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Abstract-Under the background of the deficiencies and
shortcomings in traditional diesel engine fault diagnostic,
the naive Bayesian classifier method which built on the
basis of the probability density function is adopted to
diagnose the fault of diesel engine. A new approach is
proposed to weight the super-parent one dependence
estimators. To verify the validity of the proposed method,
the experiments are performed using 16 datasets collected
by University of California Irvine (UCI) and 5 diesel
engine datasets collected by our lab. The comparison
experimental results with other algorithms demonstrate
the effectiveness of the proposed method.

Index Terms-diesel engine; naive Bayesian classifier; fault
diagnosis; one-dependence classifier

L INTRODUCTION

Diesel engine is a complex machine and a
multi-interference system. The relationship between its
input and output variables, fault and sign is unobvious
and uncertainty. Poor working conditions easily lead to
signal distortion etc. These have greatly increased the
types of diesel engine fault diagnosis difficulty. In
recent years, scholars from various countries for the
diesel engine fault diagnosis methods have made a lot
of related.

Bayesian diagnosis is established based on the
probability density function. Compared to the
diagnosis based on the failure mechanism, it has
smaller diagnostic error rates. So it has an extensive
application. With the development of information and
automation technology, a lot of running data and
diagnostic data has been accumulated and it is possible
to calculate the prior probabilities of Bayesian method.
However, in many practical fields, the independency
assumption of Naive Bayes (NB) does not hold.
Therefore, many researches are mainly about how to
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use some technology to find a most favorable topology
among all possible network structures. At present, such
technologies can be summarized into two categories:
heuristic search and correlation analysis. To relax the
independency assumption, the researchers have done a
lot of work. With the development of modern science
technology and the degree of automation, diesel engine
fault diagnostic technique has undergone significant
changes and Bayesian diagnosis become one of the
most efficient diagnosis methods.

Among all these improving approaches,
One-Dependence Estimators (ODEs) ! are simple but
effective classifiers. ODEs are very similar to NB but
they also allow every attribute to depend on, at most,
another attribute besides the class. Both theoretical
analysis and empirical evidence have shown that ODEs
can improve upon NB’s accuracy when its attribute
independence assumption is violated. Tree Augmented
Bayesian Network (TAN) ! is kind of ODE which
provides a powerful alternative to NB. Super
Parent-One-Dependence Estimators (SPODEs) ! can
be considered a subcategory of ODEs where all
attributes depend on the same attribute. L.X. Jiang [ et
al adds the parent node for some attributes in Bayesian
network using conditional mutual information.
Aggregating One-Dependence Estimators (AODE)
ensembles all SPODEs that satisfy a minimum support
constraint ! and estimate class conditional
probabilities by averaging across them. This ensemble
has demonstrated very high prediction accuracy with
modest computational requirements. However, it is
based on an implicit assumption that all SPODEs have
the same or equivalent learning ability. But the leaning
ability of different Bayesian networks is different.
Simply averaging all SPODEs may scale up the
influence of the bad performance classifiers so as to
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affect the final classification result. WAODE [6] is an
improvement of AODE. It uses conditional mutual
information to determine the weight of each SPODE.
HNB [7] and HODE [8] are another two improved
versions of AODE. Addressing how to select SPODEs
for ensemble so as to minimize classification error,
Yang Y et al [9] proposed five selection methods,
minimum description length (MDL), minimum
message length (MML), and leave one out (LOO),
Backward Sequential Elimination (BSE) and Forward
Sequential Addition (FSA). Their experimental results
showed that measuring ensembles outperforms
measuring single SPODE and model selection for
SPODE is advisable since the selection makes
differences. In addition, Li Nan et al [10] take each
SPODE as a production model and weight each
SPODE using the fitting degree of the model to data.

11. SUPERPARENT-ONE-DEPENDENCE ESTIMATORS
(SPODESs)

Assume D is a set of training instances,

A={A. A is the attributes variable set, where N is

the number of attributes, C isaclass variable, Cisa

a]’...’ai’...’a

value of C. n are the attribute value of

A A A respectively.

