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Abstract—In this paper we go through some very recent 

imaging techniques that are inspired from space 

exploration. The advantages of these techniques are to 

help in searching space.  To explore the effectiveness of 

these imaging techniques on search spaces, we consider 

the Particle Swarm Optimization algorithm and extend it 

using the imaging techniques to train multiple neural 

networks using several datasets for the purpose of 

classification. The techniques were used during the 

population initialization stage and during the main search. 

The performance of the techniques has been measured 

based on various experiments, these techniques have been 

evaluated against each other, and against the particle 

swarm optimization algorithm alone taking into account 

the classification accuracy and training runtime. The 

results show that the use of imaging techniques produces 

better results. 

 

Index Terms—Search Space Imaging, Metaheuristics, 

Optimization, Particle Swarm Optimization, Artificial 

Neural Networks, Population Initialization. 

 

I.  INTRODUCTION 

The main purpose of all metaheuristic algorithms is to 

explore the search space and help in reaching to the 

optimum or near-optimum solution. Some of the main 

problems that might not help the metaheuristic techniques 

to reach to optimum solutions is either because of the 

complexity of the problem or problem resources are 

unclear or limited [15]. Most of the metaheuristic 

algorithms are inspired and adopted from biology or 

nature such as chromosomes, birds, fish swarm and bats 

[10]. 

In nature, humans try to explore space through various 

tools such as telescopes, satellites and radars. Usually 

expeditions to discover the space are sent after very deep 

investigations through the previous mentioned tools. This 

will help in limiting the scope of exploration towards the 

scientist’s target. The closer the expedition to the target, 

the more effort will be done starting from the reached 

position. The general idea is to maintain randomness 

under control. Most of the metaheuristic techniques 

depend on randomness but usually randomness might 

lead to more cost in terms of time and resources. To 

reduce this problem, human expeditions move in a 

controlled randomness to ensure reaching to near-

optimum solution consume less cost. 

Many researchers work to either propose new 

metaheuristic techniques inspired from biology or 

develop systems that combine various metaheuristic 

techniques. Proposing new techniques such as Genetic 

Algorithm (GA)[11], Simulated Annealing (SA) [17], ant 

colony [6,7], bat algorithm[31], PSO and fish swarm 

[16][26], and Combining more than one technique such 

as PSO and GA, GA and SA, or PSO and SA 

[4][12,13][27][31]. In both the cases, proposing new 

metaheuristic or combine more than one technique, the 

target is to better explore the search space and achieve 

better results (near-optimum).  

In [22]  Richards and Ventura proposed a technique to 

initialize the population called centroidal Voronoi 

tessellati which starts with a population that is generated 

randomly then iteratively tries make the particles move 

far from each other as possible to have a diversity in the 

initial population. In [21] authors proposed another 

technique for population initialization where the random 

particles are generated and with each generated particle 

its complement/inverse particle is also generated. Then 

from these particles the initial population is generated.       

In [18] Maaranen et.al proposed a technique called 

quasi-random generator technique to initialize the 

population. This technique forms repetitive patterns to 

avoid having many particles in similar/close locations. 

This technique’s idea is based on generating a population 

with high diversity as possible.  

Based on the researchers work, they try to have a 

diverse initial population which means having diverse 

particles so that they can capture the most of the good 

particles. However, this might not always true because 

this might be done regardless of the importance of these 

particles. The imaging technique depend   basically on 

exploration first then expedition, which means checking 

first the potential particles then forming the population. 
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Fig. 1. Particle swarm optimization pseudo code; pBest: Best solution 
found by particle, gBest: Best solution found by swarm [28] 

In this research, our objectives is to explore the effect 

of imaging techniques as extend to PSO in the 

classification of neural networks. We are not interested to 

compare the obtained results with other approaches, but 

instead we care about comparing the obtained results 

using extend PSO and the regular PSO. To evaluate 

imaging techniques, they are implemented to extend a 

particle swarm optimization metaheuristic used to tune 

the weights and biases of multiple classification neural 

networks in seven different datasets. Thus, the following 

three subsections briefly introduce the particle swarm 

optimization metaheuristic and the artificial neural 

network techniques.  

