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Abstract—Fuzzy enhancement is applied in computer aided 
diagnosis of liver cancer from B mode ultrasound images as 
a pre-processing procedure in this paper. It was evaluated 
with three classifiers including K means, back propagation 
neural network and support vector machine using 25 
features from first order statistic (FOS), gray-level co-
occurrence matrix (GLCM), gray-level run-length 
matrix (GLRLM), Grey level dependant matrix (GLDM) 
and LAWS. In the analysis of 166 normal liver tissue, 30 
hemangioma and 60 malignant tumor, our method 
improved the classification accuracy of three classifiers (K 
means, BP neural network and support machine vector) in 
distinguishing liver cancer, hemangioma and normal liver 
cancer from B mode ultrasound images. It is proved that 
fuzzy enhancement as an efficient preprocessing procedure 
could be used in the computer aided diagnosis system of 
liver cancer. 
 
Index Terms—fuzzy enhancement, liver cancer, neural 
network, support vector machine, computer aided diagnosis 

I.  INTRODUCTION 
Liver cancer is one of the most popular malignant 

tumors in Asia. In patients with chronic viral infection, 
the severity of the disease may be ranked from 
asymptomatic healthy carriers to patients with cirrhosis of 
the liver[1-3]. The gold standard for diagnosis of patients 
with diffuse parenchyma liver diseases depends primarily 
on a needle biopsy of the liver. However, the pathological 
measurement of diseases such as hepatitis and liver 
cirrhosis may be severely biased due to the sampling 
error in the biopsy specimen. B-mode ultrasound 
diagnosis is the first option in popular diagnostics due to 
its economy, efficiency, noninvasiveness. Affected by the 
quality of ultrasound images of liver cancer, benign 
expression of malignant tumors and observer’s visual 
fatigue, careless mistakes, and diagnostic level, not all 
liver cancers can be detected accurately. Thus, it’s 
necessary to provide the medical operators a computer 
aided diagnosis (CAD) system which is helpful to reduce 
the possibility of wrong diagnosis or missed diagnosis[4-
6].  

According to the ultrasound image representation of 
hepatocellular carcinoma (HCC) and echo type in the 
tumors, there are five types of primary carcinoma of liver, 
which are corresponding to low echo type, equal echo 
type, high echo type, mixed echo type and diffuse type 
respectively. Most CAD systems are based on texture 
features which are extracted from the B mode ultrasound 

images. These features are used to classify three sets of 
ultrasonic liver images-normal liver, hepatoma, and 
cirrhosis. Texture features include the spatial gray-level 
dependence matrices, the Fourier power spectrum, the 
gray-level difference statistics, and the Laws’ texture 
energy measures [7-9]. Classifiers include Bayes 
classifier, K means, neural network[6,10], support vector 
machine (SVM)[11,12], et al. However, the accuracy of 
classification is greatly affected by quality of the 
ultrasound images. Ultrasound images quality are greatly 
effected by the ultrasound machine settings and the 
operation of operators which directly affect the 
classification accuracy.  

In this paper, we aim to use fuzzy enhancement to 
preprocess the input ultrasound images in order to 
decrease the effect resulted from different ultrasound 
machine settings in the computer aided diagnosis of liver 
cancer from ultrasound images. According to the 
characteristic of B-mode ultrasonic liver image, we will 
compare the classification accuracy of different 
classifiers with the fuzzy enhancement [13,14] used in 
processing of images. The classifiers in this paper include 
K-means, back-propagation neural network, SVM. 

II.  METHODS 
The object of enhancement technique is to process a 

given image so that the result is more robust than the 
original for classification of liver cancer. The methods so 
far developed for image enhancement may be categorized 
in two broad classes, namely, frequency-domain methods 
and spatial-domain methods. The technique in the first 
category is based on modifying the Fourier transform of 
an image, whereas in spatial domain methods the direct 
manipulation of the pixel is adopted. The technique used 
here is based on the modification of pixels in the fuzzy 
property plane of an image. The property domain is 
extracted from the spatial domain using fuzzifiers which 
play the role of creating different amounts of 
fuzzification in the plane. The fuzzy operator, contrast 
intensification, is taken as a tool for enhancement. 