A SPODE requires all attributes to depend on the
same attribute, namely the super parent, in addition to

SPODE
A denote the SPODE with

SPODE,

the class. Let

super parent At. will estimate the
probability of each class label C given an instance
X as follows:

Pe.X) _ P(CiaT)JLI:IP(aj lc.a)

P(X) P(X)

P(c|X)=
)]

Since the above equality holds for every SPODE,
it also holds for the mean over any subset. An
ensemble of k SPODEs corresponding to the
super-parents A; -, A estimates the class probability by
averaging their results as follows.

iP(c,ai)H P(a; |c,a)

PEI =0

2
AODE selects a limited class of 1-dependence

classifiers and aggregate the predictions of all qualified
classifiers within this class. To avoid including models
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for which the base probability estimates are inaccurate,
ensemble of all SPODEs except for those who have
less than 30 training instances. Hence, AODE classifies

an instance X by using the following equality.

A noa
Zi:lgisn/\F(ai )=m P(C’ 8 )H P(aj ‘ C.8 )
j=

PEIX)= l1<i<nAF(a)>m|xP(X)

3)

Where F (ai) is a count of the number of training

examples having attribute-value & and is used to
enforce the limit m that we place on the support needed
in order to accept a conditional probability estimate. In
the presence of estimation error, if the inaccuracies of
the estimates are unbiased the mean can be expected to
factor out that error.

I1I. NEW APPROACH TO WEIGHT SPODE

A data sample of n attributes can potentially have
n SPODEs, each alternatively taking a different
attributes as the super parent, as shown in Fig.1. In this
paper, we consider the diversity of SPODE and its
corresponding NB and propose a new approach to
weight SPODE.

C

5
o
B

90%93@

Fig.1. 4 SPODEs with 4 attributes

A. Diversity of SPODE and its corresponding NB

A natural question is that how well a SPODE can
perform in predictive tests. If the prediction result for a
test instance by using a SPODE is same with that by
using NB, we can say that the performance of the
SPODE is not very well. We would rather use its
corresponding NB than the SPODE since the structure
of SPODE is more complex than simple NB and the
parameter estimation needs more time while the
performance are the same.

Definition I  If a test instance X is classified
to the same class by using SPODE and by using NB,
then we say the performance of SPODE and NB is
equivalence.

Definition 2  Suppose there are m classes. Let

: SPODE
Diver ( A NB) be a MXM square array such

Diver; . .
that U is the number of test examples assigned

SPODE

: . C. .
to class & by A with and to class 7 by its
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corresponding NB. Let | Diver | be the number of all

SPODE

test examples. The diversity of A and its

corresponding NB is defined as follows.
Diff (A) = i_—“
~F (4)

SPODE
Where @ be the probability that the A

and its corresponding NB perform the same, B be the

SPODE
probability that the A and its corresponding
NB agree by chance. They are respectively defined as
follows.

Zm: Diver;

==l

| Diver| (5)

Diver; &, Diver;

A=Y )

i = | Diver |§=| Diver | (6)

Further, we have the following discussion.

When Dif (A):O, we can geta =1. It means

. . . E .
that the classification results using Aand its
corresponding NB are completely same. The two
classifiers agree on every example.

When Diff (A):l, we can get a=f. It means

SPODE . .
that Aand its corresponding NB equals that

expected by chance.

When DIﬁ(A)>l, we can get a <B. It means
that agreement is weaker than expected by chance. In
another words, the chance of the two classifiers obtain
the same classification is slim.

If the diversity between the augmented naive
bayes and the simple naive bayes is small, it has no
need to expand the network structure of NB. Because
of the complexity of probability estimation is closely
related to the network structure.

From the above discussion, we can get the
conclusion that the diversity between the augmented

SPODE
naive bays A and the simple naive bays

increases with the increase of the value of Diff(At).

Therefore, we take Diff (A) as the weight of
SPODE,

B. SPODEs Ensemble
According to the above discussion, firstly we give
SPODE
the definition of the weight of AL
Definition 3  Let “ represents the weight of

SPODE
A W is defines as:
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—w(i Diff (A) #0)

ZDiff(A) =l

t

(M

. Z:cot =1
Where Diff (A) is defined in (4) and t=! .
Since (1) holds for every SPODE, we can

estimate the probability of each class label © given an

instance X as follows:

> oP(c.a) [] P@,lc.a)
t=1 j=1, j=t ) 0
P(X) 20

P(c|X)= ’
P[P0

-l Jelse

P(X) (8)

The proposed classifier is named WSPODE.
WSPODE classifies a newly instance using (9) as well.

argmax P(c| X)

)

The value of ™ can determine the number of

SPODEs used as well as the importance of every

SPODE. For example, if W, =0
w; #0(je[l,n], j#t)

and , we actually only select

n-1 SPODEs. In a  extreme case
D Diff (A)=0

when =! , we will use NB to classify all

test samples. But this kind of situation is rare. Because
it means that all SPODE perform exactly the same with
NB. Every SPODE and its corresponding NB agree on
every example.