A. Particle Swarm Optimization 

PSO is a very well know metaheuristic search 

algorithm used in various applications ranging from 

science, business, optimization to engineering 

[14][27][31][32]. The idea of the algorithm has been 

inspired from the movements and travel of birds. The 

main steps of the algorithm is illustrated in Fig. 1. Each 

bird in the bird’s flock represents a particle and in each 

algorithm iteration the velocity and the location of each 

particle is updated. For more details about concepts of 

PSO, researchers can refer to [16][26]. As will be 

explained in the next sections PSO is selected to be our 

metaheuristic technique.  

B. The neural network 

Artificial Neural Networks (ANN) are an active area of 

research in the fields of artificial intelligence and 

machine learning invented as techniques to loosely mimic 

the function of neurons in living beings. 

Applications of the neural network such as 

classification require configuring a set of parameters 

called the weights and biases of the network so that for a 

given set of inputs describing some object, the neural 

network could produce a correct output identifying that 

object. Several algorithms such as the back-propagation 

algorithm can be used to perform the task of 

configuring/training the network [24]. In this paper we 

use imaging techniques as extension to metaheuristic 

technique (i.e., PSO) to explore their effectiveness in 

improving the accuracy of neural network classification. 

C. Metaheuristic Approaches  for ANN 

Backpropgation (BP) algorithm is a very well known 

algorithm used in feed farward ANN training. Training 

using BP may yield some times to what so called local 

minima which prevents reaching to global minma and the 

training does not improve [13]. Various techniques and 

methods have been tried to get rid of local minima, some 

of these are using metaheuristic techniques. Many 

researches have been working to adjust the neural 

networks weights based on methaheuristic techniques to 

improv the classification, some of  these are based on GA 

and PSO as examples [12][19]. In other cases, reserchers 

attempt to combine more than one metaheuristic approach 

to utilize the capabilities of each one of them, therefore, 

trying to obtain better classification accuracy than using 

one technique alone [12,13]. In this paper we select PSO 

as a well defined metaheutstic technique that has been 

used in improving the neural network classification as a 

technique to be extended by imaging techniques to 

measure the effectiveness of those imaging techniques in 

improving the neural network classification 

 

II.  IMAGING TECHNIQUES 

In this section we present briefly some of the imaging 

techniques that were proposed by Abbas and Hewahi [1]. 

These imaging techniques work as a telescope to gather 

information first about the search space then help the 

metaheuristic technique to direct its search. This process 

will be continuously performed throughout all the 

searching stages (during initialization or during the main 

search) within the metaheuristic algorithm. To understand 

the imaging techniques, we need first to define what we 

mean by image.  Imaging techniques in [1] have been 

tested on multiple optimization functions using COCO 

and have shown a good potential to improve the results. 

A. The image 

Image in imaging techniques concept means capturing 

a certain area in our search space. This captured area 

should be bounded and we refer to that by scope. The 

image has resolution which means the number of pixels, 

here those pixels are referred to be as temporary particles. 

When the image is taken within a certain scope, its pixels 

will be checked against their usefulness based on the used 

imaging technique, if useful, they will be within the 

population and if not, they will be discarded. Every pixel 

has a fitness value and based on that it will be preserved 

and added to the population or discarded [1].  The 

imaging technique can be merged to a metaheuristic 

search as shown in Fig. 2. Fig. 3 shows the extend PSO. 

Capturing images (pixels) in the Figures mean 

instantiating several particles within a certain range but 

without still considering them as particles. The image 

technique then selects some of these to create the initial 

population. Similar thing will be done during the main 

search by selecting certain pixels to be temporary 

particles and then based on that the population will be 

updated. The temporary pixels will be then discarded. 

Initialize swarm 
 

Do until maximum iterations or minimum error criteria 
    For each particle 

      Calculate location’s fitness value 

      If the fitness value is better than pBest 
        Set pBest = current fitness value 

      If pBest is better than gBest 

        Set gBest = pBest 
    For each particle 

      Calculate particle’s new velocity and location  

End Do until 
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Generally, the more is the number of temporary 

particles/pixels, the better is the captured area of the 

search space. 

