
I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39
Published Online August 2019 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2019.08.03

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

Performance Framework for HPC Applications

on Homogeneous Computing Platform

Chandrashekhar B. N, Associate Professor
Department of ISE, Advance computing research, Nitte Meenakshi Institute of Technology,

Bangalore-560064, India

Email: chandrashekar.bn@nmit.ac.in

Sanjay H. A, Professor
Head of Department of ISE, Advance computing research, Nitte Meenakshi Institute of Technology,

Bangalore-560064, India

Email: sanjay.ha@nmit.ac.in

Received: 23 April 2019; Accepted: 24 June 2019; Published: 08 August 2019

Abstract—In scientific fields, solving large and complex

computational problems using central processing units

(CPU) alone is not enough to meet the computation

requirement. In this work we have considered a

homogenous cluster in which each nodes consists of same

capability of CPU and graphical processing unit (GPU).

Normally CPU are used for control GPU and to transfer

data from CPU to GPUs. Here we are considering CPU

computation power with GPU to compute high

performance computing (HPC) applications. The

framework adopts pinned memory technique to overcome

the overhead of data transfer between CPU and GPU. To

enable the homogeneous platform we have considered

hybrid [message passing interface (MPI), OpenMP (open

multi-processing), Compute Unified Device Architecture

(CUDA)] programming model strategy. The key

challenge on the homogeneous platform is allocation of

workload among CPU and GPU cores. To address this

challenge we have proposed a novel analytical workload

division strategy to predict an effective workload division

between the CPU and GPU. We have observed that using

our hybrid programming model and workload division

strategy, an average performance improvement of 76.06%

and 84.11% in Giga floating point operations per

seconds(GFLOPs) on NVIDIA TESLA M2075 cluster

and NVIDIA QUADRO K 2000 nodes of a cluster

respectively for N-dynamic vector addition when

compared with Simplice Donfack et.al [5] performance

models. Also using pinned memory technique with

hybrid programming model an average performance

improvement of 33.83% and 39.00% on NVIDIA TESLA

M2075 and NVIDIA QUADRO K 2000 respectively is

observed for saxpy applications when compared with

pagable memory technique.

Index Terms—Central Processing Unit(CPU); Compute

Unified Device Architecture (CUDA); Graphics

processing units (GPUs); High Performance

computing(HPC); Message passing Interface (MPI); Giga

Floating Point Operations Per seconds(GFLOPs)

I. INTRODUCTION

The parallel computing model is introduced to solve

large scale HPC applications. HPC rely on several

computers to perform complex computations; therefore

we can accomplish improved performance outcomes. On

multi computer both task and data parallelism is a

prerequisite to achieve the greatest performance results.

GPUs are developed gradually to work on data

parallelism. Most of the HPC applications are developed

in scientific and engineering fields, which lead to the

incorporation of HPC accelerators. Hybrid programming

is the combination of different programming models to

work on parallel applications. Parallel programming

model makes uses of OpenMP, MPI and CUDA to solve

complex problems [15]. Hybrid programming model

provides a number of possible benefits such as first it

analyzes the program and specifies the target platform to

handle the threads to communicate. Communication and

computation overlap is another benefit where few threads

will be managed on communications and others will

concentrate on the computation. By using Hybrid

Programming model the work will be assigned to

multiple GPU threads by CPU which results in better

performance. Shifting from homogeneous to

heterogeneous (CPUs+GPUs) cluster will have additional

overhead of partitioning the workload and

communication between CPUs and GPUs.

In this work, we are proposing a framework that uses

an analytical model to predict asymmetric work load

division between CPUs and GPUs based on its

computation capabilities and its data transfer rate. The

framework is built on three programming models i.e MPI,

OpenMP and CUDA. The hybrid programming model

uses cudaMemcpyAsync functions to transfer

computation from CPU to GPU and vice-versa, there by

come-across from the MPI send/receive overhead. Also

framework uses pinned memory technique to overcome

the overhead of data transfer latency between CPU and

mailto:chandrashekar.bn@nmit.ac.in

 Performance Framework for HPC Applications on Homogeneous Computing Platform 29

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

GPU. To test our framework we have considered HPC

applications like dynamic computations of N random

vectors additions and saxpy applications. We have

evaluated the performance of these applications on

homogeneous platform one with NVIDIA TESLA

M2075 and other nodes with two NVIDIA QUADRO

K2000 on each node of a cluster.

In case of dynamic computations of N random vectors

addition HPC application, we have achieved performance

improvement of 76.06% on homogeneous platform with

NVIDIA TESLA M2075 and 84.11% on homogeneous

platform with two NVIDIA QUADRO K2000 on an each

nodes of a cluster, with respect to application executed on

Simplice Dogface performance model.

In case of saxypy applications with pinned memory

technique, we have obtained on average of 33.83% on

homogeneous platform with NVIDIA TESLA M2075

and 39.00% on homogeneous platform with two NVIDIA

QUADRO K2000 on each nodes of a cluster,

performance improvement over pagable technique.

The rest of the paper is structured as follows. Section 2

brief about related work with respect to hybrid

programming models. Section 3 explains proposed frame-

work design. Section 4 details about experiments and

results. Section 5 presents conclusion.

II. RELATED WORKS

In this section, we describe the work accomplished so

far in the area of homogeneous computing using hybrid

programming model on CPU-GPU platform.

N.P. Karunadasa and D. N. Ranasingh [1] had

demonstrated Accelerating High Performance

Applications with CUDA and MPI. They find a few

factors which improve application performance with

GPUs. Among them the number of GPU cores is one of

the important factors, and another factor is core specific

data processing using adequate number of registers.

