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Abstract—A decomposition-based optimization 

algorithm was proposed for solving Earth Observation 
Satellites scheduling problem. The problem was 
decomposed into task assignment main problem and single 
satellite scheduling sub-problem. In task assignment phase, 
the tasks were allocated to the satellites, and each satellite 
would schedule the task respectively in single satellite 
scheduling phase. We adopted an adaptive ant colony 
optimization algorithm to search the optimal task 
assignment scheme. Adaptive parameter adjusting strategy 
and pheromone trail smoothing strategy were introduced to 
balance the exploration and the exploitation of search 
process. A heuristic algorithm and a very fast simulated 
annealing algorithm were proposed to solve the single 
satellite scheduling problem. The task assignment scheme 
was valued by integrating the observation scheduling result 
of multiple satellites. The result was responded to the ant 
colony optimization algorithm, which can guide the search 
process of ant colony optimization. Computation results 
showed that the approach was effective to the satellites 
observation scheduling problem. 
 

Index Terms—Earth Observation Satellites, 
decomposition, adaptive ant colony optimization, heuristic 
algorithm, very fast simulated annealing 

I. INTRODUCTION 

Earth Observation Satellite is a kind of satellite which 
uses its optical or other remote sensing imaging 
equipment to observe ground targets and generates 
corresponding images. The satellite’s routing job is 
controlled by uplink instructions which are transformed 
from schedules generated by the ground systems. Imaging 
satellites scheduling means to assign satellite resource and 
execution time to imaging tasks under the satellite 
operational constraints in order to maximize the number 
of tasks that could be completed [1].  

The satellite imaging process can be shown as figure 1. 

Restricted by its orbit, a satellite will pass a ground target 
for limited times, and imaging operation must be executed 
within time windows that the satellite can catch sight of 
the target. For a target which is deviated from the ground 
trace of the satellite, the satellite or the sensor onboard 
must roll itself to aim at it. If the roll angles for different 
targets are not the same, the satellite must switch its 
attitude between different imaging activities, thus 
requiring enough transition time left. For example, there is 
not enough transition time between imaging of target B 
and target C, so only imaging target B after target A or 
imaging target C after target A is possible. 
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Figure 1.  Satellite Imaging Process 

Therefore, scheduling of a imaging satellite can be 
regarded as a single machine scheduling problem with 
time window constraint and setup time correlative with 
task order[2]. The problem was proved to be NP-hard[3], 
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and was solved mainly by heuristic algorithm[4,5], 
neighborhood search algorithm[6-8], and meta-heuristics 
such as genetic algorithm[9]. 

As the number of imaging satellite continually 
increased, multi-satellites imaging scheduling became a 
research hotspot[1,5,7]. Multi-satellites imaging 
scheduling is more difficult than single satellite 
scheduling for the following reasons. First, the number of 
alternative satellites and alternative time windows for a 
imaging task is multiplied, making the combinational 
characteristic of the problem more prominent. Second, 
operational constraints of different satellites may be 
different, making uniform modeling of the problem 
difficult. To cope with these difficulties, most research 
made some simplifications to abstract those common main 
constraints and constructed mix integer programming 
model[5] or constraint satisfaction problem models[1,7]. 
Then approximate algorithms were used to solve the 
models. Such methods were effective in some cases, but 
when problem scale was large, computation time would 
be too long or computation result would be relatively poor. 

In research on the problem of cooperative earth 
observing by multiple satellites, Morris[1] proposed an 
idea which first assigned observation tasks to different 
satellites, then solved single satellite scheduling problem 
for each satellite. The essence of his method was to 
transform multi-satellites scheduling problem into single 
satellite scheduling problem to decrease problem 
complexity and improve computational efficiency. Its task 
assignment process lied in a higher level and would 
greatly affect the scheduling effect, since task assignment 
process divided the tasks into several non-intersecting 
subsets and dissevered the relations among them. But how 
to find a good task assignment strategy to ensure the 
method’s performance is itself a quite difficult problem. 
Morris didn’t give a clear answer for it. 

