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Abstract— In this paper, we develop and study a new 
algorithm to recognize and precisely measure keys for the 
ultimate purpose of physically duplicating them. The main 
challenge comes from the fact that the proposed algorithm 
must use a single picture of the key obtained from a regular 
desktop scanner without any special preparation. It does not 
use the special lasers, lighting systems, or camera setups 
commonly used for the purpose of key measuring, nor does 
it require that the key be placed in a precise position and 
orientation. Instead, we propose an algorithm that uses a 
wide range of image processing methods to discover all the 
information needed to identify the correct key blank and to 
find precise measures of the notches of the key shank from 
the single scanned image alone. Our results show that our 
algorithm can correctly differentiate between different key 
models and can measure the dents of the key with a 
precision of a few tenths of a millimeter.  

 
Index Terms— High-Precision Measuring, Object 
Recognition, Practical Applications of Computer Vision 

 

I. INTRODUCTION 

Key duplication is a profitable business, and the 
service is offered today in most hardware stores. Older 
generations of these systems had to physically touch the 
original key and transmit the measures mechanically to a 
blade that cuts the new blank key. The blade moves along 
the length of the blank key and cuts the notches to the 
depth of the corresponding location on the original key. 
In these traditional devices there is no measuring system 
to gauge the depth and form of the notches, aside from 
the current location being cut. In addition, an operator 
must pick the correct key blank among different types of 
keys. By contrast, in more recent patents of key 
duplication systems, a measuring system is one of the 
most important components of the apparatus. 

The newer generation of key measuring systems 
focuses on the innovative use of diverse light sources. 
Some key measuring systems use backlights to generate 
an image of the object’s shadows and obtain the outline 
of the key. Other systems employ laser technology and 
collimated lights to measure the depth of the key shank. 
Others still use uniform light sources to evenly illuminate 
the surface of the object.  Some new developments make 
use of 3D cameras and high resolution cameras to capture 
the cuts and edges of the key as precisely as possible. 

 Adjusting the orientation of the key is another 
common problem in several kinds of key duplication 
systems. Without information about the position of the 

key in the system, it is impossible to measure the details 
of the key precisely enough to duplicate it. In older 
designs, the original key had to be attached at an 
appropriate location and angle, and even a slight error 
could lead to wrong cuts and a useless new key. Newer 
designs allow the system to automatically detect the 
position of the key, and to move it using a combination of 
fixation device, rotation platter and stepping motor to 
bring it to the correct orientation. 

In this paper we introduce a new key measuring 
software that uses image processing techniques to 
achieve two main objectives: to identify the correct key 
blank and to find precise measures of the notches of the 
key shank. Given these two pieces of information, a 
cutting machine should be able to replicate the key. One 
advantage of the system we are proposing is that it 
eliminates the need for dedicated key measuring devices 
and for the use of sophisticated lighting systems and 
cameras. Instead, a common and commercially-available 
flatbed scanner is used to capture the image of the key. 
Furthermore, the key can be scanned with any angle and 
orientation; the operator no longer needs to position the 
key properly, nor does the system need a setup to 
physically move the key to the correct place. The 
challenge of creating sophisticated algorithms to 
extrapolate information from a single image and known 
models of the objects being analyzed is one attracting a 
lot of attention, and for example it has been studied in the 
past for the problem of face and gaze detection [1]. 

The rest of this paper is divided into four sections. In 
the next section we describe the current state of patented 
technology for key measurement systems as well as some 
relevant image processing methods. Our original image 
processing algorithm is detailed in section 3. The 
software is then thoroughly studied and tested, and the 
experimental results are analyzed in section 4. The 
concluding remarks are presented in section 5. 

II. REVIEW OF PREVIOUS STUDIES 

While there exists a great variety of key measuring 
devices, modern techniques follow a common basic 
principle, which consists in aiming a known light source 
of some kind at the key and measuring the light’s features 
after it hits the key using a camera. Some parts of the 
system, namely the key, the light source, or the camera, 
need to be mobile in order to measure the entire key. 
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Moreover, the key must often be properly oriented in the 
system in order to get correct measurements, which 
means that part of the system is dedicated to physically 
moving the key to the correct position. The two main 
types of light sources that are used in key measuring 
systems are laser and backlight. Laser-based systems 
basically work by projecting a laser line on each side of 
the key and measuring the deflection angle to assess the 
shape of the key at each point. Meanwhile, backlight 
systems get the outline of the key and measure the 
notches. 

