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Abstract: In Endodontics, dentists need a good visualization of dental root canals as found in Cone Beam Computed Tomography 

(CBCT) dental volumes to diagnose and prevent the development of some anomalies. These CBCT dental volumes, however, suffer 

from low resolution. In order, to enhance their resolution, we need to apply a super-resolution technique. In this paper, we propose a 

new 3D super resolution algorithm based on a linear model, consisting of a blurring operator and a decimation operator, which is an 

extension of Zhao’s work [1] in 3D, taking the low-resolution volume as an input and producing the high-resolution volume as an 

output. We present a generalization of the 2D Super-Resolution problem into a 3D Super- Resolution problem as we apply it to 3D 

dental volume. Our new Super-Resolution algorithm as applied to dental CBCT volumes is a direct method aiming to get the exact 

solution with a short computation time. Results show an improvement in the resolution of the CBCT in a short time in comparison 

with Zhao’s work, which was applied to CBCT dental volumes slice by slice, [2]. 

 

Index Terms: Super Resolution, Inverse Problems, CBCT, MCT, Endodontics. 

 

 

1. Introduction  

Endodontics requires a full visualization of the root canal to successfully treat the dental pulp cavity. Dentists use 

Cone Beam Computed Tomography (CBCT), a medical imaging technique consisting of X-ray computed tomography 

with conical divergent X-rays rotating around the head of the patient to reconstruct the 3D structure of the teeth. CBCT 

has become increasingly important in implant dentistry for treatment planning and diagnosis. Dentists need a better 

visualization of the canal to diagnose and prevent the development of some anomalies. For this purpose, increasing the 

image resolution should significantly improve the diagnostic ability for a more accurate corrective treatment. The 

reliable technique for imaging the root canal anatomy is Micro computed tomography ( CT ). 

While the benefits of this technique are a high spatial resolution and high contrast 3D images, its disadvantages are 

a limited field of view, with high irradiation doses, a limited access and long acquisition time. Cone Beam Computed 

Tomography (CBCT) is an interesting alternative to CT , as it is able to image the dento-maxillo-facial structures 

using a conic X-ray beam moving around the patient’s head. CBCT has a larger field of view, a reduced acquisition 

time and lower irradiation doses, making it suitable for clinical applications. Despite its numerous advantages, CBCT 

suffers from its insufficient spatial resolution, which prevents it, for the moment, from exploring the root canal system 

quantitatively. The objective of this paper is to evaluate the potential of our new Super-Resolution (SR) method, which 

aims to enhance the resolution of CBCT volumes. It takes the low-resolution volume as an input and produces the high-

resolution volume as an output. A reconstruction-based Super-Resolution (SR) method using total variation 

regularization is evaluated on extracted teeth. The results show the interest of SR in improving the root canal detection 

on CBCT data. 

The remainder of the paper is organized as follows. In Section 2, we present the literature review. In Section 3, we 

present the volume super resolution problem in 3D, the computation of the solution and our algorithm in Section 4. Our 

various experiments and results show the efficiency of the proposed 3D Super-resolution method in Section 5. 

Conclusion is described in Section 6. Finally, we present the proofs of the property of the decimation matrix and the 

property of the blurring matrix. 

2. Related Work 

We introduce the Super-Resolution technique that aims at reconstructing a higher resolution image from observed 

low-resolution images, which are divided into two categories: multi-image super-resolution and single image super-

resolution. Multi-image Super-resolution is a technique consisting of generating a high-resolution image from multiple 

low-resolution images, whereas the Single Image Super-Resolution is a method that generates a high-resolution image 

from its low-resolution image. SR has very different applications: satellite image processing, medical imaging, 
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microscopy image processing, multimedia industry and video enhancement, astrological studies. We focus in this paper 

on single image super-resolution techniques. In the literature, we find three types of single image super-resolution 

techniques: interpolation-based, learning-based and reconstruction based, [3,4]. First, interpolation-based techniques are 

the simplest way to get a high-resolution image based on linear filtering, as it is seen in the nearest neighbor 

interpolation, the bilinear interpolation and the bicubic interpolation, [5,6,7]. Second, in learning-based methods, the 

lost details in a low-resolution image can be retrieved from a dictionary formed by the high-resolution image [3,8,9]. 