This paper used Morris’ decomposition idea as a 
reference and decomposed the imaging satellites 
scheduling problem into a task assignment main problem 
and a single satellite scheduling sub-problem. The 
difference was that, Morris’ method assigned tasks to 
satellites only once according to some strategy, while our 
method deemed task assignment as an optimization 
process also, and used an adaptive ant colony optimization 
algorithm (ACO) to generate different task assignment 
solutions. Based on these solutions and the following 
single satellite scheduling processes, we could get 
different complete schedules. Then assessment results of 
these schedules were fed back to ant colony optimization 
algorithm to guide it to find better task assignment 
solutions and complete schedules. Tests on different scale 
problems showed that our algorithm was effective. 

II. MODELING OF IMAGING SATELLITES SCHEDULING 
PROBLEM 

Imaging satellites scheduling problem can be 
described as a quintuple , , , ,E S T C F< > .  is 
scheduling horizon. 

E

{ }1= L, ,
SNSS S is a set of satellites. 

{ }1, ,
TNT T T= L

F

iT

1 1

ijS NN

i ijk
j k

O O
= =

=UU

T

is a set of tasks. C  is a set of constraints. 

 is objective function. Imaging satellite scheduling 
can be classified into long-term scheduling and short-
term scheduling. Short-term scheduling as this paper 
considered requires precise orbit prediction data, so its 
horizon is usually shorter than 24 hours. 

Due to a imaging satellite’s field of view, it can see 
only a strip on the earth at one pass, so big area must be 
segmented to narrow strips along with the satellite’s 
ground trace. For multi-satellites case, different satellite’s 
ground traces may be not parallel, so segmenting target 
areas into small spots that can be observed completely by 
either satellite in one pass is a feasible way. For 
simplification, we assumed that all the observing targets 
were spot targets in this paper.  

Each observing task must satisfy time interval, sensor 
type, ground sample distance or other requirements. For a 
given task, there may be more than one satellite that can 
fulfill it. Each candidate satellite may have several time 
windows with the task in a given time period. Each time 
window means a specific roll angle for the corresponding 
satellite. These time windows and roll angles can be 
obtained ahead of schedule through orbit calculation and 
prediction software.  

For a task , we define all of its time windows as a set 

, [1, , ]Ti N∈ L , 

where N is the number of tasks, SN is the number of 
satellites, ijN is the number of time windows between 
satellite jS and task , is the kth time window. iT ijkO ijkg is 
the roll angle of jS observing  in . is the 
corresponding time interval of . 

iT

ijkO
ijkO

i

[ ,ijk ijkws we ]

p  is the priority of 
. is the imaging duration for .  iT id iT
For a satellite jS , its rolling velocity is jr , the 

stabilizing time needed after rolling is jh , the memory 
needed for unit duration time of imaging is jα , the 
maximum storage capacity is jM , the maximum times of 
imaging operations in the given scheduling horizon 
is jR . ijkx is the decision variable which is defined as 

in time windowk  is scheduled to llite 
e                         

1, tas
0, els
⎧

= ⎨
⎩

 sate j ijki S OT
ijkx

. 

For imaging satellites scheduling problem, the 
following constraints must be satisfied. 

(1) Exclusivity, namely each task should be 
scheduled only once and without interrupt, i.e. 

 , ]
1 1

1,
ijS NN

ijk T
j k

[1,x i N
= =

≤ ∀∑∑ L∈  (1) 

(2) There must be enough time left for a satellite to 
switch its roll angle between two successive imaging 
operations. This time includes transition time and the 
stabilizing time after a switch, i.e. 
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(3) The amount of image data stored onboard 
should not overstep the capacity of memory instrument, 
i.e.  

 ]
1 1
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(4) The times of imaging operations are limited due 
to the satellite’s power and maneuverability constraints, 
i.e. 

 ]
1 1
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k
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i
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To sum up, the imaging satellites scheduling problem 
discussed in this paper is to assign satellite resources and 
imaging time to tasks subjected to the above constraints, 
with an optimization objective of maximizing the sum of 
all the scheduled tasks’ priorities. Thereby, we establish a 
0-1 integer programming model of the problem as 
follows. 