In its simplest form, a backlight-based system is one 
that lights the key from behind in order for the camera to 
get a clear shadow image of the key that serves to extract 
the outline of the teeth. This is the principle applied 
directly in [2] whereby the key is placed on a backlit 
transparent platform, with a camera above it. In addition, 
this system has a mechanism that automatically adjusts 
the key to its ideal position. A second light source 
illuminates the key from a perpendicular direction, and 
provided the shank of the key is not placed flatly on the 
transparent backlit platform, a direct light above a 
minimum threshold will be received by an opposite 
perpendicular sensor. The vertical elevation of one side 
of the transparent platform will be incrementally lowered 
until the key is positioned properly to block the 
perpendicular light. At this point the backlight is turned 
on and some pictures are taken. The number of pictures 
taken will obviously depend on the quality and capability 
of the camera used, but the system’s patent recommends 
that five pictures be taken. The camera is then moved in 
three-quarter-inch increments across a distance of about 
four inches and more pictures are taken at each location. 
These pictures are digitalized and electronically merged 
together to generate one silhouette of the key and its 
corresponding output signal. Information about the shape, 
depth of cut, location of cuts, and location of the shoulder, 
are extracted and stored in memory [2]. 

An alternative proposed in [3] uses both a backlight 
and an energized LED for more precise measurements. 
The light beam from the LED is projected at the key’s 
dents, and reflected and scattered from the surface. By 
keeping the projection angle constant and measuring the 
point of intersection of the light and the key in the image, 
the depth of the dents can be calculated using simple 
trigonometry laws. A downside of this system is that the 
LED light can produce glare in the images, rendering 
them unusable. A popular way of avoiding this problem 
in many other systems is to project the shadow image of 
the key on a screen, and have the camera measure that 
image instead of picturing the key itself [4], [5]. 

A final example of backlit systems [6] has two 
sources of uniform light opposite each other to generate 
the image of the key located between them. The sources 
of uniform light are capable of evenly illuminating the 
surface of the key without causing hot spots and glare. 
The first light creates a backlit image of the key that 
outlines its profile and notably reveals the shape of the 
dents. The second light then illuminates the key from the 
front, revealing the grooves and indentations which are 

used to recognise the type of key. This last system is the 
closest to the one we will be developing in this work. As 
mentioned earlier, our system uses a flatbed scanner in a 
way similar to the second light in [6] in the sense that it 
creates a frontal illumination of the key. The front-lit 
picture is used as the two images in [6], to get both the 
shape and profile of the key and information to identify 
its type. Our approach does create a much simpler system 
however. Indeed, the design of [6] duplicates the 
hardware and software infrastructures: it uses two 
different lights and two different sets of algorithms to 
handle the front-lit and back-lit images in order to 
perform a complete key measuring operation which 
makes the device inefficient. 

A typical laser-based system, such as the one in [7], 
projects a laser beam at a point on the key. Collection 
optics in the device receive the deflected light beam onto 
a photo-detector, which allows the system to determine 
the distance to the point based on the location of the final 
beam on the photo-detector. The entire key is then 
measured point by point by moving either the laser and 
collection optics, or the key itself. The system in [8] uses 
a similar approach, but the collection optics simply 
detects the presence or absence of reflected light from the 
key, instead of the light’s position. A more sophisticated 
system in [9] emits the laser beam onto a series of 
mirrors and beam splitter, thus creating a two-beam or 
multi-beam setup with at least one signal beam and 
reference beam. The signal beam reflected from the key 
can be compared to the reference beam to calculate the 
depth of the key at that point. Once again, the entire key 
is measured point by point by moving part of the system. 
By contrast, the system in [10] is a true two-laser system. 
The lasers are facing each other and are symmetrical 
about the plane in which the key is moved. These lasers 
illuminate both sides of the key shank. Two video 
cameras are fixed relative to the lasers and are inclined 
relative to the planes in which light beams lie. The 
illuminated profile of the key is captured by the cameras 
and the data is then transmitted to a computer for 
processing [10]. 

