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Abstract-Under the background of the deficiencies and 
shortcomings in traditional diesel engine fault diagnostic, 
the naïve Bayesian classifier method which built on the 
basis of the probability density function is adopted to 
diagnose the fault of diesel engine. A new approach is 
proposed to weight the super-parent one dependence 
estimators. To verify the validity of the proposed method, 
the experiments are performed using 16 datasets collected 
by University of California Irvine (UCI) and 5 diesel 
engine datasets collected by our lab. The comparison 
experimental results with other algorithms demonstrate 
the effectiveness of the proposed method.  
 
Index Terms-diesel engine; naïve Bayesian classifier; fault 
diagnosis; one-dependence classifier 

I. INTRODUCTION 

Diesel engine is a complex machine and a 
multi-interference system. The relationship between its 
input and output variables, fault and sign is unobvious 
and uncertainty. Poor working conditions easily lead to 
signal distortion etc. These have greatly increased the 
types of diesel engine fault diagnosis difficulty. In 
recent years, scholars from various countries for the 
diesel engine fault diagnosis methods have made a lot 
of related. 

Bayesian diagnosis is established based on the 
probability density function. Compared to the 
diagnosis based on the failure mechanism, it has 
smaller diagnostic error rates. So it has an extensive 
application. With the development of information and 
automation technology, a lot of running data and 
diagnostic data has been accumulated and it is possible 
to calculate the prior probabilities of Bayesian method. 
However, in many practical fields, the independency 
assumption of Naïve Bayes (NB) does not hold. 
Therefore, many researches are mainly about how to 

use some technology to find a most favorable topology 
among all possible network structures. At present, such 
technologies can be summarized into two categories: 
heuristic search and correlation analysis. To relax the 
independency assumption, the researchers have done a 
lot of work. With the development of modern science 
technology and the degree of automation, diesel engine 
fault diagnostic technique has undergone significant 
changes and Bayesian diagnosis become one of the 
most efficient diagnosis methods.  

Among all these improving approaches, 
One-Dependence Estimators (ODEs) [1] are simple but 
effective classifiers. ODEs are very similar to NB but 
they also allow every attribute to depend on, at most, 
another attribute besides the class. Both theoretical 
analysis and empirical evidence have shown that ODEs 
can improve upon NB’s accuracy when its attribute 
independence assumption is violated. Tree Augmented 
Bayesian Network (TAN) [2] is kind of ODE which 
provides a powerful alternative to NB. Super 
Parent-One-Dependence Estimators (SPODEs) [3] can 
be considered a subcategory of ODEs where all 
attributes depend on the same attribute. L.X. Jiang [4] et 
al adds the parent node for some attributes in Bayesian 
network using conditional mutual information. 
Aggregating One-Dependence Estimators (AODE) 
ensembles all SPODEs that satisfy a minimum support 
constraint [5] and estimate class conditional 
probabilities by averaging across them. This ensemble 
has demonstrated very high prediction accuracy with 
modest computational requirements. However, it is 
based on an implicit assumption that all SPODEs have 
the same or equivalent learning ability. But the leaning 
ability of different Bayesian networks is different. 
Simply averaging all SPODEs may scale up the 
influence of the bad performance classifiers so as to 
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affect the final classification result. WAODE [6] is an 
improvement of AODE. It uses conditional mutual 
information to determine the weight of each SPODE. 
HNB [7] and HODE [8] are another two improved 
versions of AODE. Addressing how to select SPODEs 
for ensemble so as to minimize classification error, 
Yang Y et al [9] proposed five selection methods, 
minimum description length (MDL), minimum 
message length (MML), and leave one out (LOO), 
Backward Sequential Elimination (BSE) and Forward 
Sequential Addition (FSA). Their experimental results 
showed that measuring ensembles outperforms 
measuring single SPODE and model selection for 
SPODE is advisable since the selection makes 
differences. In addition, Li Nan et al [10] take each 
SPODE as a production model and weight each 
SPODE using the fitting degree of the model to data.  

II. SUPERPARENT-ONE-DEPENDENCE ESTIMATORS 
(SPODES) 

Assume D is a set of training instances, 

1{ , }nA A A= K

1

1, , , ,i

is the attributes variable set, where N is 

the number of attributes,  is a class variable, is a 

value of C.  are the attribute value of 

C
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c

, , ,ia aL L

n

n

A AL L A  respectively.  