  (5) 
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III. FRAMEWORK OF SOLVING METHOD 

Considering the computational complexity of the 
above model, we propose a solving method based on 
problem decomposition. The original problem is 
decomposed into a task assignment main problem and a 
single satellite scheduling sub-problem. Its framework 
can be shown as figure 2. 

single satellite scheduling

rule of state 
transition

single satellite 
imaging schedule

iterative
search

task assignment 
solution

begin

Task assignment main problem

output the final 
schedule, end 

feed back the 
complete schedule 

pheromone update

single satellite 
scheduling algorithm

integrating multi-
satellites schedule

 
Figure 2.  Framework of Decomposition-Based Solving Method 

In figure 2, the task assignment main problem 
considers a set of tasks { }1, ,

TNT T T= L and a set of 

satellites { }1, ,
SNS S S= L

( )( ( ) )⊆S i S i S

. Task has a set of alternative 
satellites  which not only can satisfy its 
imaging requirements such as ground sample distance, 
sensor type, etc., but also have time windows with it. The 
problem requires assigning a satellite to each task, and 
each task should be assigned to not more than one 
satellite. 

iT

Given a set of tasks 'T which are assigned to satellite jS , 
the sing  satellite scheduling sub-problem requires 
optimally selecting and scheduling tasks under the 
satellite operational constraints in order to maximize the 
number of tasks that could be completed. 

le

The framework adopts adaptive ant colony 
optimization algorithm to solve task assignment main 
problem. In the iterative searching process, as soon as a 
task assignment solution is generated by the ants, it is 
sent to each corresponding satellite to carry on single 
satellite scheduling. The schedules from each satellite are 
integrated to obtain a complete schedule and assess 
performance of the task assignment solution. These 
assessment results are then used to guide ant colony 
optimization algorithm to find better task assignment 
solutions. After a number of iterations, a final optimized 
task assignment solution and corresponding multi-
satellites imaging schedule is acquired. In such a 
framework, the single satellite scheduling module can be 
regarded as the attractiveness calculation function in ant 
colony optimization algorithm. 

IV. ADAPTIVE ACO ALGORITHM FOR TASK ASSIGNMENT 
MAIN PROBLEM 

Ant colony optimization algorithm is originated from 
the swarm behavior of ants searching for food [10]. It has 
already been successfully applied in a serial of difficult 
combinatorial optimization problems. Since its positive 
feedback characteristic and random searching ability are 
outstanding, we construct an adaptive ant colony 
optimization algorithm for the task assignment main 
problem. 

A. Definition of Pheromone and Its Initialization 
In TSP applications, pheromone often denotes the 

probability of getting better route if node j is arranged 
right after node . Similarly in our algorithm, we define 
pheromone as the probability of assigning a certain task 
to a certain satellite, which is in accordance with the 
information that assigning that task to that satellite tends 
to get a better schedule. Let

i

( )S i be the number of 
alternative satellites for task . The probability of 
assigning to satellite

iT

iT jS is defined as ijτ . As initialization, 
the probability of assigning a task to each candidate 
satellite is set to be identical, i.e. 

1(0) , =1, , , =1, , ( )
( )

= L Lij Ti N j S
S i

τ i    (6) 
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B. Construction of Solutions 
When ants construct solutions, an ideal manner is to 

get feasible solutions at any time, meaning that tasks are 
assigned under all the constraints. But computation time 
needed in this manner is too long since imaging satellite’s 
operational constraints are very complex. Besides, 
searching randomicity of ant colony optimization 
algorithm will be affected if feasible solution is required 
each time, thus the algorithm’s performance will be 
degenerated[11]. In order to avoid this defect, we assume 
to consider only the constraint (1) as shown in section II 
when ants constructing solutions, other constraints are 
left for single satellite scheduling module to cope with. 
So in solution construction phase, we only need to select 
a certain satellite for a given task from its alternative 
satellites according to stated rule of state transition. 