Authors examined MPI and CUDA programming method

with Strassen and Conjugate Gradient algorithm. They

have demonstrated that Strassen algorithm works

effectively in comparison with the Conjugate Gradient

method. In our work, we have considered hybrid

programming models such as OpenMP,MPI and CUDA

with pinned memory technique to achieve better

performance on HPC applications.

Qing-kui Chen and Jia-kang Zhang [2] had

demonstrated the use of MPI and CUDA to build simple

stream processor cluster system with CPU + GPU using

the hybrid parallel computing programming environment

(HPCPE). They used hybrid programming technologies

to create a parallel computing environment. They

considered CPU as stream processor cluster system and

GPU as central calculating tasks on each node. But in our

work we have considered the CPU to compute part of

computation, to obtain better performance by proper

utilization of the available CPU and GPU resources.

Rong Shi et.al[3] present a novel two level workloads

partitioning approach for HPL (High Performance

Linpack) benchmark on CPU-GPU nodes on a het-

erogeneous cluster. In their way authors distributed the

workload based on the compute power of CPU/GPU

nodes across the cluster. They also handled multi GPU

configurations by using techniques such as process grid

reordering to reduce MPI communication, while ensuring

load balance across nodes. Authors present detailed

analysis of performance, efficiency, and scalability of

their hybrid HPL design across different clusters with

different configurations. In our work, we are going to

apply a novel analytic workload division strategy, where

small amount of workload is assigned to a CPU and

remaining work load will be allotted to GPU.

Takuro Udagawa and Masakazu Sekijima [4] proposed

a new method to balance the workload between CPUs

and GPUs. Their proposed method is built on formulating

and observing workloads for statically distributing the

work. Authors succeeded in utilizing processors more

efficiently and accelerating simulation using NAMD. It

gave 20.7% improvement compared to CPU optimal code.

Their proposed method is demonstrated using molecular

dynamics (MD) simulation. In our work, an analytic work

load division technique with hybrid programming model

was utilized to achieve performance improvement on

NVIDIA TESLA M2075 and NVIDIA QUADRO K

2000 respectively for N dynamic vector addition.

Simplice Donfack et.al [5] present effective hybrid

CPU/GPU approaches that is portable. It dynamically and

efficiently balances the workload between the CPUs and

the GPU. Authors also examined data transfer bottleneck

between CPU and GPU. In their approach, the amount of

initial work assigned to the CPU before execution is

determined by the theoretical model. Then, they

dynamically balanced the workload during execution in

order to maintain load balance. But in our modeling

strategies, nominal amount of work load will be placed

on the CPU and remaining work load will be assigned to

GPU.

Lu, Fengshun et. al [14] utilized two parallel

programming models of MPI+CUDA and

MPI+OpenMP+CUDA to parallel three kernels of NAS

parallel benchmarks separately, and executed on the

Tianhe-1A supercomputer. In view of the test comes

about, the creator dissected the execution of

MPI+OpenMP+CUDA and MPI+CUDA in various

circumstances, and gave a proposal that developers ought

to pick an appropriate programming design as per their

own exploratory conditions in request to expand the

computing ability of elite framework.

III. PROPOSED PERFORMANCE DRIVEN FRAME WORK

As per the previous section, the main drawback of the

MPI and CUDA programming design is that the

computational capability of CPUs within each compute

node is not efficiently used. In order to address this issue,

in this section, we explained about proposed hybrid

programming model framework with the OpenMP model

to exploit the hardware parallelism of multicore CPUs.

30 Performance Framework for HPC Applications on Homogeneous Computing Platform

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

Fig.1. Performance driven frame work of homogeneous CPU and GPU cluster

Fig.1, shows proposed novel performance driven

framework of heterogeneous architecture, where each

node consists of one CPU and two GPU. The CPU and

GPU communicate via PCI-E bus. Both CPU and GPU

have their own storage. Each CPU has many cores. Each

core has its own cache. The GPU has several Streaming

Multiprocessors (SMs). The CPU is responsible for

applications control, distributing tasks between CPU and

GPU, originating the GPU computation and reading the

result of the GPU.

In this framework, MPI is used to control the HPC

application and to implement the communication

processes between computing nodes in a heterogeneous

cluster, by calling library routines to send and receive

messages. MPI also controls the workload distribution

and process synchronization, while OpenMP offers the

ability to appropriately parallelize programs by

introducing compiler directives and invoking subroutine

calls [12]. All OpenMP programs follow the fork-and-

join performance model and use the work-sharing

directives to dispense the workload among the threads.

OpenMP has the drawback of insufficient scalability due

to the internal thread management overhead and the

restricted CPU cores within the system. OpenMP is

usually employed to explore the parallelism within each

compute node of complex clusters built with multi core

processors [16] whereas CUDA is used to compute the

huge complex tasks on the GPU.

In this work, we have considered only one MPI process

to handle the part of the work on each node. Each MPI

process is used to control and communicate with the GPU.

Due to this, we eliminate the underutilization of the

device memory. On the other hand, compared with

multiple MPI process per node, much fewer data transfers

are performed by the proposed method which improves

the memory-bandwidth. The MPI process spawns as

many OpenMP threads as the amount of CPU cores

within each compute node [6]. Only the master thread

cooperates with GPU and the others perform relevant

arithmetic operations in parallel. In general, a MPI

process initially transfers the input data from CPU to

GPU through the PCI-E bus [8]. Then, it invokes the

CUDA kernel, in which all the GPU threads run the

kernel in parallel. Lastly, the MPI process transfers the

output data from GPU to CPU and thus improves the

productivity and performance of the HPC Applications.