 

 

Fig. 2. General metaheuristic imaging extension flowchart 

 
Fig. 3. PSO imaging extension flowchart 

B. Imaging Types 

In this research we present various imaging techniques 

that can be incorporated with any metaheuristic algorithm 

which starts from initial population. We consider five 

types, out of which four are used during the initial 

population and one used during the main search. The four 

used for the initial population are  Starry Night (SN), 

Fireworks (FW), Lanterns (LN) and the Grid (GRD). The 

first three imaging types are given in [1], whereas the 

fourth one is a new proposal,  The fifth imaging type is 

used during the main search and called Connecting the 

Dots (CDT) [1]. 

 Starry night  

This technique is applied during the generation of the 

initial population generation. Fig. 4 shows the SN 

mechanism. 

 

 

Fig. 4. Starry night (SN) imaging technique 

Starry night technique is quite simple in a way that one 

global image represents the search space and as many as 

possible number of pixels are generated. For every 

generated pixel, a fitness value is computed. Those pixels 

with high values are selected to form the initial 

population and the rest will be ignored. One major 

parameter in this technique is the number of generated 

pixels in the scope of the image [1]. 

 Fireworks 

This technique is applied during the generation of the 

initial population generation. Fig. 5 depicts the 

mechanism of FW. 

 

 
Fig. 5. Fireworks (FW) imaging technique 

This technique can be summarized as below: 

 

a. Follow the same procedure used in SN by having 

one global image and generation of pixels. 

b. Create some equal sized local images within the 

scope of the global image. 

c. Form the population from the best pixels in the 

local images and the global image. 

 

As done with SN technique for every pixel a fitness 

value is obtained and then those with the best values are 

selected as the initial population and the rest will be 

ignored. In this technique we have several parameters 

such as number of pixels in the scope of the global image, 
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number of pixels in the scope of local images and number 

of equal sized local images [1]. 

 Lanterns 

This technique is applied during the generation of the 

initial population generation. Fig. 6 shows the mechanism 

of LN.  

 

 

Fig. 6. Lanterns (LN) imaging technique 

In this technique no global image is captured first but 

instead many local images with equal sized are taken. 

The fitness value for every pixel is computed then those 

pixels from the local images form the population. 

Parameters necessary for this technique are number of 

local images (scopes) and number of pixels in each the 

local image [1]. 

 The grid 

This technique is used in initial population generation. 

Fig.7 shows the mechanism of GRD. 

 

 

Fig. 7. The grid (GRD) imaging technique 

The Grid technique is a bit more elaborate than the past 

introduced techniques. In this technique the search space 

is divided up into as many equally sized zones as possible 

and full scope images of each zone are captured. The 

biggest limitation to this technique is the number of 

dimensions, since the number of zones resulting from 

bisecting every dimension would exponentially increase. 

Because of that, the technique was modified to accept as 

an input a random number of dimensions to bisect instead 

of bisecting every dimension in the search space. For 

each image captured, an average of the fitness value of 

pixels inside each zone is calculated, with the resulting 

average made to represent the quality of zone. After that, 

pixels from the best zones were used to initialize the  

 

 

 

population and the rest were discarded. The main 

parameters of this technique are number of dimensions to 

bisect, number of zones which is equivalent to 2
n
, where 

n is the number of dimensions to bisect, and number of 

pixels to generate per zone image. 

 Connecting the dots  

This technique is applied during the main search or 

what so called during exploration phase. Fig. 8 depicts 

the CDT technique [1]. 

 

 

Fig. 8. Connecting the dots (CDT) imaging technique 

In this technique the used population is to be updated, 

the process starts by choosing the best particles from the 

population and then around each of these particles a local 

image is formed given that the selected particle location 

is the center of the image. Specifying the selected 

particles, pixels around each of the center particle within 

the image scope are generated and the fitness value for 

each is calculated, if any pixel within the image is having 

a better fitness value than the particle, the new pixel will 

be the center of a new image and it replaces the old 

particle in the population.   The low-quality pixels will be 

ignored. Parameters involved in this technique are 

number of the best particles to be selected and number of 

pixels to be generated around the particle.  