1V. ALGORITHM DESCRIPTION

In this section, we describe our algorithm for
training and inference. During the training phase, the
goal is to determine the weight of every SPODE using
(7). The learning algorithm for WSPODE is depicted as
follows. In classification phase, use (8) to classify a
newly instance without class label.
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Algorithm. WSPODE (D)
Training phase:
Input: a set D of training examples
Output: a Improved Naive Bayesian
Classifier for D
Using NB to classify training examples in
D and store the result;
For each attribute At (t=1,..., n)
There is a Diver[m][m], where m is
the number of class labels;
For each example 1 in D delete its
class label

If 1 is classified to O by

A andto % by NB (j, k =0,...,m-1)
Then Diver[j][k]= Diver[j][k]+1;
For =0 to m-1, k=0 to m-I
Diver[j][k]= Diver[j][k]/the size of D;
Compute a using (5);
Compute 3 using (6);
Compute Diff(At) using (4);

Compute “ using (7);

SPODE

Sum=0;
For i=1 to n sum=sum+ % ;
Fori=lton “=%/sum;

Classification phase:

Input: the Improved Classifier built in
training phase, a newly instance X

Output: the class label ¢ of X

Fori=1 tom

Compute P(ci|X) wusing (8), the
parameters are obtained in training phase;
argmax P(c, | X)
c= = .

Assume that the number of training instances and
attributes are s and n respectively. The number of
classes is m. The average number of values for an
attributes is v.

In order to train the weight of every SPODE, we

; SPODE SPODE
compute Diver ( A NB) for each A

using the training data without the class label. Hence,

compared to AODE, it needs more o(smn) time
complexity.

In classification phase, the time complexity of the
WSPODE is o(mn2). It is just the same as AODE.

Tablel. Time Complexity

algorithm Training classification
AODE o(mn*) o(mn?)

WAODE  0(sn*+n) o(mn*)
LODE o(sn* +sn) o(mn?)

WSPODE  0(Sn® +smn) o(mn?)
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V. EXPERIMENTS

A.  Experimental settings

(1) Test data

In this paper, we choose 16 UCI datasets (shown in
table II) and 3 foul diagnostic datasets of diesel
engine (shown in tablelll). WD615 diesel engine valve
fault diagnosis data is used to de simulation
experimental.

The datasets of diesel engine is got by The
Dewetron Combustion Analyzer as fig2-5. The
Dewetron Combustion Analyzer systems are used for
engine research, development and optimization. Also
for component development and testing, such as
ignition systems, exhaust systems and valve control
gear. Through measuring diesel engine cylinder
pressure and crank angle, eigenvalues are calculated to
analysis.

Fig.3. Dewetron Combustion Analyzer
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Fig.4. Pressure Sensor

Fig.5. Crank Angle Sensor

All datasets are preprocessed with the help of
WEKA1 software before using. Use the supervised
filter Discretize in WEKA to discretize all the numeric
attributes; Use the unsupervised filter Remove in
WEKA to remove useless attributes. The discretized
data is showed in tablelV.

Tablell.  UCI datasets

Tablelll. Diesel datasets

number Description

When the load is ONm, 100 Nm, 200 Nm, 300 Nm
and 400 Nm, collect 2000 cycles’ data
size 1600 respectively. The datasets are denoted as Diesell,
Diesel2, Diesel3, Diesel4 and Diesel5. Each
dataset has 2000 records.
(Dspeed; @maximum Cylinder Pressure; G)phase
of maximum Cylinder Pressure; @phase of
maximum of rising rate of maximum Cylinder
Pressure; Gphase when energy conversion reaches

A# 12 50%; ®phase of starting burning,; (Dphase of
ending burning; @®phase difference between
burning start and burning end; © mean indicating
effective pressure; (0net mean effective pressure;
@indicated power
(DBoth intake valve clearance and Exhaust valve
clearance are small;

c 4 @Intake valve clearance is too small;
(®Both intake valve clearance and Exhaust valve
clearance are too large;
(®normal clearance.