A. Hybrid Programming Approach

In this framework, we focus on building a strategy to

cluster with the resources of many core CPU and multi

core GPU. GPU is usually regarded as a data-parallel

multi core system. Compute Unified Device Architecture

(CUDA) is a registered framework from NVIDIA to

develop applications on GPU [11]. The computational

elements of algorithms written with CUDA are known as

kernels, which, consist of many threads to execute the

tasks in parallel. GPUs can only read/write from memory

attached to the host. The GPU acquires a block of main

memory with CUDA interfaces, such as

cudaMallocHost(). Before GPU kernel starts executing,

data must be moved from main memory into the device

memory; and after the execution, results need to be

moved back to the memory. This is done using

cudaMemcpy().

There are numerous reasons to combine three parallel

programming approaches of MPI, OpenMP, and CUDA

on a heterogeneous cluster [13]. A common reason is to

enable solving problems with a large data size to fit into

the memory of a single GPU, or that would require an

unreasonably long compute time on a single node.

Another factor is to exploit the performance improvement,

by making use of the CPU as a part of computation. To

use the CPU as a part of computation, we utilize another

parallel programming model known as OpenMP. Again

to exploit the power of distributed architecture we are

making use of MPI programming model. Due to above

said observations we are combining

MPI+OpenMP+CUDA on heterogeneous CPU-GPU

architecture.

B. Workload Division Strategy

This section describes a workload distribution strategy

in which the workload is assigned to each node on a

hybrid CPU/GPU cluster [10]. Distribution of the work

load between CPUs and GPUs is done based upon their

computation capacity. If we assign too little work to the

 Performance Framework for HPC Applications on Homogeneous Computing Platform 31

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

CPU, it is not enough to keep the CPU busy during GPU

kernel launch and memory transfer, and thus the latency

cannot be well hidden. On the other hand, if we assign

too much work to the CPU then, the GPU kernel has to

wait for the CPU to finish the tasks before generating the

result. In this work we are addressing the question, what

is the optimal CPU and GPU workload for each core

under different parallel configurations? We plan to

consider asymmetric work load division, which requires

division ratio. This is proportional to compute speed and

hardware specification of the CPU and GPU. To predict

work load ratio, we are considering multiple factors such

as problem size, node counts, hardware configurations,

computational speed, and communication rate of each

node. By using these parameters in our proposed

framework, our strategies decide optimal workload for

the CPU and GPU depending on their computational

capacity.

Let W be the size of total workload per cluster, n be the

number of nodes on CPU-GPU heterogeneous cluster.

Load per node is represented by Lnode, memory

bandwidth of CPU and GPU represented by Cpbw, Gpbw,

Speed of CPU processor and GPU processor by SCP and

SGP, j is represented as specific CPU, C is represented as

cores, NC represents number of cores. In the beginning

when assign the full HPC application workload W to the

cluster need to compute the load for individual nodes

[Lnodei] by considering multiple factors such as problem

size(W), node counts[i=1 to n], hardware configurations

i.e number of CPU cores [Ncpi] and Number of GPU

cores [NGpi], computational speeds of processors[SCPi

and SGPi], computing capability [Cnodei=∑ * Sj where

Cnodei represents computing capability and Sj represents

calculation intensity of task j] of each node in a cluster

communication rate and kernel memory bound at each

node we balance the load according to the realistic

memory bandwidth values [Cpbwi, Gpbwi]. A good

CPU+GPU execution must take the different

computational speeds into interpretation. Failing to do so

will normally lead to a severe load imbalance since the

fast GPU will continuously wait for the slow CPU to

complete its workload, and thus to poor performance.

𝐿𝑛𝑜𝑑𝑒𝑖 =
𝑊

∑ (𝑆𝐶𝑃𝑖,𝑆𝐺𝑃i,𝐶𝑝𝑏𝑤𝑖,𝐺𝑝𝑏𝑤𝑖 ,𝑁𝐶𝑝𝑖,𝑁𝐺𝑝𝑖,𝐶𝑛𝑜𝑑𝑒𝑖)𝑛
𝑖=1

 (1)

After computing varying workload to individual nodes,

then on each nodes of a cluster a fraction of the workload

is dynamically distributed among CPU cores and GPUs

based on their performance capabilities.

Let T[Cpi+Gpi]execution time of the HPC

applications on the CPU+GPU and TGpi execution time of

the HPC applications on the GPU and P[Cpi+Gpi]

performance(GFLOPs) presented for target HPC

applications on the CPU+GPU and PGpi

performance(GFLOPs)presented for target HPC

applications on individual nodes in a cluster are

computed using eq(5). Hence, the load on the CPU [LCPi]

is computed using eq(2).

𝐿𝑐𝑝𝑖 = [𝐿𝑛𝑜𝑑𝑒𝑖 ∗ (1 − (
𝑃𝐺𝑝𝑖

𝑃𝐺𝑝𝑖+𝑃(𝐺𝑝𝑖+𝐶𝑝𝑖)
))] (2)

After dynamically computing fraction of load on the

CPU, Now the load per core on each CPU of the

respective nodes in a cluster LCPi/Cj is computed using

eq(3). Here, we divide the fraction of the load is among

numerous available cores NC on CPU.