 

III.  THE EXPERIMENTATION 

As a case study, the imaging techniques coupled with 

PSO as a metaheuristic technique are used to tune ANN 

weights and biases for multiple neural networks trained 

against several datasets. Following, is a description of the 

conducted experiments. 

A. The datasets 

In this research, multiple datasets with varying 

numbers of records, input attributes, and output objects to 

classify are utilized. In total, there are seven datasets 

which were obtained from the popular UC Irvine’s 

machine learning repository [8]. 

The datasets are formatted as csv files where each row 

contains a set of input attribute values and a class output 

identifying that object. Table 1 highlights the basic 

information related to these datasets. 
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Table 1. Datasets basic information[8] 

Dataset # Attributes # Classes # Instances 

Iris 4 3 150 

Seeds 7 3 210 

Glass 9 6 214 

Zoo 16 7 101 

Yeast 8 10 1484 

Cars 7 4 1728 

Landsat 36 6 6435 

B. Experiment methodology 

The imaging techniques are to be used to gather 

information about the search space and support the search 

effort of a given metaheuristic during the phases of 

population initialization and the main search phase as 

shown in Fig.  9. In this research the imaging techniques 

are used to support PSO in tuning the weights and biases 

of a set of neural networks trained as classifiers for 

several datasets. Fig. 10 demonstrates how the imaging 

techniques are integrated with PSO. 

In total, 10 scenarios were formulated for 

benchmarking and comparison, these are: 

 

1) Apply none of the imaging techniques (i.e. only 

apply PSO to train the network), this is referred to 

as the “Regular” case. 

2) Apply SN 

3) Apply FW 

4) Apply LN 

5) Apply GRD 

6) Apply CDT 

7) Apply SN and CDT 

8) Apply FW and CDT 

9) Apply LN and CDT 

10)  Apply GRD and CDT 

 

The evaluation of the results is carried as follows: For 

the criterions of training dataset classification accuracy, 

test dataset classification accuracy, and training runtime, 

each scenario is benchmarked for a total of 20 times per 

dataset and the accuracy scores for each dataset is 

averaged separately. These averages will be considered as 

the final scores for the scenario. In the end, the three 

criterions results for each scenario is compared to the rest 

of the other scenarios per dataset as well as the overall 

performance of each across all datasets. 

C. Experiment parameters 

In this section, the parameter values for each of the 

elements in the experiment are presented. 

Before commencing, it needs to be mentioned that the 

codebase is derived from the work of McCaffrey [19]19 ] 

on a tutorial explaining how to apply PSO on neural 

networks to solve a classification problem of a subset of 

the Iris dataset (30 records), and that several parameters 

from the original codebase were maintained such as 

PSO’s inertia, personal and social weight parameters. 

 

 PSO parameters 

 Number of particles: 50 

 Number of iterations: 100 

 

The above parameters basically result in allowing PSO 

a total of 5000 examined solutions in the search space, 

which should give PSO at least some chance to explore 

the search space. 

 

 Inertia weight: 0.729 

 Personal weight: 1.49445  

 Social weight: 1.49445 

 

With the Personal and Social weights discussed in 

section I-A being equal, PSO would give equal 

importance to acting cooperatively to explore the search 

space as well as independently.  

 Neural network parameters 

Th neural network parameters are: the input layer 

number of inputs, number of hidden layers which was 

limited to one, number of neurons per hidden layer, and 

number of neurons in the output layer. These parameters 

will vary from one dataset to another depending on the 

number and type of input attributes, as well as depending 

on the number and type of possible output classes. 

 

The listed parameters determine the number of 

dimensions in the search space as follows: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 = (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡𝑠 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒𝑠) +
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 ∗
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒𝑠) +
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒𝑠 +
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 𝑛𝑜𝑑𝑒𝑠                                  (1) 

 

Table 2 presents the parameter values used for each 

dataset.  

Table 2. Neural network dataset parameters 

Dataset Dataset Size  
(N.O. Records) 

Inputs Hidden 
layer 

nodes 

Output 
layer 

nodes 

Iris 150 4 6 3 

Seeds 210 7 6 3 

Glass 214 9 7 6 

Zoo 101 16 9 7 

Yeast 1484 8 6 10 

Cars 1728 11 6 4 

Landsat 6435 36 4 6 
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One further note, when a dataset is loaded into the 

program its records are randomized and split 70% to be 

used as a training dataset and 30% to be used as a test 

dataset. 