A SPODE requires all attributes to depend on the 
same attribute, namely the super parent, in addition to 

the class. Let  denote the SPODE with 

super parent At.  will estimate the 
probability of each class label  given an instance 

tASPODE

SP
tAODE

c
X  as follows:  
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Since the above equality holds for every SPODE, 
it also holds for the mean over any subset. An 
ensemble of k SPODEs corresponding to the 
super-parents A1, …, Ak estimates the class probability by 
averaging their results as follows.  
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AODE selects a limited class of 1-dependence 
classifiers and aggregate the predictions of all qualified 
classifiers within this class. To avoid including models 

for which the base probability estimates are inaccurate, 
ensemble of all SPODEs except for those who have 
less than 30 training instances. Hence, AODE classifies 
an instance X  by using the following equality.  
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Where F ( ) is a count of the number of training 

examples having attribute-value  and is used to 
enforce the limit m that we place on the support needed 
in order to accept a conditional probability estimate. In 
the presence of estimation error, if the inaccuracies of 
the estimates are unbiased the mean can be expected to 
factor out that error.  

ia

ia

III. NEW APPROACH TO WEIGHT SPODE 

A data sample of n attributes can potentially have 
n SPODEs, each alternatively taking a different 
attributes as the super parent, as shown in Fig.1. In this 
paper, we consider the diversity of SPODE and its 
corresponding NB and propose a new approach to 
weight SPODE.  

 

 
Fig.1. 4 SPODEs with 4 attributes 

A. Diversity of SPODE and its corresponding NB 
A natural question is that how well a SPODE can 

perform in predictive tests. If the prediction result for a 
test instance by using a SPODE is same with that by 
using NB, we can say that the performance of the 
SPODE is not very well. We would rather use its 
corresponding NB than the SPODE since the structure 
of SPODE is more complex than simple NB and the 
parameter estimation needs more time while the 
performance are the same.  

Definition 1 If a test instance X  is classified 
to the same class by using SPODE and by using NB, 
then we say the performance of SPODE and NB is 
equivalence.  

Definition 2 Suppose there are m classes. Let 
Diver ( , NB) be a  square array such tASPODE m m×

that  is the number of test examples assigned ijverDi

to class  class ic  by tASPODE
 with and to jc  by its 
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corres  | |Diver  be the number of aponding NB. Let ll 

test examples. The  and its diversity of tASPODE

corresponding NB is defined as follows.  
1( )
1tDiff A α

β
−

=
−                         (4) 

Where α  be the probability that the tASPODE
 

and its corr nding NB perform the same, espo β  be the 

probability that the  and its cor ding tASPODE
respon

NB agree by chance. They are respectively defined as 
follows.  
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Further, we have the following discussion.  

When =0, we can getα=1. It means ( )tDiff A

that th  results using and its e classification  tASPODE

corresponding NB are completely same. The two 
classifiers agree on every example.  

When =1, we can get α=β. It means ( )tDiff A

that 
SPODE

 corresponding NB equals that tA and its
expected by chance.  

When >1, we can get α<β. It means ( )tDiff A

that agreement is weaker than expected by chance. In 
another words, the chance of the two classifiers obtain 
the same classification is slim.  

If the diversity between the augmented naïve 
bayes and the simple naïve bayes is small, it has no 
need to expand the network structure of NB. Because 
of the complexity of probability estimation is closely 
related to the network structure.  

From the above discussion, we can get the 
conclusion that the diversity between the augmented 

naïve bays and the simple naïve bays tASPODE

increases ease of the value of Diff(At). with the incr

Therefore, we  as the weight of take ( )tDiff A

tASPODE
.  

B. SPODEs Ensemble 
According to the above discussion, firstly we give 

the definition of the weight of . tASPODE

Definition 3 Let tω  represents the weight of 
tASPODE
.  is define   
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Where is defined in (4) and ( )tDiff A  1
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Since (1) holds for every SPODE, we can 
estimate the probability of each class label  given an c

Xinstance  as follows: 
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The proposed classifier is named WSPODE. 

WSPODE classifies a newly instance using (9) as well.  
 
arg max ( | )

c
P c X

                          (9) 
 

The value of can determine the number of tw  
SPODEs used as wel  as the importance of every l

SPODE. ple, if 0tw =For exam  

and t0( [1, )jw j j],n≠ ∈ ≠ , we actually only select 
1n −  SPODEs. In a extreme case 

when 1

( )
n

i
i

Diff A
=

0=∑
, we will use NB to classify all 

test samples. But this kind of situation is rare. Because 
it means that all SPODE perform exactly the same with 
NB. Every SPODE and its corresponding NB agree on 
every example.  