𝐿𝐶𝑃𝑖/𝐶𝑗 =
𝐿𝐶𝑃𝑖

𝑁𝑐𝑗
 (3)

Now load on GPUs is obtained LGPi by using eq (4).

After determining the fraction of the workload ratio to the

CPU, and assign the remaining work load to the available

number of GPUs in the respective nodes in a cluster.

𝐿𝐺𝑃𝑖 = (𝐿𝑛𝑜𝑑𝑒𝑖 − 𝐿𝐶𝑃𝑖) (4)

By using the above eq(2), eq(3) and eq(4), we compute

GPU workload and CPU workload. Workload can

potentially be distributed properly to the computation

resources of a heterogeneous system, and therefore

achieve better performance with suitable work load

division between CPU and GPU. Our CPU+GPU

programming approach (MPI+OpenMP+CUDA) is able

to utilize the different processing units and maximize

overall FLOPS (Floating point operations per second).

C. Performance Evaluation

The overall goal of homogeneous implementation is to

utilize the computational resources efficiently to achieve

peak applications performance. The implementation of

HPC applications on the proposed framework of

heterogeneous CPU+GPU cluster using hybrid

programming model(MPI+OpenMP+CUDA) should

perform better when compared to that of GPU (CUDA).

In this work, we are comparing applications performance

by measuring execution time and GFLOPs. The GFLOPs

is computed using the eq (5).

𝑔𝑓𝑙𝑜𝑝𝑠 = [
𝑁𝑜𝑝

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒
] ∗ 1.0𝑒−9 (5)

Where,

Nop is Number of operations

Execution _Time= (ElapsedTime *1.0e-3)

ElapsedTime=(Process_end_time)-(process_start_time)

D. Hybrid Implementation of Dynamic Computation of N

Random numbers

The random numbers are intended to produce a

sequence of numbers which appear at random. There are

different types of random numbers. They are custom

random numbers, pseudo random numbers and dynamic

random numbers. Custom random numbers function

displays the numbers within the specified upper and

lower limit, but for dynamic random numbers there are

no upper and lower range limits. Some of the applications

32 Performance Framework for HPC Applications on Homogeneous Computing Platform

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

of dynamic random numbers are modern electronic

casino game and electronic noise studies in physics.

Another application of the random number is in the field

of operational research. In this application, random

numbers are used to provide optimal or near optimal

solution to decision making problems.

Once the application is deployed to the CPU, user need

to provide the maximum limit. Depending upon the

number of CPU cores, OpenMP threads will be

established for each core. Then each thread, creates two

sets of threads. The first set of threads is responsible for

generating N Dynamic Random numbers vectors and

controlling the GPU of the same node in the cluster. In

the first set of threads, once some of the threads transfer

the data to the GPU memory CUDA kernels compute N

dynamic random numbers vector additions. While other

threads in a set of threads perform the generation of N

dynamic random vectors on CPU concurrently. The

threads in the second set are busy with computing N

random vector numbers. This approach holds the extra

benefit of thread synchronization, in that one thread set

will not disturb the threads in the other set. In this

application, some threads in the host generate the N

dynamic random numbers using OpenMP. Others

OpenMP threads are busy in controlling GPUs and to

transfers generated random numbers from host memory

to device memory for computation. Using CUDA, it does

the computation in device memory and sends the

computation results to host memory MPI is used to

transfer data to other nodes in a cluster. Hence by running

the applications on homogeneous platform, we are in a

position to utilize the compute resources efficiently.

E. Hybrid Implementation of Pinned and pageable data

transfer for SAXPY application

Inter-process communication is a process of

exchanging data among numerous computing devices

with specific procedures by means of communication

protocols. Single-Precision A•X plus Y (SAXPY) is one

of the benchmark applications in HPC. It is a function in

the standard Basic Linear Algebra Subroutines library.

SAXPY is a combination of scalar multiplication and

vector addition. It takes two input vectors of floating

point values for X and Y with N elements each, and a

scalar value A. It multiplies each element X by A and

adds the result to Y.

Z=A*X+Y

Here X, Y and Z are vector and A are a scalar value.

By utilizing a MPI process, will communicate with other

nodes in a cluster pinned and pagable data transfer

technique, we compute the GFLOPs of the application

respectively. The memory of the host is pageable default.

When the Device wants to access the Host memory it

directly cannot access in pageable data transfer. Hence, a

separate memory is used to store the host memory to

access from the device. This memory is called as

pageable memory. For data transfer, a separate memory is

utilized to store data temporarily which consumes extra

memory. To avoid this, a pinned data transfer technique

is utilized. In pinned data transfer, there is no requirement

for temporary memory storage in the host. If a device

wishes to access the data from the Host, it directly

accesses from the Pinned memory. Hence it avoids the

momentary storage of memory. Using this pinned

memory technique. We are computing the GFLOPS with

different data size using eq(5).

To overlap computations and communications with the

intra-node data exchanges, we adopted a hybrid

programming model that involves MPI, OpenMP and

CUDA. In such a methodology, task parallelism is

important. Some of the OpenMP threads are committed to

the part of the computation i.e generation of vector X and

vector Y, while the remaining OpenMP threads handle

other tasks, such as data movement between the CPU and

GPU in a node. MPI process will communicate with

other nodes in a cluster. While CUDA is used to make

computation i.e it multiplies each element vectors X by A

and adds the result to vector Y and intra-node

communication, Subsequent CPU-GPU data

conversations are implemented via cudaMemcpyAsync.

By applying pinned memory technique, we overcome the

overhead of data transfer between the CPU and GPU in

our hybrid programming model approach

(MPI+OpenMP+CUDA) on hybrid CPU+GPU cluster.