(2) Validation method

10 runs of 10-folds CV test for comparing the
classifier performances. Each datasets are divided into
10 almost equal-sized blocks randomly, and in each
validation, one block was used for test data and the
remaining blocks were used for training classifiers.
Average all 10 runs as the final results like table V.

(3) Measurement

Throughout all the tests, we measured the
classification error rate, i.e., the percentage of
incorrectly classified instances.

TablelV. partial result of mixed conditions discretization

nn max1 amax| adpmax class

é dataset  size g 2 1d dataset size g 2
1 bre;“— 699 2 9 9 machine 209 7 7
2 car ! ;2 4 6 promoter 106 2 57
3 diats’e‘e 768 2 6 somar 208 2 21
4  TFlags 194 6 30 tic—;i‘c—t 958 2 9
5 flare 138 2 13 vote 435 2 16

6 heart h 294 5 9 vowel 990 14

wavefor 500
m 0

Z00 101 7 16

7 iris 150 3 4 319

o SR S S N U S NS S S T

8 lymph 148 4 18

' http://www.cs.waikato.ac.nz/ml/weka/
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(1796.37-1799.17]  (76.30-76.98] (5.95-6.45] (6.05-6.25]
(1796.37-1799.17]  (75.37-76.30] (6.45-6.75] (7.45-inf)
(1796.37-1799.17]  (76.30-76.98] (4.65-5.25] (6.05-6.25]
(1796.37-1799.17]  (76.98-77.45] (4.65-5.25] (6.25-6.55]
(1782.78-1791.25] (78.29-inf)  (5.95-6.45] (5.55-5.75]
(1782.78-1791.25] (77.45-78.29] (6.75-7.15] (5.75-6.05]
(1782.78-1791.25] (77.45-78.29] (4.65-5.25] (5.55-5.75]
(1782.78-1791.25] (76.98-77.45] (4.65-5.25] (3.55-5.05]
(1782.78-1791.25] (77.45-78.29] (5.25-5.95] (5.05-5.55]

B
B
B
B
A
A
A
A
A

(1791.25-1796.37] (77.45-7829] (6.45-6.75] (5.75-6.05] A

(1796.37-1799.17]  (75.37-7630] (5.25-5.95] (6.55-7.45] C

(1796.37-1799.17]  (75.37-7630] (6.75-7.15] (745-inf)  C

(1796.37-1799.17] (-inf-75.37]  (7.15-inf)  (6.55-7.45] C

(1796.37-1799.17]  (75.37-76.30] (7.15-inf)  (7.45-inf)  C

(1796.37-1799.17]  (76.30-76.98] (6.75-7.15] (745-inf)  C

(1806.1-1808.80]  (76.30-76.98] (7.15-inf)  (3.55-5.05] D

(1806.1-1808.80]  (76.98-77.45] (7.15-inf)  (6.25-6.55] D

(1806.1-1808.80]  (-inf-75.37]  (7.15-inf)  (745-inf) D

D

(1806.1-1808.80]  (76.30-76.98] (6.75-7.15] (6.25-6.55]
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(1806.1-1808.80]  (76.30-76.98] (7.15-inf)  (7.45-inf) D
(1806.1-1808.80]  (76.30-76.98] (5.25-5.95] (6.55-7.45] D

Error rate= number of incorrectly classified
instances / the total number of instances of prediction.
(4) Comparison algorithms

This paper compares the proposed method with
AODE, WAODE and LODE in tableVI.

B. Experimental results and Analysis

The experimental results are shown in table 4.
Since the average error rates of different classifiers are
very close. So we compare each two algorithms A-B
via two tailed t-test with a 95 percent confidence level.
The results are shown in table 5, where win indicates
that algorithm A obtained significantly lower average
error rate than algorithm B, draw indicates that A and B
haven’t significant differences, and loss indicates that A
obtained significantly higher average error rate than
algorithm B. From table VI, we can see that WSPODE
outperforms AODE on 9 datasets, outperforms
WAODE on 8 datasets, and outperforms LODE on 8
datasets.