III. PROPOSED ALGORITHM 

The algorithm we propose receives as input an 
ordinary scanned image of a key. One of its main 
advantages is to eliminate the need for the complex light 
and laser systems described in the previous section: it 
simply uses an ordinary flatbed scanner, and compensates 
with a sophisticated algorithm to measure the shape of 
the key and the cuts of the key shank. This information 
can then be sent to a cutting device to cut the measured 
indentations on the extracted key blank in order to 
duplicate the original key, or to a 3D printer to create an 
entirely new key. 

The pseudo-code of the algorithm we propose is 
shown in Figure 1. As can be seen, the first step is to 
convert the input image to binary format. This makes it 
easier to measure the positions of the cuts and different 
parts of the key image. Moreover, it eliminates some 
problems such as the local peaks in pixel intensities that 
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are due to glare on the key image. In step 4, we cut the 
image into the head and shank parts of the key. Finding 
the correct key blank is one of the two crucial tasks of 
this algorithm. To this end, we need to compare those 
parts of the key that are the same for all keys of the same 
model, such as the key’s head which, unlike the shanks, 
remains unchanged for all keys of the same model. The 
moment invariants of the head are then used to model it 
and calculate the distances using predefined head images 
in a database. The closest model to the original head 
image found in the database provides the necessary 
information such as the key model name, number, and 
dimensions. After the system finds the correct key blank, 
it needs to measure the cuts and depth of dents from the 
shank image. It performs this task in the three steps 7 to 9 
in the pseudo-code. It begins by getting the contour of the 
key from the image, and then refines the edge’s 
coordinates by interpolating the sub-pixel coordinates. It 
then uses the key’s dimensions, obtained previously from 
the database, to convert the coordinates to real-world 
measures. The remainder of this chapter will describe in 
detail each of these steps. 
Input:  Key Image, Key Head Database 
1. Binary Image ← Convert Key Image to 

binary format 
2. Binary Image ← Fill Binary Image with 

white pixels  
3. Binary Image ← Eliminate noises and gaps 

from Binary Image 
4. Head Image, Shank Image ← Cut Binary 

Image 
5. Head Image Model ← Compute geometric 

invariants of Head Image 
6. Key Model, Key Measure ← Match Head 

Image Model in Key Head Database 
7. Shank Contour Image ← Obtain the 

connected contour of Shank Image 
8. Shank Contour Image ← Sub-pixel 

interpolation of  Shank Contour Image 
9. Shank Measures ← Convert the positions 

of Shank Contour Image into millimetres 
using Key Measure 

Output:  Key Model, Shank Measures 

Figure 1.  Pseudo-code of the algorithm 

A. The Binary Image 

The first step of the algorithm is to convert the 
grayscale or color image taken by the scanner into a 
binary image. This type of conversion is already a 
challenge, and studies have shown that the different 
approach selected to do it in an algorithm’s pre-
processing steps can have an impact on the quality of the 
final results of the algorithm [11]. In this prototype, we 
opted to use a simple thresholding function: the function 
sets all pixels with intensity greater than a threshold to 
white and all other pixels to black. Experimentally, we 
found that even a pixel with a low intensity could be an 
edge of the shank and must therefore be considered as 
part of the binary image while the scanned background is 

almost pure white.  Moreover, simple steps such as 
leaving the scanner’s lid open can prevent the creation of 
a misleading shadow. Consequently, we set a threshold 
value 0.9 of the intensity of a white pixel (i.e. 230 out of 
255 in a grayscale image) to detect the object. Future 
versions of the prototype could improve on this 
observation, for example by using a learning algorithm to 
automatically discover the optimal threshold for each 
given image using the 0.9 value as a starting point [12]. 

The resulting image, however, exhibits a lot of noise 
in the form of many small regions and individual pixels 
that are not connected to the main body of the key in the 
image, as well as a lot of gaps and holes inside the key. 
These anomalies result from darker spots in the 
background and lighter regions in the original scanned 
key, and could lead to problems later in the algorithm. To 
eliminate the noise pixels and the gaps and holes from the 
image, we invoke the fact that the key is the single largest 
object in the scanned picture. Consequently, we can 
simply retain the biggest connected component found in 
the image and eliminate all other regions. On the other 
hand, holes that are entirely surrounded by object pixels 
are assumed to be inside the key and are filled in. 
Applying these simple rules generates a single and 
complete image such as the one in Figure 2a. However, 
as can be seen in Figure 2b, irregularities remain because 
the filling method cannot correct gaps that are connected 
to the background. 