IV. EXPERIMENTS AND RESULTS

A. Experimental setup

Experiments were conducted validating the proposed

hybrid framework in terms of GFLOPs of the benchmark

applications. We conducted experiments on in-house

cluster, which is under our administrative control. The

experiments were conducted on eight heterogeneous

nodes.

1.Three nodes with Six-core/socket Intel(Xeon(R) E5-

2620 CPUs, GPU (NVIDIA Tesla M2075) with 32GB

RAM which is expandable up to 500GB with 447 cores.

2. Five nodes with Six-core/socket Inter Xeon CPU

processor at 2.40 GHzx of 31GB RAM with two GPUs

(NVIDIA Quadro K2000) configuration include the

system type that is Dell precision R5500 with 227 cores.

Each node is configured with MPICH2-1.2 MPI library

to make communication between nodes in a cluster. The

compilers used are GCC version 4.4.7 and NVIDIA nvcc

version 5.0.

We have tested our homogeneous framework for two

different benchmark applications i.e Dynamic

computation of N random numbers vector addition and

saxpy applications. The application parameters for

Dynamic computation of N random numbers vector

addition are two input vectors of N size random numbers

and for saxpy applications two input vectors of N size of

elements each. For each input size, we will consider the

average performance in GFLOPs.

 Performance Framework for HPC Applications on Homogeneous Computing Platform 33

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

B. Results of Dynamic Computation of N Random numbers:

In these HPC applications, once the application is

launched to the cluster, total workload is divided among

the nodes in a cluster. By using eq(1) load per node is

computed and assigned to the individual nodes in a

cluster. In each node of a cluster workload is dynamically

distributed among CPU and GPUs based on their

computing capabilities. By using eq(2) and eq(3) part of

the total assigned load to node(Lnode) is assigned to the

CPU and it’s cores and remaining workload is computed

by using eq(4) and assigned to the GPUs. In these HPC

applications, we will generate two vectors of N dynamic

random numbers and compute the vector additions. Here,

instead of deploying full computation to GPU. We

assigned small portion of workload i.e to generate the N

dynamic random numbers to CPU. CPU uses parallel

programming model OpenMP to generate the N dynamic

random numbers. Then, MPI is to communication

between the nodes in a cluster. Then by using CUDA,

concurrently compute the N dynamic random numbers

vector addition to device memory and sends the

computations results to host memory.

Table.1, list the size of dynamic random numbers and

performance of N dynamic random number vector

addition computation in GFLOPs using our hybrid

programming model [MPI+OpenMP+CUDA] and

compared against Simplice Donfack Hybrid

programming model and using three nodes of a cluster

each has one GPU(NVIDIA Tesla M2075) and one CPU

of Intel(Xeon(R) E5-2620.

Table 1. Test Results of N Dynamic Random Numbers vector addition for three TESLA Nodes in cluster

Sizes of

Random Numbers GFLOPs on

Simplice Donfack

Hybrid programming model

GFLOPs on Hybrid Programming

Model

 % of Performance Improvement

against Simplice Donfack

Hybrid Programming Model

100000 6.9015E-05 0.002813731 97.54720627

200000 8.76824E-05 0.001461027 93.99857955

400000 9.87596E-05 0.000526759 81.25148139

600000 0.000102807 0.000556168 81.51507155

800000 0.000122579 0.00026578 53.87947414

1000000 0.000125694 0.00024264 48.19742478

Fig.2. Execution time of dynamic N random number vector addition for three TESLA nodes in a cluster

Fig.2, shows execution time of Simplice Donfack

Hybrid programming model and our hybrid parallel

programming model[MPI+OpenMP+CUDA], for

different problem sizes of dynamic N random numbers

addition computation. In the figure, X-axis shows size of

the dynamic random numbers and Y-axis shows the

Execution time in seconds. As the random number size

increases the execution time of the hybrid programming

model is also increases because during the initial stage of

experimental small chunk of the load is shared among

more number of CPU-GPU cores, then it takes less time.

But as the load increases it takes more number of CPU-

GPU cores and data transmission between CPU-GPU

leads increase in execution time. But as our proposed

hybrid model gives better execution time over Simplice

Donfack hybrid programming model.

34 Performance Framework for HPC Applications on Homogeneous Computing Platform

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

Fig.3. Performance results of dynamic N random number for vector addition three TESLA nodes in a cluster

After computation of execution time, we computed the

GFLOPs using eq(5). Fig.3, plots the performance

improvement in hybrid programming model for different

problem sizes of dynamic N random numbers vector

addition computation over Simplice Donfack Hybrid

programming model. In the figure, X-axis shows size of

the dynamic random numbers and Y-axis shows the

performance in GFLOPs. We find that during the initial

experiment, the percentage of performance improvement

is high. For smaller problem size such as 100000 we are

able to achieve 97.54% over Simplice Donfack Hybrid

programming model. In later stage percentage of

performance improvement is low i.e for 1000000 random

numbers 48.19% performance improvement. As dynamic

random numbers size increases, the percentage of

performance (in floating point operations per seconds)

improvement in hybrid programming model will decrease

because of CPU-GPU data transmission (communication)

time that prevents GPU to exploit it’s parallel computing

capacity completely. But the proposed hybrid

programming model gives better performance i.e for

varying problem sizes, we have achieved on an average

performance improvement of 76.06% comparatively with

Simplice Donfack Hybrid programming model.