TableV. 10 runs error rate of diesel engine data2

dataset runs AODE WAODE LODE WSPODE

data2d 1 8.06% 8.12% 7.81% 8.12%
data2d 2 7.62% 7.44% 7.31% 7.81%
data2d 3 7.69% 7.81% 7.56% 7.94%
data2d 4 8.00% 7.75% 7.69% 7.81%
data2d 5 7.56% 7.56% 7.63% 7.75%
data2d 6 7.81% 7.94% 7.50% 7.81%
data2d 7 8.13% 8.00% 7.57% 8.00%
data2d 8 7.75% 7.75% 7.69% 7.82%
data2d 9 7.69% 7.31% 7.37% 7.75%
data2d 10 7.56% 7.63% 7.75% 7.44%

mean 7.79% 7.73% 7.59% 7.83%

TableVI. detailed results of error rate and standard deviation
dataset AODE WAODE LODE WSPODE
breast w 3.02+0.17 2.98+0.11 2.95+0.17 2.92+0.18
car 8.09+0.36 8.92+0.29 8.04+0.35 7.73+0.43
diabetes 21.69+0.28 21.81+0.3621.60+0.34 21.62+0.37
Flags 39.82+1.2039.77+1.36 41.04+0.99 39.31+1.24
flare  19.80+0.57 18.20+0.25 19.41+0.68 18.08+0.31
heart h 14.59+0.38 14.52+0.55 14.55+0.36 14.62+0.37
iris 6.54+0.84 6.88+0.72 6.54+0.84 6.08+0.76
lymph 14.77+0.85 13.41+1.38 14.83+£0.97 13.54+1.46
machine 9.48+0.49 9.24+0.50 9.48+0.58 9.43+0.60
promoter 10.93+1.4710.03+2.1323.22+2.27 9.77+1.81
sonar  14.22+0.90 13.21+0.78 14.324+0.78 13.84+0.99
tic_tac_toe 25.88+0.39 27.05+0.49 25.734+0.35 25.62+0.36
vote 5.58+0.16 5.70+0.18 5.60+0.16 5.65+0.19
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vowel  13.04+0.57 15.94+0.52 10.76+0.61 12.60+0.49
waveform 13.73+0.13 13.64+0.14 15.20+0.40 13.69+0.15
Z00 5.21£0.91 5.21+0.91 5.21+0.91 5.13+0.90
Diesell 17.52+0.22 17.54+0.29 17.11+0.33 17.33+0.30
Diesel2 14.26+0.29 13.57+0.26 14.09+0.26 13.84+0.31
Diesel3 18.60+0.29 19.01+0.20 18.32+0.32 18.38+0.17
Diesel4 17.05+0.26 17.03+0.28 17.22+0.21 16.95+0.26
Diesel5 8.06+0.15 8.16+0.19 8.13+0.14 7.98+0.12
mean  14.38+0.52 14.37+0.57 14.9240.57 14.00+0.56

TableVIL. the compared results of two-tailed t-test
id WSPODE WSPODE WSPODE LODE LODE WAODE
-AODE -WAODE -LODE -AODE-WAODE -AODE
1 win draw draw win draw draw
2 win win win draw win loss
3 draw draw draw draw  draw draw
4 draw draw win loss loss draw
5 win draw win draw loss win
6 draw draw draw draw  draw draw
7 draw win draw draw win loss
8 win draw win draw loss win
9 draw draw draw draw  draw draw
10 draw draw win loss loss draw
11 draw win draw draw loss win
12 win win draw win win loss
13 draw draw draw draw  draw draw
14 win win win win win loss
15  draw draw win loss loss draw
16  draw draw draw draw  draw draw
17 win win loss win win draw
18 win loss win win loss win
19 win win draw win win loss
20 win draw win loss loss draw
21 draw win win draw draw draw

total 10\1\O  8\I2\1 10\ 6\ 6\7\8  AI2\5

VI CONCLUSIONS

In order to improve artificial intelligence diesel
engine diagnosis accuracy. This paper relaxed the
assumption so as to gain smaller classification error
rate, took the study of one-dependence estimator, and
proposed a new strategy. It took advantage of the
diversity and its corresponding NB to weight the
SPODESs. Through the comparison experiments with
the existing AODE, WAODE and LODE by University
of California Irvine (UCI) and 5 diesel engine datasets
collected by our lab, the results verified the
effectiveness of the proposed algorithm.
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