   
Figure 2.  a: Binary image of a key. b: Irregularities visible in a close-

up of a. 

In order to fill in the gaps and keep the real holes 
inside the key head, we apply a 4-connected filter to the 
entire image. This filter is designed to fill in all four 
orthogonal neighbors of every filled pixel. Although 
using this method covers all the remaining gaps of the 
image, the resulting key image will be one pixel wider 
than its original size. To restore the actual size of the key, 
we then erode the object and remove one row of pixels 
on the perimeter of the key image, thus eliminating the 
extra layer of pixels added by the 4-connected filter. 

Another drawback of this method is that it fills in the 
decorative holes inside the key head. These holes will be 
important later in the algorithm in order to compare the 
key with different types of key blanks. Consequently, we 
need to restore the holes of the key head. We start with a 
simple assumption: that a real hole in the key’s head will 
be large when compared to a gap due to an artifact of the 
scanning and binary conversion. Finding and restoring 
the largest hole in the image is simple enough, but not 
sufficient by itself as some keys have more than one 
decorative hole. Thus, after finding the biggest hole of 
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the key, we also retrieve other holes that are close in size 
to that largest one and restore them as well. 

When this process is completed, the binary image 
will be cleaned and only one connected component will 
remain with no gap, false holes, or irregularities. 

B. Cutting the Image 

At this stage, the two parts of the key, namely the 
head and the shank, will be used for two different 
purposes. The head of the key, being identical for all keys 
of the same model, will be used to recognize the key type. 
The shank, on the other hand, has unique cuts that must 
be precisely measured in order to be replicated. We use 
therefore the line dividing the head from the shank, 
which is called the joint of the key, to separate those two 
parts. 

Telling the head from the shank would be easy, even 
trivial, if the key were always scanned in the same way. 
This would echo many existing key measuring systems, 
where the key must be positioned with great precision to 
take the measures and where even a slight deviation 
results in the duplicate key having the wrong cuts and 
being unusable. However, an important challenge in this 
project is to compensate for this weakness. A user of our 
system should be able to scan a key in any orientation, 
and our algorithm should automatically detect the 
orientation and adjust the measures accordingly.  We 
define the orientation of the key in the image as the angle 
(in degrees) between the horizontal axis and the major 
axis of an ellipse that has the same second moments as 
the region [13], [14], [15]. An image moment is a 
function of the weighted average of the image pixels' 
intensities. The zeroth moment of the image is simply the 
area of the image: 

                (1) 

The centre of mass is given by the first moments: 

             (2) 
 
The second central moments are given in Equation 3: 

   

              (3) 

 
The orientation of an object is defined as the axis of 

the least second moment, as given by Equation 4: 

(4)         

 
This gives the orientation of the major axis of an 

ellipse that fits the key. Next, we identify the coordinates 
of the top and bottom of the key. These coordinates are 
somewhere on the major axis line, so it is simply a matter 
of following that line and marking the first and last object 
pixels. From these two points it is straightforward to 
compute the coordinates of the geometric centre and the 
length of the key. The joint of a key is located very near 
the geometric centre. Specifically, we consider “very 

near” to be in the neighbourhood of 1/6th of the key 
image’s length. Taking a neighbourhood of 1/6th of the 
length around the geometric center, or 1/12th before the 
centre point to 1/12th after the centre point on the major 
axis, gives the cut shown in Figure 3. This figure clearly 
shows that there is an important change in the key’s 
width between the head and shank at the joint. To 
pinpoint the joint, we scan the neighborhood row by row, 
where a row has the orientation perpendicular to the 
major axis of the key, and for each row we count the 
number of object pixels. Next, we compute the difference 
between each two successive elements of the array. The 
sharpest transition we are looking for is the highest 
difference value between two successive rows. 

 
Figure 3.  Image cut from 1/12th of the distance before and after the 

centre point of the key of Figure 2a. 

A final observation is that keys are not balanced, 
meaning that the geometric center and the centroid are 
not at the same point. The head contains more of the 
mass of the key, and consequently the centroid will be 
closer to it than the geometric center. We can use this fact 
to figure out on which side of the joint the head is: 
starting from the geometric center and following the 
major axis, it is on the side of the joint towards the 
centroid. 