Table.2, lists sizes of N dynamic random numbers and

performance of N dynamic random numbers vector

addition computations in GFLOPs using our hybrid

programming model[MPI+OpenMP+CUDA]. And

compared against simplice donfack hybrid programming

model with five node each has two GPUs (NVIDIA

Quadro K2000) and one CPU of Intel(Xeon(R) E5-2620

on each node of a cluster.

Table 2. Test Results of N Dynamic Random Numbers vector addition for Five nodes each with two GPUs(Quadro K2000) in a cluster

Sizes of Dynamic

Random Numbers

GFLOPs on

Simplice Donfack

Hybrid programming model

% of Performance Improvement

GFLOPs on

 against Simplice Donfack

Hybrid Programming Model

Hybrid Programming Model

100000 5.91856E-05 0.000877886 93.25816761

200000 7.75627E-05 0.002308403 96.63998511

400000 9.01941E-05 0.002174386 95.85197345

600000 9.29875E-05 0.001165230 92.01981254

800000 9.96532E-05 0.000533853 81.33321043

1000000 9.66594E-05 0.000177678 45.59851531

 Performance Framework for HPC Applications on Homogeneous Computing Platform 35

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

Fig.4. Execution time of Dynamic N Random number vector addition for five nodes with each has two GPUs(QUADRO) on each nodes in a cluster

Fig.4, demonstrates execution time of Simplice

Donfack Hybrid programming model and our hybrid

parallel programming model[MPI+OpenMP+CUDA], for

various data input sizes of dynamic N random numbers

vector addition computation. In the figure, X-axis shows

size of the dynamic random numbers and Y-axis shows

the execution time in seconds. As the random number

sizes increase the execution time of a hybrid

programming model also increases because during the

initial stage of experimental small chunk of a load is

shared among more number of CPU-GPU cores, then it

takes less time. But as the load is raised takes more

number of CPU-GPU cores and data transmission

between CPU-GPU leads increase in execution time. But

our proposed hybrid model gives better execution time

over simplice donfack hybrid programming model

Fig. 5. Performance results of Dynamic N Random number vector addition for Five nodes with each has two GPUs(QUADRO) on each nodes in a

cluster.

After calculation of execution time, we processed the

GFLOPs utilizing eq (5). Fig.5, plots the percentage of

performance improvement in our hybrid programming

model for varying problem sizes of dynamic random

numbers vectors addition computation, over simplice

donfack hybrid programming model. In the figure, X-axis

shows sizes of the dynamic random numbers and Y-axis

shows the performance in GFLOPs. We find that during

the initial experiment, the percentage of performance

improvement is high. For smaller problem sizes such as

100000 we are able to achieve 93.25% over Simplice

Donfack Hybrid programming model. In later stage

percentage of performance improvement is low i.e for

1000000 random numbers 45.59% performance

improvement is achieved. As dynamic random numbers

size increases, the percentage of performance (in floating

point operations per seconds) improvement in our hybrid

programming model will decrease because of CPU-GPU

data transmission(communication) time that prevents

GPU in exploiting it’s parallel computing capacity

completely. But still proposed hybrid programming

model for different problem sizes we have achieved on an

average improvement of 84.11%. Performance

comparatively with simplice donfack hybrid

programming model.

C. Results Pinned and pageable data transfer for SAXPY

applications.

In this application, using OpenMP generate the two

vectors X and Y then with CUDA multiplies each

36 Performance Framework for HPC Applications on Homogeneous Computing Platform

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

element vectors X by A and adds the result to vector Y it

happens concurrently with OpenMP, for Pinned and

pageable data transfer technique by varying different

size(Gb) of input data. Table. 3, lists size of data transfer

rate for pageable and pinned memory on three nodes of

cluster where each node has NVIDIA Tesla M2075 for

hybrid programming model.

Table 3. Test results of performance of saxpy on hybrid programming model on tesla node

Sizes of Data transfer GFLOPs in GFLOPs in % of Performance Improvement in

in Gb Pagable Technique Pinned Technique Hybrid Programming Model

0.03125 1.27438E-11 2.20574E-11 42.22444278

0.06250 1.96079E-11 3.21419E-11 38.99583633

0.12500 3.23627E-11 5.1427E-11 37.07050331

0.25000 5.4256E-11 8.49039E-11 36.09720068

0.50000 7.23413E-11 8.49039E-11 14.79626757

Fig.6. Execution time of saxpy on hybrid programming model varying data transfer for TESLA Node

Fig.6, shows the execution time of pagable and pinned

memory technique for saxpy applications on hybrid

programming model for varying data transfer size(Gb) on

TESLA 2075 based cluster. The X-axis indicates size of

data transfer in Gb and Y-axis indicates execution time in

seconds. In the graph, we can no-tice that pinned memory

technique take less execution time when compared with

pagable memory technique.

After computation of execution time, we computed

performance of saxpy in GFLOPs using eq(5). The Fig.7,

plots comparison of pageable and pinned memory for

saxpy applications on a hybrid programming model.

Where the X-axis indicates size of data transfer in Gb and

Y-axis indicates performance in GFLOPs. Using pinned

memory technique, different problem sizes we have

achieved an average improvement of 33.83% during the

initial experiment, the percentage of performance

improvement is high. For smaller problem size such as

0.03125Gb.

Fig.7. Performance saxpy in hybrid programming model varying data transfer for TESLA Node

 Performance Framework for HPC Applications on Homogeneous Computing Platform 37

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

We are able to achieve 42.22% over pagable memory

technique. In later stage percentage of performance

improvement is low i.e for 0.5Gb data transfer 14.79%

performance improvement. As data input size increases,

percentage of performance (Floating point operations per

seconds) of data transfer rate decreases.