We adopt a pseudo-random proportion rule[10] to 
select satellite for a task. Let 0= j

i iσ σ denote that 
task choose satelliteiT 0j to fulfill it. The rule for making a 
choice is as follows: 

 
{ } 01, ( )

max ( ) , if

, other
∈⎡ ⎤⎣ ⎦

⎧ ≤⎪= ⎨
⎪⎩

ijj S i
i

t qτ
σ

φ wise

q
 (7) 

q  is a random number distributed uniformly in [ ]0,1

00 q

, 
is a control parameter for random selection, 0q 1≤ ≤ . 

When , satellite is selected according to amount of 
pheromone. When ,

0q q≤

0q q> φ means to select satellite 
according to the following probability distribution: 

 0
0

1, ( )

( )
Pr( , , ) , [1, ], [1, ( ) ]

( )
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∑

ij
T

ij
j S i

t
i j t i N j S i

t 0

τ
τ

 (8) 

0Pr( , , )i j t  denotes the probability of select satellite 

0j for at time t . iT

C. Pheromone Update 
1) Local Update Rule 
Every time a solution Sol is constructed by the ants, it 

will be sent to single satellite scheduling module, then be 
further repaired (will be explained in section E) to get a 
new solution 'Sol . If 'Sol is better than Sol , pheromone 
would be accordingly updated locally. The update 
manner is as follows: 

'  (9) ( 1) (1 ) ( ) (0) ,+ = − + ∀ ∈j
ij local ij local ij it t Solτ ρ τ ρ τ σ

( )0,1localρ ∈ is a local pheromone evaporation 
parameter. The local pheromone update rule can be seen 
as a diversification mechanism which can avoid getting 
into local optimum too early. 

2) Global Update Rule 
The purpose of global pheromone update is to 

reinforce pheromone of better solutions in order to guide 
the search more intelligent. Elitist strategy uses the best 
solution of each iteration to update pheromone, which 
tends to lead to early convergence[10]. Rank-based 
strategy ranks solutions of each iteration first, then 
updates pheromone according to weighted order 
information[12]. We adopt a best solution queue (BSQ) 

strategy to make global pheromone update. In BSQ, 
several current best solutions are always kept. If better 
solutions are got in iterating process, they will be 
replaced into BSQ. Each time an iteration is completed, 
BSQ will be updated, and pheromone will also be 
updated in term of the following mode: 

( 1) (1 ) ( )+ = − + Δij global ij global ijt tτ ρ τ ρ τ        (10) 
( )0,1globalρ ∈ is a global pheromone evaporation 

parameter, while ikτΔ is the increase amount of 
pheromone calculated as follows: 

1, ( )

( ), if BSQ
( )

0 , otherwise
∈⎡ ⎤⎣ ⎦

⎧ ∈⎪Δ = ⎨
⎪
⎩

∑ j
ir i

r S iij

t
S i
λ τ σ

τ        (11) 

λ  is a pheromone increment factor. 

D. Adaptive Strategy 
Ant colony optimization algorithm bears a 

contradiction of quickly convergence and stagnant 
precocity. The strategies used to improve global search 
ability and avoid early getting in local optimum include, 
combining determinate selection with random selection, 
or change some parameters to dynamically adjust 
pheromone [13,14]. We adopt an adaptive parameter 
adjustment strategy to dynamically suite searching 
process. 

Let parameter  has a domain of {0q }0 0,a bq q , 0 0
a bq q< , 

parameter globalρ  has a domain of { },a b
global globalρ ρ , 

a b
global globalρ < ρ . If the current best solution hasn’t been 

improved after 1δ times of successive iteration, we may 
suspect that the algorithm got in a local optimum, 
following search may not jump out or jump out too 
slowly. At this time,  may be assigned a small value 

, meaning high randomicity of satellite selection, in 
order to improve the possibility of jumping out local 
optimum and realizing a global search. At the same time, 
decreasing

0q

0
aq

globalρ  may reduce corresponding pheromone 
of the current best solution, which will also help to get 
away from local optimum. After a local optimum is 
jumped out, the two parameters will be assigned big 
values and 0

bq b
globalρ  to improve converging speed. 