C. Identifying the Key 

The next stage of the algorithm is to take the image of 
the head cut from the original key and to match it to the 
correct key blank in a database. We can then retrieve the 
information about the key from the database, including 
its physical size and model number. Since we are 
comparing an image of the head cut from the key to other 
images in the database, we need to use a mathematical 
model of the images to make the comparison accurate 
and tolerant of differences in the images (such as 
different sizes and orientations of the heads). For this 
purpose, we model the images of the heads using their 
moment invariants, which are mathematical measures 
that are constant under translation, rotation, and changes 
in scale [16]. 

Given an image of size M × N, the 2D moment of 
order (p + q) is defined as [16] as: 

                (5) 
where p and q are integers. The corresponding central 

moment of order (p +q) is defined as: 
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                (6) 
where   and  . The normalized central 

moment of order (p + q) is defined as: 

                (7) 

where  + 1. The set of seven moment invariants 

used in this project can be derived from the following set 
of equations [13]: 

 (8) 
In order to compare the seven moment invariants of 

two images, we simply compute the Euclidian distance 
between them. Since the moments can have a sign 
difference from one image to the next, it is necessary to 
take their absolute value in the following equation: 

(9) 
Now, we can compare a head’s image to a set of 

images, and find the best match as the one with the 
smallest distance. 

We created a database of key images and information, 
using the procedure described so far to extract the heads 
from the key images. Each key in the database is 
represented by three scans and three head images. The 
reason for this is that, despite the processing presented in 
section 3.1, differences from glare and light reflections 
on the key can introduce noise, and this noise can cause 
variations in the values of the moments invariants. Using 
several images of each head allows our system to average 
out these variations.  Experimentally, we found that the 
average of three images was enough to deal with almost 
all noise problems. To further improve the noise-
tolerance of the system, each scanned key is used to 
create two head images: one that maintains the decorative 
holes in the head and another where those holes are filled 
out. By using the average of all six comparisons we 
greatly increase the chance of picking the correct match 
in the database. 

Another problem that must be dealt with at this point 
is the fact that some keys have two joint divisions. Indeed, 
we find the joint of the key as the sharpest change in 
width in a neighborhood of 1/6th of the length of the key 
image around the geometric center of the key. Some keys 
have two such step width changes, as illustrated in figure 
4. Both steps have roughly the same size, and small noise 
differences could make our system find either one as the 
joint. This width change adds or removes a bit of length 
from the head, which in turns causes potentially 
important differences in the values of the moments 

invariants. Our solution to this problem is to create two 
sets of images for keys that have two joint divisions, one 
set for each possible head. Both of these sets refer to the 
same key blank in the database. 

 
Figure 4.  Left: a key with two joints. Right: close-up, showing clearly 

the two step changes in width. 

In addition to the moment invariants, we developed a 
second function that works as a supplement in order to 
enhance the accuracy of the key blank detection. That 
function counts the number of pixels in head’s holes and 
the number of head pixels. The ratio of these two 
numbers is not unique for each key head image, but it can 
still be used as a factor to double-check and confirm our 
comparison results. We use this function to resolve 
ambiguous cases where the difference between moment 
invariants of two different keys is too small to guarantee 
that the algorithm picked the correct one. 

D. Measuring the Cuts 

The final task of the algorithm is to measure the 
depths of the dents of the original key. To do this, it starts 
with the shank side of the image extracted in section 3.2, 
determines an outline of the dents with sub-pixel 
accuracy, and then converts the coordinates into physical 
measures. 

To identify the outline of the key, a Canny edge 
detector, which is a commonly-used and powerful edge 
detector [17] is used. This algorithm detects the details of 
the image clearly and produces a clean edge map, with a 
connected contour one pixel in thickness. But, even 
though each pixel in that contour represents a position 
along the shank of the key, measuring the positions of 
cuts in pixels is not accurate enough to duplicate the key. 
More precise sub-pixel coordinates for the points 
observed in the image must therefore be interpolated. 