IV. ALGORITHM DESCRIPTION 

In this section, we describe our algorithm for 
training and inference. During the training phase, the 
goal is to determine the weight of every SPODE using 
(7). The learning algorithm for WSPODE is depicted as 
follows. In classification phase, use (8) to classify a 
newly instance without class label.  
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Algorithm. WSPO E (D) D
Training phase: 
Input: a set D of trainin es g exampl
Output: a Improved Naive Bayesian 

Classifier for D 
Using NB to classify training examples in 

D and store the result;  
Fo n) r each attribute At ( t =1,…，
  here m is   There is a Diver[m][m], w

the number of class labels; 
    For each example l in D delete its 

class label  

        If l is classified to jc  by 
tASPODE  and to by NB (j, k =0,…   kc  ,m-1)

        Then Diver[j][k]= Diver[j][k]+1;
    For j=0 to m-1, k=0 to m-1 

Diver[j][k]= Diver[j][k]/the size of D; 
    Compute α using (5); 
    Compute β using (6); 
    Compute Diff(At) using (4);  
    Compute tω  using (7); 
Sum=0; 

For i=1 to n sum=sum+ iω ; 
For i=1 to n iω = iω /sum;  
 
Classification phase:  
Input: the Improved Classifier built in 

training phase, a newly instance X  
Output: the class label c of X  
For i=1 to m  
    Compute P(ci|X) using (8), the 

parameters are obtained in training phase;  

c=
x ( | )

i
ic

arg ma P c X
.  

 
Assume that the number of training instances and 

attributes are s and n respectively. The number of 
classes is m. The average number of values for an 
attributes is v.  

In order to train the weight of every SPODE, we 

compute Diver ( tASPODE
, NB)

SPODE
 for each tA  

using the training data without the class label. Hence, 

compared to AODE, it needs more ( )o smn time 
complexity.  

In classification phase, the time complexity of the 
WSPODE is o(mn2). It is ju e as AODE. 

TableI.

st the sam

 Time Complexity 
algorithm Training classification

AODE )n   
2(o m 2( )o mn

WAODE 
2( )o sn n+ n 

2( )o m  

LODE ( )o sn sn  
2( )o mn  

E 
2( )o sn smn+

2 +

WSPOD  
2( )o mn  

 

V. EXPERIMENTS 

A. Experimental settings 
(1) Test data 

In this paper, we choose 16 UCI datasets (shown in 
table Ⅱ) and 3 foul diagnostic datasets of diesel 
engine (shown in tableⅢ). WD615 diesel engine valve 
fault sis data simulatio
expe

Analyzer as fig2-5. The 
Dew ron Combustion Analyzer systems are used for 
engine research, development and optimization. Also 
for component development and testing, such as 
ignition systems, exhaust systems and valve control 
gear. Through measuring diesel engine cylinder 
pressure and crank angle, eigenvalues are calculated to 
analysis. 
 

 diagno  is used to de n 
rimental. 
The datasets of diesel engine is got by The 

Dewetron Combustion 
et

 
Figure.2. WD615 diesel engine 

 
Fig.3. Dewetron Combustion Analyzer 

Copyright © 2011 MECS                                       I.J. Image, Graphics and Signal Processing, 2011, 1, 10-16 



14 Study on Diesel Engine Fault Diagnosis Method based on Integration Super Parent One Dependence Estimator  

 

 
Fig.4. Pressure Sensor 

 
Fig.5. Crank Angle  Sensor

All datasets are preprocessed with the help of 
WEKA1 software before using. Use the supervised 
filter Discretize in WEKA to discretize all the numeric 
attributes; Use the unsupervised filter Remove in 
WEKA to remove useless attributes. The discretized 
data 

#

is showed in tableⅣ. 