Besides, since pheromone update is continuously, 
differences between pheromone may be remarkable, 
causing the search process easily got into stagnation. 
Only increasing the probability of random selection or 
change the rate of pheromone evaporation would not lead 
the search process out of local optimum. So, we adopt the 
idea of pheromone smoothing. When the current best 
solution was not improved for successive 2δ times, each 
satellite’s pheromone would be weighted averaged with 
the highest value among them. Such a method will 
minish the differences between pheromone when the 
algorithm get into stagnation, thus be propitious to lead it 
getting out of local optimum. 
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E. Solution Repair 
The above algorithm presents a task assignment result 

each time it generates a solution. After the single satellite 
scheduling is finished, some tasks may not be arranged 
due to satellite capability limitation. We may try to adjust 
them to other satellites, meaning try to insert them into 
another satellite’s schedule list. If an insertion is feasible, 
then the task assignment scheme is accordingly modified. 
This solution repair process can realize fine-tuning for 
the task assignment result and improve the solution 
quality. The detailed process is not complex and is 
omitted here. 

V. THE SINGLE SATELLITE SCHEDULING SUB-PROBLEM 

Single satellite scheduling can be looked upon as a 
single machine scheduling problem with time-window 
constraint and task order dependent set up time. 
Restricted by its orbit, a satellite has only limited imaging 
chances or visible time windows with a given target. 
Thus, single satellite scheduling with short horizon can 
be simplified to a task selection problem[8]. For small-
scale single satellite scheduling problem, even complete 
searching algorithm can be used to get an optimal 
solution. 

By our method, each time the ACO algorithm adopted 
here generates a solution, single satellite scheduling will 
be performed, so single satellite scheduling algorithm 
must be quick enough. We adopted a Heuristic Algorithm 
(HA) and a Very Fast Simulated Annealing algorithm 
(VFSA). Accordingly, we call our decomposition 
optimization method using HA algorithm as ACO-HA, 
while the method using VFSA as ACO-VFSA. 

A. Heuristic Algorithm 
HA selects optimal choices in turn according to some 

heuristic rules in its searching process, so it has very fast 
computation speed and the result is easy to explain. HA is 
an approximate algorithm in common use in satellite 
scheduling. Scheduling of ASTER, SPOT-5 and Landsat 
7 satellite all use this kind of algorithm. Literature [4] 
provided some rules for task selection by synthetically 
considering task priority, sensor parameters and imaging 
quality. We consider conflicts between tasks except for 
task priorities, and define the concept of conflict degree 
for a task. If one task was scheduled, then conflict degree 
of that task would be the sum of the priorities of those not 
scheduled tasks impacted by the scheduled task. Let 
conflict degree of task  be , its calculation 
formula is: 

iT iConflict

j i

i
T ConflictSet

Conflict = p
∈
∑ j            (12) 

iConflictSet  is the set of tasks that could not be 
scheduled because of ’s impact. Conflict degree 
reflects the degree of confliction between one task and 
the others. Based on this concept, our algorithm follows 
such a simple idea: schedule those tasks of small conflict 
with others firstly, with the expectation that more tasks 
will be scheduled. As figure 3 shows, there are conflicts 
between Task2 and Task1 or Task3, if we first schedule 

Task2, then Task1 and Task3 could not be scheduled 
both, so we should schedule Task1 or Task3 firstly. 

iT

 

Task1

Task2

Task3

time
ws1 ws2 ws3we1 we2 we3  

Figure 3.  conflicts between tasks 

Here, conflict between tasks mainly indicates time 
conflict, meaning that if there is not enough transition 
time between two tasks, then we take it for a conflict. The 
process of our HA algorithm is described as follows: 

Step1: order the tasks according to task priorities, 
schedule the task with highest priority first. 

Step2: for tasks with same priorities, calculate their 
conflict degrees, schedule the task with small conflict 
degree first. 