 Imaging techniques’ parameters 

To keep things somewhat even, the parameters were 

selected on the basis that the use of any of the proposed 

imaging techniques (SN, FW, LN, GRD, CDT) would 

yield a total of around 500 pixels or temporary particles. 

And to compensate for the overhead resultant from using 

these imaging techniques, an extra 10 iterations were 

added to the “Regular” scenario, denoted by R-110, when 

benchmarking against single imaging technique scenarios 

(10 iterations * 50 particles in population per iteration = 

500 particles), and an extra 20 iterations were added to 

the “Regular” scenario, denoted by R-120,  when 

benchmarking against dual imaging technique scenarios 

where two imaging techniques are applied (20 iterations * 

50 particles in population per iteration = 1000 particles). 

In Table 3, the parameter values for each imaging 

technique are presented. These parameters were selected 

based on some trial and error and should be suitable for 

the experiment.  

 

IV.  EXPERIMENT RESULTS AND ANALYSIS 

In this section, the results of the experiments related to 

each dataset are shared in terms of training data accuracy 

results, test data accuracy results and program runtimes. 

Each dataset has been used for 20 times with every 

scenario, and the average of these runs has been taken as 

the scenario performance using that dataset.  

Table 3. Imaging technique parameters 

Technique Parameters Total  
Pixels 

SN No. global scope image pixels: 500 500 

FW No. global scope image pixels: 400 

No. local scope images: 20 
No. pixels per local image: 5 

local images radius as a percentage of 

dimension size: 5% of the search space 

500 

LN No. local scope images: 100 
No. pixels per local image: 5 

local images radius as a percentage of 

dimension size: 5% of the search space 

500 

GRD No. dimensions to bisect: 8 

No. zones: 2^8 = 256 
No. pixels per zone image: 2  

512 

CDT No. PSO particles to apply the technique 

on: 1 

No. pixels to generate around each 
particle: 5 

local images radius as a percentage of 

dimension size: 5% of the search space 

500 

A. Training data accuracy results 

For the training, the imaging techniques have overall 

produced better results than both regular cases R-110 and 

R-120. Fig.  12 and Table 4 summarize these results. 

FW seems to have performed best during the training 

phase of the neural network both when used alone as well 

as when combined with CDT, which shows the 

effectiveness of an imaging technique that combines 

global imaging of the search space with local images of 

promising areas in the global image simulating the 

zooming effect of a telescope. 

The best results overall were scored using the 

FW+CDT dual imaging technique, which demonstrates 

the effectiveness of the use of imaging techniques during 

both the phases of population initialization and during the 

main phase of the metaheuristic. 

The worst overall scores in both single and dual 

imaging technique scenarios were scored by R-110 and 

R-120. In fact, R-120, intended for comparison against 

dual imaging techniques, was even outperformed by 

single imaging technique scenarios. This demonstrates 

how the use of any imaging technique could perform 

better than not using any. And, the average of R-110 was 

also marginally better than R-120 which might 

demonstrate that when relying only on PSO and on 

random initial populations it does not guarantee better 

training accuracy scores even with the additional 10 

iterations in R-120. 

 

 

Fig. 12. Overall dataset training data accuracy  results(%). 

B. Test data accuracy results 

For the testing, overall, the imaging techniques have 

produced better results than both regular cases R-110 and 

R-120. Fig.  13 and Table 5 summarize these results. 

It has been noted that each of the dual techniques 

performed better than the corresponding single technique 

(e.g., GRD+CDT is better than GRD alone), which 

indicates the importance of CDT to improve the 

performance. An additional noted remark is that FW has 

again scored best as a single imaging technique, which is 

consistent with the previous training dataset accuracy 

scores and shows the effectiveness of this imaging 

technique. However, GRD+CDT has scored best in the 

case of dual imaging technique scenarios. 