TableII. UCI datasets 
I
d dataset size C

# 
A
# Id dataset size C A

#

1 breast_ 69w 9 2 9 9 machine 209 7 7

2 car 172
8 4 6 1

0 promoter 106 2 57

diabete 13 ar 208 2 21

4 Fla 6 tic_
oe 2 9

5 flare 2 13 1
3 vote 435 2 16

6 hear 5 9 1
4 vowel 990 1

1 14

7 iris  3 4 1
5

wavefor
m 

500
0 3 19

8 lymph 148 4 18 1
6 zoo 101 7 16

s 768 2 6 1 son

gs 194 30 1
2

tac_t 958 

 138
9  

t_h 294  

150

 

                                                        
/www.cs.waikato.ac.nz/ml/weka/ 

cription 

1 http:/

TableIII. Diesel datasets 
 number Des

size

 100 Nm, 200 Nm, 300 Nm 
400 Nm, collect 2000 cycles’ data 

1600 respectively. The datasets are denoted as Diesel1, 
Diesel2, Diesel3, Diesel4 and Diesel5. Each 
dataset has 2000 records.  

When the load is 0Nm,
and 

.A# 12 
Pressure; phase when energy conversion reaches ⑤
50%; phase of starting burning,; pha⑥ ⑦ se of 
ending burning; phase difference between ⑧
burning start and burning end; ⑨ mean indicating 
effective pressure; net mean effective pressure; ⑩

⑪indicated power 

C# 4 

①Both intake valve clearance and Exhaust valve 
clearance are small; 
②Intake valve clearance is too small; 
③Both intake valve clearance and Exhaust valve 

speed; maximum Cylinder Pressure; phase ① ② ③
of maximum Cylinder Pressure; phase of ④
maximum of rising rate of maximum Cylinder 

clearance are too large; 
④normal clearance.  

 
(2) Validation method 

10 runs of 10-folds CV test for comparing the 
classifier performances. Each datasets are divided into 
10 almost equal-sized blocks randomly, and in each 
validation, one block was used for test data and the 
remaining blocks were used for training classifiers. 
Average all 10 runs as the final results like table Ⅴ.  
(3) Measurement 

Throughout all the tests, we measured the 
classification error rate, i.e., the percentage of 
incorrectly classified instances. 

 

TableIV. partial result of mixed conditions discretization 
nn max1 amax1 adpmax class 

(1796.37-1799.17] (6.05-6.25] B (76.30-76.98] (5.95-6.45] 

(1796.37-1799.17] (75.37-76.30] (6.45-6.75] (7.45-inf) B 

(1796.37-1799.17] (76.30-76.98] (4.65-5.25] (6.05-6.25] B 

(1796.37-1799.17] (76.98-77.45] (4.65-5.25] (6.25-6.55] B 

(1782.78-1791.25] (78.29-inf) (5.95-6.45] (5.55-5.75] A 

(1782.78-1791.25] (77.45-78.29] (6.75-7.15] (5.75-6.05] A 

(1782.78-1791.25] (77.45-78.29] (4.65-5.25] (5.55-5.75] A 

(1782.78-1791.25] (76.98-77.45] (4.65-5.25] (3.55-5.05] A 

(1782.78-1791.25] (77.45-78.29] (5.25-5.95] (5.05-5.55] A 

(1791.25-1796.37] (77.45-78.29] (6.45-6.75] (5.75-6.05] A 

(1796.37-1799.17] (75.37-76.30] (5.25-5.95] (6.55-7.45] C 

(1796.37-1799.17] (75.37-76.30] (6.75-7.15] (7.45-inf) C 

(1796.37-1799.17] (-inf-75.37] (7.15-inf) (6.55-7.45] C 

(1796.37-1799. 45-inf) C 

(1796.37-1799.17] (76.30-76.98] (6.75-7.15] (7.45-inf) C 

(1806.1-1808.80] (76.30-76.98] (7.15-inf) (3.55-5.05] D 

(1806.1-1808.80] (76.98-77.45] (7.15-inf) (6.25-6.55] D 

(1806.1-1808.80] (-inf-75.37] (7.15-inf) (7.45-inf) D 

(1806.1-1808.80] (76.30-76.98] (6.75-7.15] (6.25-6.55] D 

17] (75.37-76.30] (7.15-inf) (7.
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(1806.1-1808.80] (76.30-76.98 (7.15-inf) (7.45-inf) D ] 

(1806.1-1808.80] (76.30-76.98] (5.25-5.95] (6.55-7.45] D 

 
Error rate= number of incorrectly classified 

instances / the total number of instances of prediction.  
(4) Comparison algorithms 

This paper compares the proposed method with 
AODE，WAODE and LODE in tableⅥ.  
 