For each edge pixel detected, we will posit that the 
real edge lies somewhere within a 3 by 3 neighborhood 
centered on that pixel. Thus, for each pixel, we retrieve 
the intensity value of the corresponding nine-pixel 
neighborhood in the original grayscale key image. We 
further assume that this 3 by 3 neighborhood can be 
locally represented as a two-dimensional surface. The 
equation of a two-dimensional surface is a degree-two 
polynomial of the form given in equation (10), where x 
and y are the coordinates of the point, p(x,y) is the 
intensity of the pixel at that coordinate, and the nine ci are 
nine unknown constant coefficients. The nine individual 
pixels in the neighborhood give nine different evaluations 
of this equation. It thus becomes possible to solve the 
equation and discover unique values for the nine 
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unknown coefficients. The Vandermonde method [18] 
can be applied to interpolate the equation of the surface 
fitting the nine points and to solve for the coefficient 
values. To find the edge, we must find the minimum 
value of this polynomial within the 3 by 3 neighborhood. 
Moreover, with the polynomial known, the problem 
becomes a simple local optimization derivation, solvable 
by any numerical optimization tool. The result, shown in 
Figure 5, is a set of sub-points around the detected edge 
of the key shank. 

(10) 

 
Figure 5.  Sub-pixel points around the edges of a segment of the key 

shank. The top part of the shank has dents, while the bottom of the 
shank is a straight edge. 

The sub-pixel points are the coordinates of the dents 
of the key. However, a cutting machine will need depth 
measures in order to cut a new key blank. These depth 
measures can be computed by measuring the shortest 
distance between each edge sub-pixel point and the major 
axis line of the key obtained earlier. The final challenge 
in this new method is to convert these depth measures 
from pixel values to physical measures. To do this, we 
need two bits of information obtained previously: 
specifically, the length of the key in pixels, which is 
simply the distance between the two ends of the key we 
measured in Section 3.2, and the physical size of the key, 
which has been retrieved from the database in Section 3.3. 
Comparing those two measures of the dimensions of the 
key gives us a conversion from pixels to millimeters, 
which we can then apply to convert the pixel depth 
measures of the dents to real-world millimeter measures. 

IV. EXPERIMENTAL RESULTS 

We conducted two sets of tests to verify the two 
major objectives of the project, namely identifying the 
correct match for the original key image and measuring 
the depth of the cuts and edges of the original key shank. 

A. Comparing Key Models 

Section 3.3, presented a comparison of a key’s head 
to six images in the database, three images of the head 
with its decorative holes intact and three with the holes 
filled up. This first experiment is meant to demonstrate 
the need to perform this number all those of comparisons. 
We will now focus on 21 different scanned images of our 
test keys, that is three images (labeled A, B and C) for 
each of the 7 test keys. Figure 6 shows one image for 

each of the seven models for illustrative purposes.  The 
heads of the keys were extracted using the methodology 
of section 3, and the seven moments invariants were 
computed for each head. Three keys were randomly 
selected as query keys that we will try to match to the 
correct models among the other 20. These are keys A2, 
A5 and A7; they should ideally be matched to keys B2 
and C2, B5 and C5, and B7 and C7, respectively. 

 
Figure 6.  Test key images A1 to A7. 

As explained earlier, keys are matched to those with 
the minimum distance in their moments invariants using 
equation (9). The starting point for our experiments, then, 
is to compute the distance between the moments 
invariants of the three test keys and all other keys. The 
results are presented in Table 1. As the table shows, when 
key A5 is compared to B5 and C5, the two other keys of 
the same type, the result corresponds to the minimum 
distance. However, some of the other distances are also 
very close to that minimum value as illustrated by the 
three keys of model 3. This creates the potential for 
confusion in the system. The test with key A2 further 
illustrates this problem. While B2 does give the minimal 
distance, three other keys, namely B5, C5 and A7, 
incorrectly show a smaller distance than C2. The test 
with A7 gives even worse results: after the correct match 
with B7, five heads show a smaller distance than C7. 
This shows that the distance between these pairs of key 
heads is not sufficient to pinpoint the correct match. A 
system that used C2 and C7 as its database head, for 
example, would not correctly recognize keys A2 and A7. 