The effectiveness of this method is based on the good choice of the training dataset. Recently, deep learning algorithms 

have been used to solve super-resolution problems despite their high computational complexity, [10,11]. These 

algorithms can erase, change or even add some details to the image since they are conceived as a system to make 

decision. It is not trivial to get the good reconstruction. Third, reconstruction based algorithms enforce the constraint of 

having a consistency between the version of the high-resolution image and its low-resolution image according to 

predefined values [12,13]. The problem turns out to be an optimization problem with a specific optimization, and the 

solution is guaranteed. We cite some reconstruction-based methods: the first order gradient-based methods [3,4,14], the 

iterative shrinkage thresholding based algorithms [15], and the proximal gradient methods. Many algorithms rely on the 

Alternating Direction Methods of Multipliers (ADMM) framework, an algorithm that solves convex optimization 

problems by breaking them into smaller pieces, each of which then become easier to handle, such as in [12,16,17,18]. 

The ADMM framework is used when we need to minimize a convex function subject to a condition (usually the 

regularization). In [2], we showed the potential of super-resolution (SR) to enhance the resolution of CBCT images with 

an improvement of the root canal segmentation. We have reconstructed our high-resolution volume by applying a super-

resolution technique (based on reconstruction-based approaches) for every slice. We have developed a 3D super 

resolution technique based on reconstruction-based approaches for enhancing the resolution in CBCT, instead of 

working slice by slice. In the literature, Feng Shi developed a method for 3D super-resolution that considers the low-

resolution volume as a blurred, noisy and down sampled version of the high-resolution volume to be estimated. He 

modeled the low-resolution volume as a 3D tensor. His method takes into consideration two regularizations: the first 

one is total variation, and the second one is low rank regularization. They solve the total variation problem by applying 

a gradient descent method [19]. 

3. Background 

A.  Super-Resolution problem 

We present the Super-Resolution problem in a 3D case: We express y as the low-resolution volume,  

 

y SHx n                                                                               (1) 

 

viewed as a high-resolution volume x , blurred and downsampled with an additive white gaussian noise. 

 
1
,lN

y



l l l l

N m n o                                                                 (2) 

 
1
,hN

x


  .
h h h h

N m n o                                                             (3) 

 

such that x is the high-resolution volume to be estimated, 
1
,lN

n


 n  is an independent identically distributed (i.i.d.) 

(AWGN), S is the decimation matrix, l hN N
S


 and H is the blurring matrix, block circulant h hN N

H


 . This 

property is used in the following references [3,9,20,21]. We can express the H block circulant, which is diagonalizable 

into Fourier, as: 

 
Inv

H F F                                                                             (4) 

 

such that  

{ } h hN N
diag Fh


                                                                  (5) 

 

a diagonal matrix whose diagonal elements are the Fourier coefficients of the first column of the blurring matrix H  

denoted as h  and  

 
* *Inv

H F F                                                                            (6) 
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Some relations:  
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                                                                               (8) 

 

Our goal is to reconstruct the high-resolution volume x from the low-resolution volume y . For this reason, we 

need to solve the super resolution problem:  

 

2

2

regularization
data fidelity

1
( )m in

2
y SH x Ax

x

  
                                                               (9) 

 

We choose to use the total variation regularization: 

 

( )

such that 

TV
Ax x

Ax u

 
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                                                                         (10) 

The problem is rewritten as: 

 

2
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2
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                                                             (11) 

 

With total variation regularization, A  can be expressed as: 

 
3

, , h hN NT T T

h v z
A D D D


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                                                         (12) 

 

Where , ,
h v z

D D D  are three BCCB matrices corresponding to the horizontal and vertical and through z  direction 

discrete differences of a volume. So, , ,
h v z

D D D   can be decomposed in the frequency domain 
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h h
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*

A A could not be invertible; for this reason, we have added a small norm and   becomes: 
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1
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In order to solve problem 11, we need to apply ADMM framework as explained in Algorithm 1. 

