.22-99.5)). The results of Table 

4 reveal that the performance of SVM with KPCA 

(having RBF kernel) achieved as AC (training (96.76-

100), validation (96.3-99.7)), SE (training (94.5-100), 

validation (95.2-98.7)), SP (training (98.34-100), 

validation (97-100)) and PPV  

Table 4. Comparative performance analysis of SVM technique along with feature reduction and dimension reduction methods in bearing fault 

analysis 

Data Set  (training size, validation 

size) 

SVM with Gaussian 

Training Performance Validation Performance 

AC SE SP PPV AC SE SP PPV 

NF_IRA (100x10, 60x10) 95.33 86.44 93.61 88.51 94.7 80.12 86.9 86.4 

NF_IRB (100x10, 60x10) 94.23 88.91 87.54 92.14 94.22 86.61 85.5 90.41 

NF_IRC (100x10, 60x10) 96.83 91.91 92.01 89.8 93.52 90.9 88.7 88.41 

NF_IRD (100x10, 60x10) 90.3 92.64 93.52 94.1 88.9 91.33 90.92 89.6 

NF_BBA (100x10, 60x10) 92.84 94.83 94.1 94.6 89.32 92.14 92.2 937.3 

NF_BBB (100x10, 60x10) 94.62 93.42 93.13 93.3 94.4 91.63 92.14 92.9 

NF_BBC (100x10, 60x10) 95.5 93.84 89.72 95.9 93.8 92.3 88.83 94.84 

NF_BBD (100x10, 60x10) 89.52 92.80 92.72 93.24 88.6 91.43 90.14 92.8 

Data Set  (training size, validation 

size) 

(GDA with RBF)+(SVM with Gaussian) 

Training Performance Validation Performance 

AC SE SP PPV AC SE SP PPV 

NF_IRA (100x1, 60x1) 94.3 91.52 94.51 91.34 93.66 90.6 93.6 90.2 

NF_IRB (100x1, 60x1) 96.5 94.21 95.32 93.15 95.5 94.2 94.5 92.5 

NF_IRC (100x1, 60x1) 95.6 93.23 95.3 94.54 94.6 90.9 94.62 93.9 

NF_IRD (100x1, 60x1) 97.3 93.34 94.55 96.44 96.8 92.54 93.53 95.5 

NF_BBA (100x1, 60x1) 96.81 96.9 98.56 98.32 95.34 94.5 95.82 96.54 

NF_BBB (100x1, 60x1) 92.3 94.32 94.62 97.75 92.2 93.6 93.4 96.8 

NF_BBC (100x1, 60x1) 97.52 91.74 95.43 94.24 96.8 91.5 94.2 93.4 

NF_BBD (100x1, 60x1) 96.34 95.34 95.9 97.66 94.34 94.6 93.4 96.7 

Data Set  (training size, validation 

size) 

(GDA with Gaussian) + (SVM with Gaussian) 

Training Performance Validation Performance 

AC SE SP PPV AC SE SP PPV 

NF_IRA (100x1, 60x1) 100 100 97.4 100 99.7 92.4 96.7 99.5 

NF_IRB (100x1, 60x1) 98.9 89.5 100 95.9 96.4 86.6 93.52 95.5 

NF_IRC (100x1, 60x1) 96.5 95.42 98.6 96.7 94.7 89.8 96.4 95.4 

NF_IRD (100x1, 60x1) 99.3 96.44 97.5 98.8 95.5 93.6 92.82 95.6 

NF_BBA (100x1, 60x1) 96.9 100 100 98.8 95.6 95.8 89.6 96.5 

NF_BBB (100x1, 60x1) 100 98.6 100 96.7 99.2 92.5 95.5 95.22 

NF_BBC (100x1, 60x1) 98.43 97.7 99.8 95.1 96.8 91.83 96.8 93.8 

NF_BBD (100x1, 60x1) 96.34 97.51 100 98.33 96.2 97.2 94.5 97.9 

Data Set  (training size, validation 

size) 

(KPCA with RBF)+ (SVM with Gaussian) 

Training Performance Validation Performance 

AC SE SP PPV AC SE SP PPV 

NF_IRA (100x1, 60x1) 97.14 100 98.34 97.53 96.12 97.4 97 96.9 

NF_IRB (100x1, 60x1) 100 100 99.21 100 99.5 98.5 99 99.74 

NF_IRC (100x1, 60x1) 99.33 98.63 99.41 99.9 97.9 97.9 99.2 99.6 

NF_IRD (100x1, 60x1) 96.72 96.5 98.54 98.84 96.3 95.2 98.5 97.32 

NF_BBA (100x1, 60x1) 100 98.4 99.51 99.8 99.7 95.54 99.4 99.4 

NF_BBB (100x1, 60x1) 98.5 100 100 100 97.4 97.8 100 99.90 

NF_BBC (100x1, 60x1) 98.34 97.64 98.9 99.52 97.3 98.7 97.9 99.14 

NF_BBD (100x1, 60x1) 99.3 100 100 99.63 97.8 100 97.4 98.9 

Data Set  (training size, validation 

size) 

(KPCA with Gaussian) + (SVM with Gaussian) 