Table 1：Distance between the test keys and other head images. 
A2 A5 A7 

A1 4.8909 2.4648 3.2439 
B1 4.7721 2.3336 3.1203 
C1 4.8349 2.3896 3.1978 
A2 0 2.7090 1.7755 
B2 1.1245 2.0260 1.3331 
C2 1.9752 1.4203 1.1286 
A3 3.5983 1.3807 2.0239 
B3 3.6802 1.4175 2.1185 
C3 3.7469 1.3974 2.1730 
A4 4.7566 2.5368 3.1610 
B4 4.3923 2.4698 2.9329 
C4 4.3017 2.2962 2.7988 
A5 2.7090 0 1.5842 
B5 1.8914 1.3318 1.5039 
C5 1.8090 1.3459 1.3229 
A6 3.0202 1.7141 1.3261 
B6 3.6592 2.0992 2.0975 
C6 3.5032 2.1187 1.9614 
A7 1.7755 1.5842 0 
B7 2.4468 1.5263 1.0440 
C7 2.2360 2.0892 1.5241 

This first test was done using images of the keys’ 
heads that maintained the decorative holes. As explained 
in section 3, we improve accuracy by also computing the 
moment invariants and the distances of filled versions of 
key heads. To illustrate the impact of this change, the 
same set of comparisons of Table 1 were repeated using 
filled heads. The results of this second test are presented 
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in Table 2. The table shows that errors are still present, 
though they are different from those in Table 1. 
Previously, A2 was misclassified with respect to B5, C5 
and A7 in preference to C2. In the new results, those 
three keys exhibit a much higher distance, but C3 
generates a new error. In the same vein, A7 had 
erroneous small distances with B2, C2, B5, C5 and A6 in 
Table 1. Now, four of these five keys have higher 
distances and only B5 remains an error, along with B6. 
By contrast, while the minimum distances for A5 in table 
1 occurred when it was compared to keys B5 and C5, in 
Table 2 four errors show up with C2, B6, C6 and C7. On 
the other hand, the three keys of model 3, which were 
almost matched in Table 1, have much higher bigger 
distances now. 

Table 2：Distance between the three test keys and the other head 
images, using filled heads. 

 A2 A5 A7 
A1 3.9479 5.9733 9.2432 
B1 3.6977 5.7708 9.0026 
C1 3.7018 5.6605 8.9675 
A2 0 3.0470 5.4493 
B2 1.4078 2.8008 6.1385 
C2 1.9058 1.4494 4.7843 
A3 2.4278 3.7288 7.2117 
B3 2.1936 3.8065 7.1373 
C3 1.5503 3.5142 6.5974 
A4 5.1856 7.1180 10.3886 
B4 5.6390 7.8020 10.9205 
C4 4.6303 6.8113 9.8869 
A5 3.0470 0 4.0654 
B5 4.9842 2.4089 2.7318 
C5 5.1465 2.4560 3.0383 
A6 6.2251 3.8461 3.4573 
B6 4.1904 1.5740 2.9139 
C6 4.1194 1.4408 3.0365 
A7 5.4493 4.0654 0 
B7 6.6276 4.0183 3.0034 
C7 4.5969 2.0344 2.5890 

Clearly, neither the comparison between unfilled 
heads nor that between filled heads is sufficient by itself 
to pair the heads without errors. However, as noted 
before, the errors are mostly different between the two 
comparisons.  Table 3 shows the results of averaging out 
the distance values of Tables 1 and 2. As can be seen, the 
low values of the correct matches in each of these tables 
average out to a similarly low distance value, while the 
erroneous matches that had a low value in one table and a 
high value in the other average out to a greater distance 
than the  correct matches. Of particular interest is B5, 
which was an erroneous match compared to A7 in both 
tests. Using unfilled heads, it showed a distance of 
1.5039 compared to A7, which was smaller than the 
1.5241 value for C7 but bigger than the 1.0440 for B7. 
Using filled heads, its distance became 2.7318, which is 
smaller than that of B7 which stands at 3.0034 but greater 
than that of C7 at 2.5890. This means that B5 was always 
an erroneous low-distance match, but always outranked a 
different one of the two correct keys. After averaging out 
the distance values, B5 has a distance of 2.1178 with 
respect to A7, which is greater than the distance between 
A7 and B7 at 2.0237 or A7 and C7 at 2.0565. 

Table 3：Average distance between the three test keys and the 
other head images. 