The Augmented Lagrangian function associated with this problem is 
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Or equivalently  

 

2

2

2

2

1
( , , ) ( )

2

2

L x u d y SH x u

Ax u d





  
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                                                                (16) 

 

We also need to minimize ( , , )L x u d with respect to x and u  and update the scaled dual variable d iteratively as 

summarized in Algorithm 1. The third step that is updating the HR volume x  can be solved analytically using Theorem 

1. The variable u  is updated at the fourth step using the Moreau proximity operator whose definition is given by: 

 

2

,

arg min ( ) 1
( )

2

x
prox v x v

x
 




                                                        (17) 

 

We start by the l2-l2 regularization in order to solve the first step of this algorithm. We need to solve the first step 

of the algorithm, particularly this equation 

 

2 2

2 2

1
m in

2
y SH x Ax v

x

                                                               (18) 

 

We call it the analytical solution. 

B. Computation of the solution  

We use two basic assumptions about the blurring and decimation operators [1]. These assumptions have been 

widely used for image deconvolution or image SR problems and are necessary for the proposed fast SR framework in 

order to accelerate the computation time of the algorithm. We denote: 

 
*
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Through derivation, we solve this problem, see Equation (18). We get: 
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We show that the decimation matrix S  has the following property in the Fourier Domain: 
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see subsection A). Then, we get: 
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while replacing 
Inv

FSF  by its property and H  

by its expression on Fourier Domain (see Equations 4, 6). In fact, from (20)  
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With  

 

     
l l ld o d n d m

J J I J I J I                                                     (24) 

 

And  
* Inv
FSF Cc                                                                    (25) 

 

Let  

 

         

    

1 1 1 1

1 1

l l l l

l l

T T

d d o o d d n n

T

d d m m

K I I I I

I I

   

 

                                             (26) 

 

     

         

    

 

 

 

*

3

*

3

*

3

*

3

*

3

1

1

1
1 1 1 1

1 1

1
, , , ,

, , , ,

, , , ,

1
, , ,

l l l

l l l l

l l

l l l l

l l l l

l l l l

l l l

d o d n d m

T T

d o d o d n d n

T

d m d m

T

o o o o

T

n n n n

T

m m m m

T

o o n

C c J I J I J I
d

K
d

I I I I
d

I I

I I I I
d

I I I I

I I I I

I I I
d

       

  

      

   

    
   

   
   

    
   

   
 

3

3

, , ,

, , , , , ,  

l l l

l l l l l l

T T

n m m

d

o o n n m m

d

I I I

I I I I I I

 
    

    
 
 

 
        
      

 
 

                               (27) 

 

We get: 
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with 

 * * *
2r H S y A v                                                                     (31) 

 

This solution is hard to be implemented in MATLAB, which requires one more simplified. For this reason, we 

have applied Woodbury’s formula, [1]. 

Theorem 1: When Assumptions 1 and 2 are satisfied, [1] the solution of the problem can be computed using the 

following closed-form expression 
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with equation (31) 
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Proof 1: While applying Woodbury’s formula with: Equation (33),  
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We note  
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We get:  
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So,  
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We obtain a simplified solution that is easy to implement in MATLAB In case  
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This is the computation of the analytical solution, and we have written the algorithm of its computation in 

Algorithm 2. We choose to use the total variation regularization, based on ADMM framework, and we present this 

scheme in Algorithm 1. And we introduce our new 3D Super resolution algorithm based on the ADMM method in 

Algorithm 3. 