Still, the difference in accuracy between the first three 

top approaches was minor (i.e., the difference between 
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the lowest and highest is 0.57) an the shift in the order of 

some scores between the training phase and the testing 

phase is not necessarily unexpected since it could be 

influenced by such things as the quality of the datasets 

used and the disparity between the data in the training 

datasets and the test datasets. The worst scores in both 

single and dual imaging technique scenarios were again 

scored by R-110 and R-120. Again, R-120, intended for 

comparison against dual imaging techniques, was even 

outperformed by all single imaging technique scenarios. 

This demonstrates how the use of any imaging technique 

could perform better than not using any, and since R-110 

had overall better accuracy scores than R-120 in the 

training phase, it has again produced better scores in the 

testing phase. 

Table 4. Datasets training data accuracy results summary(%) 

Data R-110 SN FW LN GRD CDT 

Iris 100.00 100.0 100.0 100.0 00.00 100.0 

Seeds 97.59 97.52 97.93 98.19 97.49 98.53 

Glass 69.33 71.41 71.36 69.27 69.57 71.77 

Zoo 87.89 91.34 92.76 88.59 88.94 90.14 

Yeast 49.70 50.33 51.42 51.69 51.59 52.51 

Cars 82.78 83.17 84.05 84.19 83.07 83.64 

Land 78.00 76.70 78.92 77.40 76.36 78.30 

Avg 80.75 81.50 82.35 81.33 81.00 82.13 

 
Dataset R-120 SN + 

CDT 

FW + 

CDT 

LN + 

CDT 

GRD + 

CDT 

Iris 99.42 100.0 100.0 100.0 100.00 

Seeds 97.97 98.46 98.88 97.90 98.09 

Glass 67.93 70.39 71.54 70.97 70.87 

Zoo 87.02 90.22 91.05 91.98 88.60 

Yeast 50.10 51.01 51.43 52.14 51.36 

Cars 82.05 85.81 85.64 84.56 85.02 

Landsat 75.03 80.10 79.11 78.45 80.37 

Avg 79.93 82.28 82.52 82.28 82.04 

Table 5. Datasets test data accuracy results summary(%) 

Data R-110 SN FW LN GRD CDT 

Iris 91.65 91.87 92.09 91.65 91.87 91.33 

Seeds 91.61 91.61 92.01 90.50 91.30 91.93 

Glass 58.45 60.47 58.83 58.66 59.06 59.45 

Zoo 79.84 82.50 82.17 79.00 80.66 80.01 

Yeast 43.85 44.64 44.47 45.99 45.61 46.39 

Cars 77.13 78.07 78.46 79.63 77.54 78.04 

Land 76.52 74.99 77.48 76.02 74.86 77.10 

Avg 74.15 74.88 75.07 74.49 74.41 74.89 

 

Data R-120 SN + CDT FW + 

CDT 

LN + 

CDT 

GRD + 

CDT 

Iris 91.67 91.87 91.76 91.10 91.65 

Seeds 91.22 92.25 91.30 90.90 91.77 

Glass 56.48 58.51 59.77 59.21 58.82 

Zoo 80.50 82.17 80.67 80.34 84.67 

Yeast 44.18 45.40 45.40 46.06 45.12 

Cars 76.64 80.35 80.04 78.52 79.37 

Land 73.43 78.98 77.71 77.34 79.20 

Avg 73.44 75.65 75.23 74.78 75.80 
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C. Runtime Results 

The program runtimes (representing the average neural 

network training time over the course of 20 runs per 

scenario) were perhaps harder to gauge since they may be 

affected by such factors as code efficiency and machine 

performance hiccups and that could cause some minor 

noise in runtime scores.  

 

 

Fig.13. Overall dataset test data accuracy results(%). 

Still, the imaging techniques were noted generally to 

have achieved better runtimes than their regular technique 

scenario counterparts across all datasets with some 

exceptions. Fig.  14 and Table 6 summarize these results. 
The trio of SN, FW and LN have scored the best runtime 

scores both when used alone as well as when combined 

with CDT achieving similar results due to their similar 

implementations. This demonstrates that these imaging 

techniques are less costly to use in addition to tending to 

produce better results when compared to the regular case 

of using PSO alone. In contrast GRD and CDT on 

average did not perform better than R-110 and R-120 but 

were marginally close. 