B. Experimental results and Analysis 
The experimental results are shown in table 4. 

Since the average error rates of different classifiers are 
very close. So we compare each two algorithms A-B 
via two tailed t-test with a 95 percent confidence level. 
The results are shown in table 5, where win indicates 
that algorithm A tly lower average 
error rate than algorithm B, draw indicates that A and B 
haven’t significant differences, and loss indicates that A 
obtained significantly higher average error rate than 
algorithm B. From table Ⅶ, we can see that WSPODE 
outperforms AODE on 9 datasets, outperforms 
WAODE on 8 datasets, and outperforms LODE on 8 
datasets.  

 
TableV. 10 runs error rate of diesel engine data2 

 
Tabl I. d s err nd d deviatio

t D ODE D

obtained significan

eV detaile  result of or rate a  standar n 
datase AO E WA LODE WSPO E

br t_w 2±0  2. 8± 1  2. 18eas  3.0 .17 9 0.1 2.95±0.17 92±0.
car

diabet
  8. 2±  7. 43
es 9± 8 2 1± 36 2 34 2 0

0 39. 7± 36 9 39.
0± 7 0± 25 19. .68 1 0
9± 8 2± 55 14 .36 1 0

 6. 8± 6.  6.
 7± 5 1 1± 38 1 7 1 1

ine ±  4± 8 0.
promoter 10.93±1.47 10.03± 13 23.22±2.27 9. 81

 2± 0 1± 78 14. .78 1 0
tic_tac_toe 25.88±0.39 27.05±0.49 25.73±0.35 25.62±0.36

.16 5.65±0.19

61 12.60±0.49
13.73±0.13 13.64±0.  13.69±0.15

zoo 
D 1
Diesel2 1
Diesel3 1
Diesel4 1
Diesel5
m  1

8.09±0.36 9 0.29 8.04±0.35 73±0.
21.6 0.2 1.8 0. 1.60±0. 1.62± .37

Flags 
flare 

39.82±1.
19.8

2
0.5

7
18.2

1.
0.

41.04±0.9
41±0

31±1.
8.08±

24
.31

heart_h 14.5 0.3 14.5 0. .55±0 4.62± .37
iris 6.

lymph
54±0.

14.7
84

0.8
8

3.4
0.72
1.

54±0.84
4.83±0.9

08±0.
3.54±

76
.46

mach 9.48 0.49 9.2 0.50 9.48±0.5 9.43±
77±1.

60
2.
0.sonar 14.2 0.9 13.2 32±0 3.84± .99

vote 5.58±0.16 5.70±0.18 5.60±0

vowel 13.04±0.57 15.94±0.52 10.76±0.
waveform 14 15.20±0.40

5.21±0.91 5.21±0.91 5.21±0.91 5.13±0.90
7.52±0.22 17.54±0.29 17.11±0.33 17.33±0.30
4.26±0.29 13.57±0.26 14.09±0.26 13.84±0.31
8.60±0.29 19.01±0.20 18.32

iesel1

±0.32 18.38±0.17
7.05±0.26 17.03±0.28 17.22±0.21 16.95±0.26

8.06±0.15 8.16±0.19 8.13±0.14 7.98±0.12
4.38±0.52 14.37±0.57 14.92±0.57 14.00±0.56ean

TableVII. 

id WSPODE
-AODE -AOD

the compared results of two-tailed t-test 
WSPODE
-WAODE

WSPODE 
-LODE 

LODE 
E 

LODE
-WAODE

WAODE
-AODE

1 win draw draw win draw draw
2 win draw win loss 
3 w 
4 draw 
5 win draw loss win 
6 draw draw draw draw draw draw

draw draw win loss 

aw

draw draw draw
17 win win loss win win draw

win dr win lo aw
r

8  \ \5

win win 
dra draw draw draw draw draw

draw win loss loss draw
draw win 

7 draw win 
8 win draw win draw loss win 
9 draw draw draw draw draw draw
10 draw draw win loss loss draw
11 draw win draw draw loss win 
12 win win draw win win loss 

draw draw draw dr13 draw draw 
14 win win win win win loss 
15 draw draw win loss loss draw
16 draw draw draw 

18 win loss win win loss win 
19 win win draw win win loss 
20 aw loss ss dr
21 draw win win draw d aw draw

total 10\11\0 \12\1 10\10\1 6\11\4 6 7\8 4\12

VI. CONCLUSIONS 
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