 
Algorithm 1: Fast Super-Resolution (FSR) Scheme 
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Algorithm 2: Fast Super-Resolution (FSR) with Volume 

Domain l2-Regularization : Implementation of the 

Analytical Solution (see Equation 11) 

Input : , , , , ,y H S x d  

1
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Output: x  

4. Proposed Algorithm 

Algorithm 3 represents the proposed algorithm. Firstly, we take the low resolution volume as an input with a 3D 

known point spread function, we solve an inverse problem through ADMM framework, and then we find the high 

resolution volume, generated as an output. 
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3 , , ,
1 2 3

d

    
 

 
 

 // Factorization of matrices 

, ,  and D D D
h v z

 

4  
Inv

D F F
h h
   

5  
Inv

D F F
v v
   

6  
Inv

D F F
z z
   

7  
1

* * *

h h v v h h




          

8 Repeat 

9 // Update x  using Theorem 1 

10 ;
l l

u d
h h h

    

11 ;
l l

u d
v v v

    

12 ;
l l

u d
z z z

    

13  * *
;Fr F H S y D D D

h h v v z z
          
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14 

1

* 3 *
;x d I Fr

f N
l

   



     

 
 

 
 

 
 

 

 

15 
1 11

;
l Inv Inv

x F Fr F x
f


 


   

16 // Update u  using the vector-soft thresholding operator 

17 
1 1 1

, , ;
l l l l l l

v D x d D x d D x d
h h v v z z

  
    
 

 

18    
 

 

1
max 0,

2
2

v il
u i v i

v i






 

 
 
 

 

19 // Update the dual variables d  

20   1 1 1l l l l
d d Ax u

  
    

21  1l l   

22 until stopping criterion is satisfied; 

Output: ˆ
l

x x  

 

 

Fig. The architecture of the algorithm 

Output the result 

Solve the inverse problem  
(Equation 11) 

Using ADMM Framework 

Factorize the Difference operators 

Used for the regularization 

 Resize the volume by linear interpolation 

 

Factorize the block circulant matrix  

 Input : Low Resolution Volume , point spread 

function , blurring matrix , decimation matrix 

, Difference operators, total variation parameter  

Update  using 

Equation (37)  

Update  using the 

vector-soft thresholding 

operator  

Update  the dual 

variables . 

Use the property of  the decimation matrix 

(Equation 21) 
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5. Experiment simulation and result analysis 

This section shows the efficiency of the proposed Fast 3D Super- Resolution method. All the experiments were 

performed using MATLAB 2018a on a computer with Windows 10, Intel(R) Core(TM) i7-5500U CPU @2.40GHz and 

12GB RAM. The performances of the SR algorithms are evaluated both visually and quantitatively in terms of the 

following metric: peak signal-to noise ratio (PSNR). The definition of this metric, widely used to evaluate image 

reconstruction methods, is given below: 

 Peak Signal to Noise Ratio:  

 

 
10

2

max ,
20 log

x x
PSNR

x x





                                                                      (41) 

 

where x and x̂ are the ground truth (reference / HR volume) and the restored SR volume, respectively. First, we present 

the result on a C T  Incisor tooth with a total variation regularization. We tried different values of the TV 

regularization parameters  ,   and found the optimal ones. The computing time is less than 50 seconds (fig.1.). Then, 

we present the CBCT volume, considered as low-resolution, which is blurred and decimated, and we obtain the CBCT 

SR volume with a total variation regularization (fig.2.). We tried to define the convenient point spread function with the 

optimal total variation regularization parameters. In fig.4. we show the horizontal, sagittal and coronal slices for CBCT 

SR that only 3D Super-Resolution techniques can provide. Finally, in figures 5 and 6, we show that our 3D Super-

Resolution method gives higher PSNR compared to the 2D method with an approximately similar timing, and after a 

few number of iterations our algorithm converges. 