Step3: for tasks with same priority and same conflict 
degree, schedule the task with small roll angle or early 
start time first. 

B.  Very Fast Simulated Annealing Algorithm 
Heuristic algorithm requires in-depth comprehension 

of the problem itself. Since the algorithm selects task 
according to given rules and doesn’t allow backtrack, its 
performance relies heavily on good heuristic rules and 
has no guarantee. To get better single satellite imaging 
schedule, we also try to use a simulated annealing 
algorithm. General simulated annealing algorithm has 
better global search ability, but need adequate 
perturbation and iteration numbers, with deliberate 
annealing plan, therefore its efficiency is still under 
improvement. As said before, in each iteration of our 
ACO algorithm, single satellite scheduling must be 
carried through for each satellite according to task 
assignment result. To avoid unacceptable time cost, 
single satellite scheduling must be quick enough. Ingber 
and some others improved perturbation and annealing 
manner for general SA and proposed a Very Fast 
Simulated Annealing algorithm [16, 17], which greatly 
increased the computation speed. We adopt the VFSA 
algorithm to solve our single satellite scheduling problem. 

1)  Solution encoding 
Considering the neighborhood design, we arrange the 

tasks on each satellite according to the start time of their 
time windows, thus an activity list with time precedence 
is constructed. This method is convenient for setup time 
calculation and other constraint check to ensure new 
solution feasibility. 

Besides, since satellite scheduling is usually an over-
subscribed problem that only part tasks could be 
scheduled, we design a virtual satellite resource, which is 
used to virtually undertake all the tasks that could not be 
assigned to real satellites. The difference between virtual 
and real satellites is that all tasks assigned to virtual 
satellite are not restricted by time window or other 
constraints and their values are zero. Figure 4 is a 
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denotation of solution encoding for a problem including 2 
satellites and 10 tasks. 

1A 2A 3A

1B 2B 3B

 
Figure 4.  denotation of solution encoding 

2)  Model perturbation  
VFSA adopts a pseudo-Cauchy distribution depending 

on temperature to perturb the current model and generate 
new solutions. We construct some neighborhood 
structures according to the problem feature. Moving 
between neighbors will perturb the original model and 
generate new solutions. Perturbations to a solution 
include task changes and task time changes.  

For task change, we adopt the interchangeλ −  method 
or named Swap/shift move method. In detail, we use the 
1-0 node interchange and 1-1 node interchange method. 
1-0 node interchange will insert a task assigned to one 
certain satellite to another satellite when feasible. 1-1 
node interchange will swap the places of two tasks 
originally assigned to two different satellites when 
feasible. For single satellite scheduling, since there is 
only one real satellite and one virtual satellite, this 
method essentially means to swap tasks between real 
satellite and virtual satellite.  

For task time change, we adopt an exchange 
neighborhood, namely randomly switch a task from one 
of its time window to another.  

3)  Acceptance probability 
VFSA adopts such an acceptance probability formula 

according to generalized Boltzmann-Gibbs distribution: 
[ 1/(1 )1 (1 ) / qP q E T −= − − Δ ]                  (13) 

Here, EΔ  is energy difference, namely the difference 
between new solution and original one. q  is a real 
number, different value of  q  means different preference 
of adventuring. Low value of q  means that the 
acceptance probability will take a risk to make some bad 
solutions accepted more likely, while the computation 
speed will be improved, thus the value of  q  must be 
properly selected. When , the acceptance 
probability will be just the same as it of general SA:  

1q →

exp( / )P E= −Δ T                               (14) 
4)  Annealing plan 
Since annealing speed is an important factor to decide 

efficiency of the algorithm, we adopt a fast annealing 
strategy: 

1/

0

Nk
kT = T α                                        (15) 

Here,  is the number of iteration, k α  is the rate of 
temperature attenuation, N  is a given parameter. The 
smaller N  is, the faster temperature descends. Usually, 
it can be assigned a value of 1 or 2. 