A.  Fuzzy feature plane 
Define Ω={X} is a set , ( )D xμ is a function of each 

element in Ω where 0 ≤ ( )D xμ ≤ 1. ( )D xμ  is used 
describe the subjection of X to D.  D is a fuzzy set of Ω 
and ( )D xμ is subjection function of D. According to the 
concept of fuzzy subset, a M×N image X with L grey 
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levels can be considered as a fuzzy points set , denoted 
as ,  
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Where ijp  describe the state that the pixel  ( , )i j  has the 

feature (0 1)ij ijP P≤ ≤ .  ijP is called fuzzy feature. If the 

comparative grey level of the pixel is considered as the 

interest fuzzy feature,  and ijx  is the grey level of  

pixel ( , )i j , maxX  is the maximum grey level in the image, 

the fuzzy feature  can be explained as follows, 
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Where pF is fuzzy parameter. Eq 3 shows that when 

maxijx X→ ， 1ijP → ；when ijx decreases，

ijP decreases correspondingly. Therefore, fuzzy 

feature ijP  denotes the possibility that the pixel ( , )i j  

has the maximum grey level. The plane composed by 
all ijP , ( 1, 2,..., ; 1,2,..., )i M j N= = is called fuzzy feature 

plane. when 0ijx = , ijP  is a finite positive number,  

2 1m ax[1 ( ) ]ij
p

x
P

F
−= +                     (4)   

The range of ijP is [ ,1]α .  

B.  Model of fuzzy enhancement 

If the contrast enhancement operator CEO which is 
applied on the fuzzy set D can produce a new fuzzy set 

'( )CEO D D= ，its subjection function is expressed as: 
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This operation decreases the fuzzification of  fuzzy set 
D, and increases the value of  ( )D xμ  when it is more 

than 0.5, decreases the value of  ( )D xμ  when it is less 

than 0.5. We can use transformation 1T  to denote the 
operation above, 
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When the Eq 6 is applied on the fuzzy feature plane, 
then 
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Where kT  can be regarded as the iterations of T1. 
when k →∞ ， ( )k ijT P  will produce a binary image. If 

kT  is iterated with finite times, the image can be 
enhanced obviously. The detailed of fuzzy enhancement 
algorithm in this paper can be described as, 

(1) Extract the fuzzy feature of image, and constitute 
the fuzzy feature plane： ( )ij ijP F x= . 

(2) On the fuzzy feature plane, use contrast 
enhancement transformation kT  to enhance fuzzy 

feature ijP  and obtain the fuzzy enhanced '
ijP . 

(3) Apply inverse transformation on the new fuzzy 
feature plane to get the enhanced output 
images ' 1 '( )ij ijx F P−= . 

Considering [ ,1]ijP α∈ ，plane ijP  possibly contains the 

region where '
ijP  is less than α . all the value of  '

ijP  is 

replace as α  when '
ijP  is less than α , its corresponding 

constraint condition is denoted as 1ijPα ≤ ≤ ，which is 

the constraint condition of inverse transformation. In the 
process of fuzzy enhancement, suitable fuzzy parameter 

PF  is important to the enhancement result, which is 

related to critical point cX  in the image space, cX  should 

satisfy the following conditions:  

ij cx X> , 0.5ijP > , 

ij cx X< , 0.5ijP < .                             (8) 

We can change the enhancement result through 
adjusting  the fuzzy parameter PF . In our application , 

critical point cX  is empirically less than the half of  the 
average grey level of  the image. 
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III. EXPERIMENTAL METHODS  

The experimental procedure is described as the Fig 1. 
The subimage including region of interest (ROI) was 
extracted manually from the acquired liver ultrasound 
images firstly. Then fuzzy enhancement was applied to 
improve the subimage quality. Texture features were 
extracted to train and test the classifiers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Fig.1 The flow chart of the processing  
 

A. Image acquisition  
A total of 256 sonograms from patients, including 60 
liver cancers (malignant (MAL)), 30 hemangioma (HEM) 
and 166 normal liver tissue(NOR), which were divided 
into two groups. 30 liver cancer images, 31 hemangioma 
images and 83 normal liver images were used as training 
dataset, and the rest are used for testing.  

B. Determination of ROI 
To reduce the impact of translation of the focal region, 

a focal region in the liver cancer image were selected 
manually by physicians since the size of focal region in 
different images are different. For example, the tumor in 
low echo liver cancer images is always small, but in high 
echo liver cancer images is large. This should cause the 
size of our region of interest (ROI) became variable. The 
size of each image is 90*93 with 256 gray levels in our 
experiments. The effect of size of the regions to the 
classification accuracy was reported in our previous 
experiments[2]. The size of region is empirically 
determined as 30*30 pixels larger than the usual size of 
liver tumor in this study. 