Table1. Parameters Used While Applying Our Method on A MCT Incisor with a TV Regularization. 

Parameter Value 

Tau 0.01 

Mu 0. 5 

Size of the low-resolution 

volume 

150*150*150 

Size of the point spread 

function 

5*5*5 

Size of the noise 150*150*150 

Tolerance 1e-3 

Table2. Parameters Used While Applying Our Method on A CBCT Incisor with a TV Regularization. 

Parameter Value 

Tau 0.03 

Mu 0.15 

Size of the low-resolution 

volume 

75*75*75 

Size of the point spread 

function 

7*7*7 

Size of the noise 75*75*75 

Tolerance 1e-3 

 

 
Fig.1. Result of Incisor tooth with a total variation regularization. 
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Fig.2. Result of CBCT Incisor tooth with a total variation regularization. 

 

Fig.3. Result of CBCT Incisor tooth with a total variation regularization.  

 

Fig.4. Result of CBCT Incisor tooth with a total variation regularization: Horizontal, Sagittal and Coronal Slices. 

 

Fig.5. Result of MCT Incisor tooth with a total variation regularization, 2D method. 

 
Fig.6. Result of MCT Incisor tooth with a total variation regularization, 3D method. 
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Fig.7. Result of the PSNR of MCT Incisor tooth with a total variation regularization, 2D method (left), 3D method (right). 

 
Fig.8. Result of MCT Incisor tooth with a total variation regularization, 3D method 

 
Fig.9. Result of MCT Molar tooth with a total variation regularization, 3D method 

 
Fig.10. Result of MCT Molar tooth with a total variation regularization, 3D method 

 
Fig.11. Result of MCT Molar tooth with a total variation regularization, 3D method 

In figure [1], we present The MCT Incisor Volume, we blur it and down sample it and we reconstruct it through 

our Direct ADMM 3D Method and FSR ADMM 3D Method. The results are similar to the MCT Incisor Volume. All 

the parameters are summarized in Table [1]. In figure [2], we used CBCT Incisor volume, considered as low-resolution 

volume, we got the high resolution volume by using our 3D SR method, Direct ADMM in 3D and FSR ADMM in 3D. 

We can see the enhancement of the resolution. All the parameters are described in Table [2]. In figure [3], we can see in 

this result the reconstructed high resolution volume seen by different directional slices. In figure [4], we show all slices 
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of the reconstructed high-resolution volume: horizontal, sagittal and coronal slices. In figure [5], we show in this result 

the PSNR and the computing time of the FSR algorithm slice by slice taking MCT images (slice by slice) as input. In 

figure [6], we show the PSNR and the computing time of our FSR algorithm taking MCT volume as input. We can see 

in figure [7] that with our method the PSNR is greater than the method slice by slice with approximately same timing. 

In figures 8, 9, 10, 11 we show the effect of our super resolution technique on different types of dental volumes. 

6. Conclusion 

This work presents a 3D super-resolution method based on a linear model that is formed by a blurring operator and 

a decimation operator, both having some properties in Fourier leading to an acceleration of the computational time of 

the algorithm. We have successfully applied this method to a dental medical volume, in order to enhance the resolution 

of CBCT dental volumes, which helps to detect the root canal anatomy, containing the full information of the health of 

the tooth. In this method, we use total variation regularization to smoothe the solution. In future research, we could 

apply another type of regularization such as wavelets. We could also modify the modelization of the problem or work 

with blind approaches in order to estimate the point spread function in our further research. 

Appendix 

Property Of The Decimation Matrix 

In this subsection, we present the proofs of the properties of the decimation matrix in 1D, 2D and 3D cases. 

Reminder: The mask 
*

S S  is a mask of size 
h h

N N  having ones at the sampled positions and zeros elsewhere. In 

Superfast joint demosaicing and super-resolution, Glazitov et al [22] present an explicit form of the decimation matrix 

S . 