 

 

Fig. 14. Overall dataset training runtimes (milliseconds) 

 

 

 

V.  RESEARCH CONCLUSIONS AND FUTURE WORK 

This research proposed the idea of imaging the search 

space to gather information about that space and support 

the search effort of a given metaheuristic during the 

phases of population initialization and the main search 

phase. Furthermore, a set of basic experimental imaging 

techniques were devised, four of which are used during 

the initialization phase of a metaheuristic, namely starry 

night (SN), fireworks (FW) lanterns (LN) and the grid 

(GRD). The fifth technique (CDT) is used during the 

main search phase of a metaheuristic. SN is based on 

taking a single global scope image of the search space 

that is as high resolution as possible. FW is based on 

taking a single global scope image of the search space 

followed by several localized images around points of 

interest from the global image. LN is based on taking 

localized images all over the search space. GRD is based 

on dividing the search space into several equally sized 

zones and capturing images of these zones. CDT is based 

on incrementally taking several images with the first 

image being revolved around some particle in the PSO 

population and the following images being revolved 

around any pixel with better quality.  

To validate the idea and evaluate the devised imaging 

techniques, the techniques have been applied on a particle 

swarm optimization metaheuristic used to tune the 

weights and biases of multiple neural networks trained to 

classify objects found in a total of seven different datasets 

(The iris dataset, the seeds dataset, the glass dataset, the 

zoo dataset, the yeast dataset, the cars dataset and the 

landsat dataset) and the performance of the imaging 

techniques was compared to the use of PSO alone to train 

the neural networks, both when each of these techniques 

is used alone (single imaging technique scenarios) as well 

as when any of the initialization imaging techniques SN, 

FW, LN, or GRD are combined with the main phase.  

The experimentations show that the imaging 

techniques demonstrate better performance than only 

using PSO alone in terms of training and testing accuracy 

of the results vs the runtime cost of applying these 

techniques. However, perhaps in part due to the 

simplicity of the experimental imaging techniques, the 

improvements were not too significant and repeated 

experiments did not guarantee consistent results every 

time. Among the techniques, it seems that the FW 

imaging technique or FW+CDT is best since it combines 

elements of global imaging and local imaging for a 

zooming effect on points of interest like that of a 

telescope. It is to be noted, despite that FW did not 

outperform the other techniques all the time, it has done 

well in most of the cases which makes it suitable for a 

wide range of problems. For future work, there are many 

research possible directions related to the proposed 

concept of imaging such as developing new imaging 

techniques (e.g. developing a negative imaging technique 

inspired by the opposite based learning technique),  
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Table 6. Datasets runtime summary (milliseconds) 

Data R-110 SN FW LN GRD CDT 

Iris 1318 1335 1317 1314 1337 1327 

Seeds 1970 1951 1949 1937 1962 1960 

Glass 2960 2944 3018 2940 2971 2959 

Zoo 2199 2182 2183 2212 2208 2194 

Yeast 21790 21683 21718 21708 21907 21930 

Cars 18823 18668 18660 18692 18880 18843 

Landsat 97754 96842 97123 97547 98205 98094 

Avg 20973 20801 20852 20907 21067 21044 

 

Data R-120 SN + 

CDT 

FW + 

CDT 

LN + 

CDT 

GRD + 

CDT 

Iris 1424 1424 1418 1463 1433 

Seeds 2081 2094 2075 2063 2104 

Glass 3206 3203 3210 3197 3227 

Zoo 2421 2373 2370 2403 2400 

Yeast 23909 23728 23710 23729 23927 

Cars 20417 20464 20439 20393 20606 

Landsat 107128 106141 106544 106436 107490 

Avg 22941 22775 22824 22812 23027 

 

extending the basic techniques presented in this research 

with more advanced ideas (e.g. developing a version of 

FW that incorporates multiple zoom levels on points of 

interest in the search space), developing new ways to 

utilize the presented imaging techniques (e.g. applying 

SN,FW or LN during the main search phase of a 

metaheuristic instead of during initialization), 

benchmarking the presented techniques against problems 

other than that of tuning a neural network, and extending 

metaheuristics other than PSO with the presented 

imaging techniques. 
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