5)  Terminate rules 
To cut computation time, we adopt a dual-level 

terminate rule. The outer level is based on temperature, 
while the inner level is based on non-update of solution, 
namely when the current best solution is not improved for 
certain iterations, the search process will terminate. Our 
algorithm will terminate as long as either one of the 
conditions be satisfied. 

VI.  EXPERIMENTS 

Since there are still not acknowledged benchmark test 
problems in satellite scheduling research area, we use a 
random generation method to test our algorithm. The test 
problems are generated according to the following rules: 

(1) Generate targets within an area between north 
latitude 20°~50° and east longitude 70°~130° according 
to a uniform distribution. Requirements of sensor type 
and ground sample distance are ignored. The number of 
targets M is respectively 100, 200, 300, 400 and 500. 

(2) The number of satellites N is respectively 3, 4 and 
5. 

(3) The priorities of tasks are randomly selected 
among [1,10]. 

(4) The time windows between a task and a satellite 
are acquired by the Satellite Tool Kit software [18]. 

(5) Duration of a task imaging activity is 5~9 seconds. 
(6) Different scale problem instances are generated 

through different combination of M and N. 
Our algorithm was realized using C# and VS.net 2003 

and was run on a workstation with configuration of 
Xeon(R) 5160 3.0 Hz CPU and 2G RAM.  

Parameters of VFSA was set to q = -1，α =0.95，
N =1. Parameters of ACO were set as table I shows. 

TABLE I.  PARAMETERS SET FOR ACO 

parameters meaning 

8AntSize =  number of ants 

300MaxIter =  max iteration number 

0.1localρ =  local pheromone evaporation 
coefficient 

0.6, 0.8a b
global globalρ ρ= = min and max value of global 

pheromone evaporation coefficient

0 00.55, 0.85a bq q= =  
min and max value of 

parameter denoting randomicity of 
satellite selection 

1 50δ =  
the iteration number threshold 

for calling adaptive parameter 
adjustment strategy 

2 90δ =  
the iteration number threshold 

for calling pheromone smooth 
strategy 

 
Literature [7] constructed a constraint satisfaction 

problem model for multi-satellites scheduling problem, 
and solved the model using a tabu search algorithm. To 
test the performance of our algorithm, we compared our 
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algorithms with it. The three algorithms were run 10 
times for each problem instance, their avenue results 
which express the total revenue of the observed tasks are 
showed as table II. 

From the results we can find that, in most cases, ACO-
HA and ACO-VFSA are better than TS algorithm. Only 
for three instances 3, 5 and 6, improvements are not 
marked. By analyzing these problems and their solutions, 
we found that satellite resources in these problems are 
relatively sufficient, and the fulfillment rates of tasks are 
high. For example, in problem instance 3, when 100 tasks 
were to be scheduled on 5 satellites, all the tasks could be 
scheduled even using TS algorithm, so advantages of 
ACO-HA and ACO-VFSA would not be visualized. 

Satellites scheduling problems are always over-
subscribed problems, task requirements generally go 
beyond the satellites’ ability, so our algorithm has more 
advantages. Besides, from table 2 we can also find that, 
the more complex our problem is, the better ACO-HA 
and ACO-VFSA are. 

For ACO-HA and ACO-VFSA, we find that ACO-
VFSA is better than ACO-HA. In each iteration, ACO-

HA uses some heuristic rules to schedule tasks on single 
satellite, while ACO-VFSA uses very fast simulated 
annealing to schedule tasks on single satellite, which is 
able to get better single satellite schedule and 
correspondingly get better complete multi-satellites 
schedule. 

As to computation time, we find that TS is faster for 
small scale problems, while with the increase of tasks and 
satellites, computation time required by TS goes up 
prominently. Since ACO-HA uses heuristic rules for 
single satellite scheduling, its performance is not 
evidently affected by the number of tasks and its 
computation time increases almost linearly. Therefore, 
ACO-HA is fitter for big scale problems with rigid time 
requirement. ACO-VFSA uses VFSA for single satellite 
scheduling in each iteration of ACO, so its time 
performance is affected by number of tasks more 
evidently. But even for the most complex test instance, it 
can return the result within 600s, which could be 
accepted in real applications. 