Table. 4, list size of data transfer rate in Gb for

pageable and pinned memory on five nodes, each has two

GPUs (QUADRO K2000) in each nodes of a cluster

using hybrid programming Model. MPI is used to make

communication between nodes in a cluster. Where some

of threads of OpenMP are used in computation and others

are in controlling GPU. CUDA multiplies each element

vectors X by A and adds the result to vector Y happens

concurrently with OpenMP.

Table 4. Test results of performance of saxpy in hybrid programming model on QUADRO based cluster

Sizes of Data Transfers GFLOPs in GFLOPs in % of Performance Improvement in

in Gb Pagable Technique Pinned Technique Hybrid Programming Model

0.03125 1.52334E-11 2.97221E-11 48.74716150

0.06250 2.0502E-11 3.13249E-11 34.55056131

0.12500 3.65677E-11 6.01359E-11 39.19157683

0.25000 4.85294E-11 8.12054E-11 40.23868186

0.50000 8.21209E-11 1.21305E-10 32.30230863

Fig.8. Execution time of saxpy on hybrid programming model for varying data transfer for QUADRO Node

The Fig.8, shows the execution time of pagable and

pinned memory technique for saxpy applications on a

hybrid programming model for varying data traffic size in

Gb. The X-axis indicates size of data transfer in Gb and

Y-axis indicates execution time in seconds. In the graph,

we can notice that pinned memory technique take less

execution time when compared with pagable memory

technique.

After computation of execution time, we computed

performance of saxpy in GFLOPs using eq(5). Fig.9,

plots comparisons of pageable and pinned memory for

saxpy applications on a hybrid programming model.

Where the X-axis indicates size of data transfer in Gb and

Y-axis indicates performance in GFLOPs. Using pinned

memory technique, for different problem size we have

achieved on an average improvement of 39.00%. We

have determined that during the initial experiment.

Fig.9. Performance result saxpy on hybrid programming model for varying data transfer for QUADRO Node

38 Performance Framework for HPC Applications on Homogeneous Computing Platform

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

The percentage of performance improvement is high.

For smaller problem size such as 0.03125Gb, we are able

to achieve 48.74% over pagable memory technique. In

later stages percentage of performance improvement is

low i.e for 0.5Gb data trans-fer 32.30% performance

improvement is achieved. As data input size increases the

percentage of performance (oating point operations per

seconds) of data transfer rate also decreases.

V. CONCLUSION

In order to effectively emprise the computational

capability of heterogeneous HPC systems, must utilize

the appropriate hybrid programming pattern

[MPI+OpenMP+CUDA] is practically suitable to

accelerate the HPC applications to define essential

parallelism characteristics compared to Simplice Donfack

Hybrid programming model. In this work, we have

constructed a hybrid computing platform

[MPI+OpenMP+CUDA] for hybrid CPU+GPU clusters

and introduced analytical workload division strategy to

distribute the potion workload dynamically between CPU

and GPUs according to their relative computational

capacities within eight compute nodes cluster. And by

launching one MPI process to each compute nodes in a

cluster. We have described our experience by

implementation of two benchmark HPC applications

namely N dynamic vector addition and saxpy. Later we

compared our framework with hybrid platform

[MPI+OpenMP+CUDA] against Simplice Donfack

Hybrid programming model. After exhaustive study of

experimental results, we have obtained the observations

such as, utilizing hybrid programming model boosts the

performance (GFLOPs) than that of conventional

programming model. We have observed that using a

hybrid programming model an average performance

improvement of 76.06% and 84.11% is observed on

NVIDIA TESLA M2075 cluster and NVIDIA

QUADROK 2000 cluster respectively for N dynamic

vector addition when compared with Simplice Donfack

Hybrid programming model. Also using pinned memory

technique with hybrid computing model an average

performance improvement of 33.83% and 39.00% on

NVIDIA TESLA M2075 and NVIDIA QUADRO K

2000 clusters respectively is observed for saxpy

applications when compared with pageable memory

technique, because of its varying hardware configurations

and cores.

As a future work, this work will be extended for more

number of nodes in a cluster and optimizing the workload

division among CPUs-GPUs heterogeneous architecture

in order to utilize resources efficiently to improve the

performance of HPC applications.

REFERENCES

[1] N. P. Karunadasa and D. N. Ranasinghe:"Accelerating

High Performance Appli-cations with CUDA and MPI”,

4th international conference on Industrial and in-

formation Systemsl 2009. University of Colombo School

of Computing.

[2] Qing-kui Chen. and Jia-kang Zhang:‘A Stream Processor

Cluster Architecture Model with the Hybrid Technology

of MPI and CUDA’,1st International con-ference of

Information Science and Engineering, School of Optical-

Electrical and Computer Engineeringl 2007.University of

Shanghai for Science and Technology Shanghai.

[3] Rong Shi and Khaled Hamidouche Xiaoyi Lu, Karen

Tomko, and Dhabaleswar K Ohio State University

(2013),‘A Scalable and Portable Approach to Accelerate

Hybrid HPL on Heterogeneous CPU-GPU Clusters’,978-

1-4799-0898-1/13 2013 IEEE.

[4] TakuroUdagawa and Masakazu Sekijima:‘GPU

Accelerated Molecular Dynamics with Method of

Heterogeneous Load Balancing’,2015 IEEE International

Paral-lel and Distributed Processing Symposium

Workshop 978-1-4673-7684-6/15, 2015 IEEE Computer

society.