Training Performance Validation Performance 

AC SE SP PPV AC SE SP PPV 

NF_IRA (100x1, 60x1) 99.73 100 99.38 98.68 99.5 100 98.5 98.5 

NF_IRB (100x1, 60x1) 100 100 100 100 100 100 99.3 99.3 

NF_IRC (100x1, 60x1) 99.61 99.57 100 100 99.4 98.6 100 100 

NF_IRD (100x1, 60x1) 99.8 100 99.5 99.9 98.9 100 98.8 99.2 

NF_BBA (100x1, 60x1) 100 100 100 100 99.6 100 99.2 99.2 

NF_BBB (100x1, 60x1) 100 100 99.6 100 100 99.8 100 100 

NF_BBC (100x1, 60x1) 99.84 99.32 100 99.4 99.6 98.9 100 99.82 

NF_BBD (100x1, 60x1) 100 100 100 100 99.9 100 99.1 100 
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(training (97.53-100), validation (96.9-99.9)), while 

SVM with KPCA (using Gaussian kernel) attained 

highest performance parameters as AC (training (99.61-

100), validation (98.9-100)), SE (training (99.32-100), 

validation (98.6-100)), SP (training (99.38-100), 

validation (98.5-100)) and PPV (training (98.68-100), 

validation (98.5-100)) compared to other considered 

methods for all datasets. 

 

X.  DISCUSSION ABOUT RESULT 

In this article, the use of SVM combine with Fisher’s 

ranking method and KPCA have been presented first 

time to detect bearing defects at various loads. The 

simulated above results in the form of box plot and 

performance parameters show that our proposed method 

achieved highest performance parameters compared to 

other method. This happened due to use of SVM with 

Fisher’s ranking method and KPCA as dimension 

reduction method. KPCA reduces the dimension of top 

ten rank features to a new feature on the basis of Eigen 

matrix value. Table 5 represents the comparative study of 

related work done to determine the bearing defects using 

feature extraction methods like Continuous Wavelet 

Transform (CWT), Discrete Meyer Wavelet Transform, 

time domain features, Ensemble empirical mode 

decomposition (EEMD), Fourier–Bessel (FB) expansion 

and WPT. In these articles, various intelligent classifiers 

like Hidden Morkov Model (HMM), Adaptive Network 

based Fuzzy Inference System (ANFIS), Simplified fuzzy 

ARTMAP (SFAM), ANN, Linear Discriminant Analysis 

(LDA) and SVM have been used. Continuous wavelet 

transforms (CWT) and SVM technique was used by 

some authors to detect bearing defect with some loss of 

high frequency information and 100% accuracy [9, 10]. 

Eristi and team detected power system disturbances using 

WT based time domain features and SVM method and 

achieve accuracy up to 99.37 [11]. Tabrizi and team 

presented a method using WPD, Ensemble empirical 

mode decomposition (EEMD) and SVM to detect rolling 

element bearing defect with 93.8% accuracy [15]. In 

recent articles,  Multi scale permutation entropy (MPE) 

of WPT feature, time domain based methods, Fourier 

Bessel expansion was used to extract features for 

successful classification of bearing defects with 

classification accuracy 94.2%, 99.89%, 98.1%, 98.94% 

and 96.33% [16, 17, 19, 20, 24]. In [29], Fourier–Bessel 

(FB) expansion and simplified 

Fuzzy ARTMAP (SFAM) has been used to derive 

bearing health condition with 100% accuracy using stator 

current but it suffers at high frequency of signal.  

Altmann has utilized discrete wavelet transform and 

adaptive network-based fuzzy inference system (ANFIS) 

method to diagnose bearing defect with 99.8% accuracy 

but it is applicable to only low speed electrical machines 

[38].  The proposed work utilizes WPT features of 

vibration signal along with Fisher’s ranking method and 

dimension reduction technique KPCA to classify bearing 

defects. The proposed method provides up to 100% 

classification accuracy. It also provides enhanced 

performance parameter along with fast response.  

Table 5. Comparative performance analysis of related work 

Reference No Feature Extraction Method Feature Reduction method Classification Technique 
Classification 

Accuracy (%) 

[9] Discrete Meyer Wavelet Transform 
Linear Discriminant 

Ananlysis (LDA) 
SVM 100 

[10] 
WT features with advanced signal 

processing 
- SVM 100 

[11] WT based Time domain features  Sequential forward selection SVM 99.37 

[15] 
Ensemble empirical mode decomposition 

(EEMD) 
Filter ranking method SVM 93.8 

[16] MPE of WPT features Ranking Method Hidden Morkov Model (HMM) 94.2 

[17] MPE of WPT features GDA SVM 99.89 

[19] 
10 statistical and 3 frequency domain 

features  
PCA SVM 98.1 

[20] Time Domain Features 
Laplacian and Brute Force 

Method 
LDA, SVM 98.94 

[24] Time Domain Features KPCA SVM 96.33 

[29] Fourier–Bessel (FB) expansion GDA Simplified fuzzy ARTMAP (SFAM) 100 

[38] Discrete Wavelet Packet Transform PCA 
Adaptive Network based Fuzzy 

Inference System (ANFIS) 
99.8 

Proposed 

Work 
WPT 

Fisher’s ranking method 

and KPCA 
SVM 100 
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XI.  CONCLUSION 

In this manuscript, a novel approach has been 

proposed to detect bearing defects using vibration signal 

produced by induction motor. The proposed method is 

based on SVM along with Fisher’s ranking method and 

dimension reduction method KPCA. The result shows 

that box plot can be used to detect small variation of 

faulty signal in the form of median and IQR. The 

simulation result suggest that the excellent classification 

performance parameters like AC, SE, SP and PPV 

achieved by our proposed method can be employed to 

detect and asses the bearing faults at different loads. 
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