TABLE II.  COMPUTATION RESULTS OF EACH PROBLEM INSTANCE BY DIFFERENT ALGORITHMS 

NO
. M N 

OB
S 

TS ACO-HA ACO-VFSA 
RESUL

T 
CPU(s

) 
RESUL

T 
CPU 
(s) 

GAP(%
) RESULT CPU (s) GAP (%)

1 10
0 

3 289 475.3 4.21 486.6 25.06 2.3774 502.8 45.2 5.7858
2 4 384 514.2 5.64 518.8 35.77 0.8946 524.9 72.36 2.0809
3 5 452 546.4 5.78 546.4 42.06 0 546.4 87.04 0
4 20

0 

3 521 715.7 25.65 735 48.4 2.6967 752.3 88.23 5.1139
5 4 699 844.0 26.5 848.8 63.03 0.5687 855.7 106.98 1.3863
6 5 839 976.1 29.93 980.6 82.70 0.4610 985.2 153.26 0.9323
7 

30
0 

3 802 841.9 43.5 856.2 70.44 1.6985 876.1 116.7 4.0622

8 4 106
3 978.3 73.07 1009.4 92.53 3.1790 1019.8 127.5 4.2421

9 5 129
6 1164.7 85.10 1204 123.65 3.3743 1221.4 188.46 4.8682

10 

40
0 

3 107
4 862.0 120.70 903.6 84.32 4.8260 916.9 225.21 6.3689

11 4 141
5 1022.1 155.75 1080.8 112.44 5.7431 1124.0 262.01 9.9697

12 5 173
7 1236.4 173.43 1294.2 137.92 4.6749 1310.1 346.03 5.9609

13 

50
0 

3 130
0 894.4 226.78 934.6 97.40 4.4946 952.6 477.89 6.5072

14 4 171
6 1077.8 268.84 1119 145.2 3.8226 1144.2 502.81 6.1607

15 5 212
3 1291.9 327.96 1395.8 183.92 8.0424 1452.6 581.53 12.4390

Note: NO. is the number of problem instances; OBS is the sum of all tasks’ time windows predicted by STK in one instance; RESULT is the 
computation result; CPU is the computation time which is measured by second; GAP is the percentage of improvement when computation results are 
compared with TS algorithm. 

 
Besides, in order to test the effect of adaptive strategy 

used in ACO, we solve the instance 15 using ACO-
VFSA with and without adaptive strategy respectively, 
the evolvement of the best solution along with iteration 
number is showed as figure 5. It can be found that ACO-
VFSA with adaptive strategy has stronger search ability 
and can approach best solution quicker. The algorithm 
with adaptive strategy got to optimum at the 77th iteration, 
while the algorithm without adaptive strategy got to a 
local optimum at the 121st iteration and couldn’t improve 
the solution anymore. 
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Figure 5.  evolvement of the best solution for instance 15 

VII. CONCLUSIONS 

This paper proposed an optimization algorithm based 
on decomposition for multi-satellites observation 
scheduling problem. The problem was decomposed into 
task assignment main problem and single satellite 
scheduling sub-problem. We adopted an adaptive ACO 
algorithm to search optimized task assignment scheme 
while a heuristic algorithm and a VFSA algorithm was 
respectively used to solve the single satellite scheduling 
sub-problem. Results of single satellite scheduling were 
used to evaluate and guide the task assignment process. 
In task assignment procedure, only task exclusivity 
constraint was considered, in order to quickly construct a 
task assignment scheme. Other constraints were 
considered in single satellite scheduling procedure, in 
order to ensure feasibility of the solution. Finally, our 
algorithm was proved to have better efficiency through 
some random tests. ACO-VFSA could get better 
schedule while ACO-HA could return the final solution 
more quickly.  

Besides, we found that our ACO-VFSA is notably 
affected by the problem scale. Some parameters also have 
direct impact on the computation result and efficiency. So 
how to select the parameters will be an important factor 
for improving our ACO-VFSA. 
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