[5] Simplice Donfack,StanimireTomovand,Jack

Dongarra:‘Dynamically balanced synchronization-

avoiding LU factorization with multi core and GPUs’,

2014 IEEE 28th International Parallel and Distributed

Processing Symposium Workshops 978-1-4799-4116-

2/14 IEEE Computer society. 2014. Innovative

Computing Labora-tory, University of Tennessee,

Knoxville, USA.

[6] Mohammed Sourouri,Johannes Langguth, FilippoSpiga,

Scott B. Badenand Xing Cai,Simula:‘CPU+GPU

Programming of Stencil Computations for Resource E -

cient Use of GPU Clusters’, 2015 IEEE 18th International

Conference on Com-putational Science and Engineering

IEEE Computer Society78-1-4673-8297-7/15 2015 IEEE.

[7] Ashwin M, Aji, Lokendra S. Panwar, Feng Ji, Karthik

Murthy, MilindCh-abbi,PavanBalaji,Keith R. Bisset,

James Dinan, Wu-chunFeng,John Mellor-Crummey,

Xiaosong Ma, and Rajeev Thakur:‘MPI-ACC:

Accelerator-Aware MPI for Scienti c Applications‘, IEEE

Transactions on Parallel and Distributed Systems VOL 27

NO 5 1045-9219 (c) MAY 2016 IEEE.

[8] TarunBeri ,Sorav Bansal and Subodh Kumar Indian

Institute of Technology Delhi:‘A scheduling and runtime

framework for a cluster of heterogeneous machines with

multiple accelerators‘, 29th International Parallel and

Distributed Processing Symposium 1530-2075/152015

IEEE computer society.

[9] Gurung A, Das B, and Rajarsh. :Simultaneous Solving of

Linear Programming Problems in GPU‘,in Proc. of IEEE

HIPC 2015 Conference: Student Research Symposium on

HPC, Vol. 8, Bengaluru, India, pp. 1-5..

[10] Lang, J. and Runger, G:‘Dynamic distribution of

workload between CPU and GPU for a parallel conjugate

gradient method et. al [5]in an adaptive FEM’,ICCS 2013

Conf., Procedia Computer Science, 18, 299-308.

[11] Lee J, Samadi, M. Park, Y. and Mahlke S:‘Transparent

CPU-GPU Collaboration for Data-Parallel Kernels on

Heterogeneous Systems’, in Proc. of the 22nd Inter-

national Conference on Parallel Architectures and

Compilation Techniques, PACT ’13, pp. 245-256. 2013.

[12] Rabenseifner R, Hager G.and Jost G.:‘Hybrid MPI and

OpenMP Parallel Programming’, Supercomputing 2013

Conference, Nov 17-22, Denver, USA,

Tutorial,http://openmp.org/ wp/sc13-tutorial-hybrid-mpi-

and-openmp-parallel-programming.

[13] Yang C.T., Huang C.L., and Lin C.F. (2011).‘Hybrid

CUDA, OpenMP, and MPI parallel programming on multi

core GPU Clusters’, Computer Physics Communi-cations,

182, 266-269.

 Performance Framework for HPC Applications on Homogeneous Computing Platform 39

Copyright © 2019 MECS I.J. Image, Graphics and Signal Processing, 2019, 8, 28-39

[14] Lu, Fengshun et al. ‘Performance evaluation of hybrid

programming patterns for large CPU/GPU heterogeneous

clusters’, Computer physics communications 183.6 (2012):

1172-1181.

[15] Yang, Chao-Tung,Chih-Lin Huang, and Cheng-Fang Lin.

‘Hybrid CUDA, OpenMP, and MPI parallel programming

on multicore GPU clusters’, Computer Physics

Communications 182.1 (2011): 266-269.

[16] Noaje, Gabriel, Michael Krajecki, and Christophe Jaillet.

‘MultiGPU comput-ing using MPI or OpenMP’,

Intelligent Computer Communication and Processing

(ICCP), 2010 IEEE International Conference on. IEEE,

2010.

Authors’ Profiles

B.N Chandrashekhar is an associate

professor at Nitte Meenakshi institute of

Technology. Received the BE degree in

computer science and engineering from

the Visvesvaraya Technological

University, India, in 2004 and the

M.Tech degree in computer science and

engineering from Visvesvaraya

Technological University, India, in 2010.

Currently he is pursuing a PhD at the Advance computing, dept.

of information science and engineering research center at the

Nitte Meenakshi institute of Technology, Bangalore. His

research interests include Hybrid (CPU-GPU) computing,

parallel and distributed systems, and performance modeling of

parallel HPC applications. He published papers in peer-

reviewed journals and conference proceedings

H.A Sanjay is a professor and Head of

the department at Nitte Meenakshi

institute of Technology. Received the

BE degree in Electrical and engineering

from the Kuvempu University, India, in

1996. And the M.Tech degree in

computer science and engineering from

Visvesvaraya Technological University,

India, in 2001. He obtained a PhD at the

Supercomputer Education and Research Centre at the IISc

Bangalore, India in 2008 His research interests include Grid

computing, parallel and distributed systems, Performance

modeling of parallel applications. He published papers in peer-

reviewed journals and conference proceedings.

How to cite this paper: Chandrashekhar B. N, Sanjay H. A, "Performance Framework for HPC Applications on

Homogeneous Computing Platform ", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.11,

No.8, pp. 28-39, 2019.DOI: 10.5815/ijigsp.2019.08.03