C. Feature extraction method 

In order to validate the method, we used the original 
ultrasound images and fuzzy enhancement processed 
images to do the experiments. 25 features from first order  
statistic (FOS), gray-level co-occurrence matrix (GLCM), 
gray-level run-length matrix (GLRLM) and Gray level 
difference matrix (GLDM) were extracted from the 

ultrasound images[15]. These features are regarded as the 
input of the classifiers.  

(1) FOS 
The first order statistical features employed in this 

research were as follows: 
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(2) GLCM 
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hkm  is the appearing frequency of pairs of pixels,  which 
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(4) Grey level dependant matrix (GLDM) 

We consider here a class of local properties based on 
absolute differences between the gray levels of pixels in 
the ROI. Let ( , )I x y  be the image intensity function. For 

any given displacement ( , )x yδ = Δ Δ , let 

( , ) | ( , ) ( , ) |I x y I x y I x x y yδ = − + Δ + Δ , and ( | )f i δ be the 

probability density of ( , )I x yδ . The value of ( | )f i δ  is 

obtained from the number of times ( , )I x yδ  occurs for a  

 given δ , i.e. ( | ) ( ( , ) )f i P I x y iδδ = = . If a texture is 
directional, the degree of spread of the values in ( | )f i δ  
should vary with the direction of δ , given that its 
magnitude is in the proper range. Thus, texture 
directionality can be analyzed by comparing spread 
measures of ( | )f i δ  for various directions of δ . In the 
present study, four possible forms of the vector δ  were 
considered: (0,d), (d, 0), (-d, d), and (-d, -d), with d 
being the interpixel distance, each of which corresponds 
to a displacement in vertical, horizontal, 135º and 45 º 
direction, respectively. From each of the density 
functions corresponding to one of the above-mentioned 

directions, five texture features were obtained: 
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(5) LAWS 

Laws developed the texture energy features using the 
following 1D kernels: L=[1,6,15,20,15,6,1],  
E=[−1,−4,−5,0,5,4,1],  S=[−1,−2,1,4,1,−2,−1], W=[−1,0,3, 
0,−3,0,1], R=[1,−2,−1,4,−1,−2,1], O=[−1,6,−15,20, 
−15,6,−1], where, L, E, S, W, R, and O denote level, edge, 
spot, wave, ripple, and oscillation, respectively. The 
texture energies from the following kernels are typically 
computed. Using these 1D kernels of length seven, 2D 
convolution kernels are generated by convolving a 
vertical 1D kernel with a horizontal 1D kernel. Five 
texture features were obtained. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

(c) (d) 

(e) (f) 

Figure. 1 Results of  fuzzy enhancement 
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IV. RESULTS 
In our experiments, three classifiers including K means, 

back propagation (BP) neural network (NN), support 
vector machine (SVM) were compared so as to evaluate 
the influence of fuzzy enhancement on the different 
classifiers. 

A.  Experimental result of fuzzy enhancement 

One of results of fuzzy enhancement are shown in 
Figure.1. The left columns are original images. (a) is  
normal liver tissue image, (c) is hemangioma image and 
(e) is liver cancer image. The right columns in Figure 1 
are their corresponding images processed by fuzzy 
enhancement.  

B. K means experimental results 

Table.1 Classification result of liver cancer from normal 
liver tissue with K means. 

 

Table.2 Classification result of liver cancer from 
hemangioma and normal liver tissue  with K means. 

Firstly K means [16] was used to differentiate liver 
cancer from normal liver tissue and liver cancer from 
abnormal liver (liver cancer and hemangioma). The 
results are showed in Table 1 and Table 2 respectively. 
Then we used K means to classify images into three 
classes, normal liver tissue, liver cancer and hemangioma. 
Table 3 shows the three classes result.  The results show 
that fuzzy enhancement can improve the classification 
accuracy of K means in these three experiments although 
the classification sensitivity of K means is not high.  

Table 3 Three classes result with K means. 