Proof 2: An operator that downsamples a vector of size n  by a factor d  is written as: 

 

1,

T

d n d
d

D I e                                                                          (42) 

 

where 
1,

T

d
e  is the first line of the identity matrix 

d
I . 

In 1D,  

 1,

T

n d
d

S I e                                                                          (43) 

 

   
*

*
*

1,

T

n d
d

S I e                                                                    (44) 

 

     
*

*
*

1, 1,

*

1, 1,

1 0 0

0 0 0

0 0 0

T T

n d n d
d d

T

n d n d d
d

n
d

S S I e I e

I I e e

I

   
       

      
   

 

 

  
 

 
 

                                                  (45) 

 

The proof in 1D is explained in [23]. 

We get, 

 * * 1

l

Inv Inv

d n
FS SF F S SF J I

d
                                                         (46) 

 

Proof 3: The 2D downsampling by a d  factor becomes  
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. 1, 1,n n
d d

T T

d d d d d d
D D D I e I e                                                     (47) 

 

   1, 1,n n
d d

T T

d d
S I e I e                                                              (48) 

 

   

   

   

*

*

1, 1,

* *

1, 1,

1, 1,

n n
d d

n n
d d

n n
d d

T T

d d

T T

d d

T T

d d

S I e I e

I e I e

I e I e

 
   
  
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   
      

   
   
      

                                                   (49) 

 

 

*

1, 1, 1, 1,

1, 1, 1, 1,

1, 1, 1,

n n n n
d d d d

n n n n
d d d d

n n n n
d d d d

T T

d d d d

T T

d d d d

T

d d d

S S I e I e I e I e

I e I e I e I e

I I e e I I e

          
          
          

          
          
          

    
    
    

      

      

        1,

1 11 11 1 1 1

T

d

d dn nd d
d d

e

E E E E E E
   
   
   

    

 

 
 

   

   

      

       

                                 (50) 

 

     

    

   

   
1 1

l l

InvInv

i i i i

Inv Inv

i i i

Inv Inv

i i

d n d n

F E E F E F E F

E F E F F E F

F E F F E F

J I J I
d d

  

 

 

   
      
   

                                                 (51) 

So, 

 

   * *

2

1

l l

Inv Inv

d n d n
FS SF F S SF J I J I

d
                                                   (52) 

 

And our contribution is that we extend this property to 3D. The 3D downsampling by a d  factor becomes 

 

, ,

1, 1,

1,

d d d d d d

T T

n d n d
d d

T

n d
d

D D D D

I e I e

I e

  

   

 

                                                    (53) 

 

We justify the property of the decimation matrix in 3D: 

 

     3

1

l l l

Inv

d o d n d m
FSF J I J I J I

d
                                                (54) 

 

Proof 4: We consider the size of our volume: m n o    and 
l

m m d  , 
l

n n d  ,  and, 
l

o o d  .  
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     

, ,

1, 1, 1,

1, 1, 1,

1, 1, 1,

 
l l l

d d d d d d

T T T

m d n d o d
d d d

T T T

m d n d o d

T T T
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d d d

S D D D D
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I e I e I e
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                                                (55) 
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So,  
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Property Of The Blurring Matrix 

H  from the 3D convolution is circulating per block, diagonalizable in Fourier, Equation (4) 

Proof 5: In his course about Discrete Fourier Transform, André Eberhard [24], states the following property: The 

product of two circulating matrices that are associated to a vector is the circulating matrix that is associated to the 

periodic convolution product of these vectors. In fact, the circulating matrix relative to a filter h  is written:
h

C , so 

 

 
( )

Inv

h F h
FC F D ,                                                                     (60) 

 

with D  the diagonal and the following properties are verified: 
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Inv
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In our case: 
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We want to prove that M is circulating per block: 
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because the Fourier transform of the periodic convolution product of two vectors is the product of the Fourier 

Transform of both of the vectors. 
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