 
Original images 

Fuzzy 
enhancement 

 processed images
Liver cancer 33.33%(20/60） 41.67%（25/60）

Normal liver 56.02%(93/166） 57.83%（96/166）

Hemangioma 40%（12/30） 36.67%（11/30） 

B. BP neural network experimental results 

We did the same experiments as K means using BP 
NN[17]. The target error we defined in our BP neural 
network is 0.01. With this target error our NN method can 
get the best classification accuracy in our experiments. 
However, if the value of target error is too small, the 
convergence rate is slow and it is easy to result in over-
training. If the error is too big, the approximation is not 
accurate. Table 4 and Table 5 show the classification 
results of differentiating liver cancer from normal liver 
tissue and liver cancer from abnormal liver respectively. 
Three classes result with BP NN is shown in Table 6. The 
results demonstrate that fuzzy enhancement method can 
improve the classification accuracy of BP NN although 
BP NN can obtain good classification sensitivity without 
fuzzy enhancement.  

Table 4 Classification result of  liver cancer from normal 
liver tissue  with BP NN. 

Table 5 Classification result of  liver cancer from 
hemangioma and normal liver tissue with BP NN. 

 
Original images 

Fuzzy 
enhancement 

 processed images

sensitivity 93.33%(28/30) 93.33%(28/30) 
1 - specificity 97.96%(96/98) 95.92%(94/98) 

Table 6 Three classes result with BP neural network

 
Original images 

Fuzzy 
enhancement 

 processed images
sensitivity 50%(15/30) 56.67%(17/30) 

1 - specificity 69.39%(68/98) 75.51%(74/98) 

 Original images 
Fuzzy enhancement
 processed images 

sensitivity 60%(18/30) 73.33%(22/30) 
1 - specificity 78.31%(65/83) 87.95%(73/83) 

 

Original images 

Fuzzy 
enhancement 

 processed 
images 

sensitivity 93.33%(28/30) 96.67%(29/30) 
1 - specificity 97.59%(81/83) 98.79%(82/83) 
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C. SVM experimental results 

Table 7 Classification result of  liver cancer from normal 
liver tissue  with SVM 

 

Original images 

Fuzzy 
enhancement 

 processed 
images 

sensitivity 96.67%(29/30) 100%(30/30) 
1 - specificity 98.79%%(82/83) 98.79%(82/83) 

Table 8 Classification result of  liver cancer from 
hemangioma and normal liver tissue with SVM  

 Original 
images 

Fuzzy 
enhancement 

 processed images
sensitivity 93.33%(28/30) 93.33%(28/30) 

1 - specificity 98.98%(97/98) 98.98%(97/98) 

Table 9 Three classes result with SVM  

 

Original images 

Fuzzy 
enhancement 

 processed 
images 

Liver cancer 96.67%(29/30) 100%(30/30) 

Normal liver 98.79%(82/83) 96.39% (80/83) 

Hemangioma 80%(12/15) 93.33%(14/15) 

We used polynomial kernel function to implement the 
SVM[18]. The punishment coefficient C is assigned 1000 
and parameter  γ  and d  are assigned 1 and 3 respectively 
in our experiments. Table 7, Table 8 and Table 9 show the 
classification results of SVM. The results show that SVM 

can get the best classification accuracy compared to the K 
means and BP neural network. Since SVM can 
differentiate liver cancer well from normal liver tissue, or 
from hemangioma and normal liver tissue, image 
preprocessing, such as fuzzy enhancement processing, 
can not improve the classification accuracy effectively 
when SVM was used to classify two classes (Table 7 and 
Table 8).  However, when SVM was applied to classify 
three classes, the classification accuracy with fuzzy 
enhancement increase from 96.67% to 100%, for liver 
cancer,  from 80% to 93.33%  for hemangioma (Table 9).  

V. DISCUSSION AND CONCLUSTION 
In this paper, the fuzzy enhancement algorithm was 

applied to computer aided diagnosis of liver cancer 
ultrasound images. 25 features from first order statistic 
(FOS), gray-level co-occurrence matrix (GLCM), gray-level 
run-length matrix (GLRLM), Grey level dependant matrix 
(GLDM) and LAWS were extracted to train the different 
classifiers. The results with K means, BP neural network 
and SVM show that SVM can obtain the best 
classification accuracy, K means can not be regarded as a 
robust classifier to differentiate liver cancer from normal 
liver tissue and hemangioma in B mode ultrasound 
images. The experimental results with fuzzy enhancement 
demonstrate that it can improve classification accuracy of 
three classifiers. It is concluded that fuzzy enhancement 
can be used as an efficient preprocessing procedure in the 
computer aided diagnosis of liver cancer. Future work 
includes that more subject images could be used to 
evaluate the efficiency of the algorithm. 
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