A2 A5 A7 
A1 4.4194 4.2190 6.2435 
B1 4.2349 4.0522 6.0614 
C1 4.2683 4.02505 6.0826 
A2 0 2.8780 3.6124 
B2 1.2661 2.4134 3.7358 
C2 1.9405 1.4348 2.9564 
A3 3.0130 2.5547 4.6178 
B3 2.9369 2.6120 4.6279 
C3 2.6486 2.4558 4.3852 
A4 4.9711 4.8274 6.7748 
B4 5.0156 5.1359 6.9267 
C4 4.4660 4.5537 6.3428 
A5 2.878 0 2.8248 
B5 3.4378 1.8703 2.1178 
C5 3.4777 1.9009 2.1806 
A6 4.6226 2.7801 2.3917 
B6 3.9248 1.8366 2.5057 
C6 3.8113 1.7797 2.4989 
A7 3.6124 2.8248 0 
B7 4.5372 2.7723 2.0237 
C7 3.4164 2.0618 2.0565 

Computing the average distance value of filled and 
unfilled versions of the same image yields the desired 
results for A2 and A7, but in some cases the average 
distance values between A5 and the two other keys of its 
model are not the minimum. Indeed, C2, B6 and C6 
exhibit the lowest averages with respect to A5. Moreover, 
in some correctly-classified cases the average distance of 
a wrong key is not sharply greater than that of the same 
key type. In fact, the difference can be as low as 0.06 (or 
3% of the distance value), as in the case of the A7-C7 
match compared to A7-B5. Clearly the potential for 
errors still exists. 

As explained in section 3, to further reduce the 
impact of noise and increase the chance of finding the 
correct match, we compute the distances between the 
original head image and three different images of a key 
head of each type. To this end, we computed the average 
distance between each test image and all three images of 
each type (two images for the test image’s type, since the 
third image is the test image). As we can see in Table 4, 
averaging the distance of three images gives results that 
are much more robust and resilient to noise. In all three 
sample cases, the test keys show the lowest average 
distance with keys of the same type. In addition, the 
difference between the distance of a correct and incorrect 
match becomes more significant. In the specific case of 
our previous example, the difference between A7-tpye 7 
and A7-type 5 is five times higher, at 0.3 or 15% of the 
distance value. 

Table 4：Average distance between the three test keys and three 
head images. 

A2 A5 A7
Key type No. 1 4.3075 4.0987 6.1291
Key type No. 2 2.2364 2.2420 3.4348
Key type No. 3 2.8661 2.5408 4.5436
Key type No. 4 4.8175 4.8390 6.6814
Key type No. 5 3.2645 1.8856 2.3744
Key type No. 6 4.1195 2.1321 2.4654
Key type No. 7 3.8553 2.5529 2.0401

To further illustrate the advantage of averaging out 
the distance results, we compared all 21 test keys with a 
set of one, two, and three keys. The results, shown in 
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Table 5, confirm that the comparison becomes more 
accurate when we average more sample images together. 
The results of Table 5 are obtained by comparing each of 
the 21 keys of Figure 6 with the other 20 keys. This gives 
a total of 420 comparisons. When using one unfilled head 
image only, 10 keys are matched with the wrong model. 
Moreover, there are 29 distances that are wrongly higher 
than the correct key distance, which is to say that 6.9% of 
distances are erroneous. Using only one filled head image 
gives even worse results: 11 keys are misclassified, and 
38 of the distances, or 9%, are erroneous. Averaging the 
filled and unfilled key head images gives a small 
improvement in the results: 28 of the distance averages 
(6.7%) are erroneous and 8 out of 21 keys are not 
identified correctly. Although the improvement is small, 
it confirms that averaging both images is more accurate 
than using either image separately. Averaging two 
different key heads for each key gives better results. With 
three different heads per key model, there are three 
different pairs of key heads or 19 comparisons for each of 
the 21 keys and 378 average distances in total. As we can 
see in Table 5, the number of errors drops sharply in this 
case: only 3 of the 21 keys are misclassified, and only 6 
of the distances, or 1.5%, are erroneous. Finally, taking 
the average between the original key and the three keys 
in each set (two keys in the set of the same key type) 
gives results that are nearly perfect: only one key is 
misclassified and only 2 distances, or 1.4% of them, are 
erroneous. This test illustrates the reason why we chose 
to have three keys of the same key type in each key set in 
the database. 

Table 5：Comparison errors of all 21 keys with the database 
images. 

Test Count of Erroneous 
Distances 

Count of 
Failed Keys

Comparing to one unfilled 
database head 

29 errors 10 keys 
failed 

Comparing to one filled 
database head 

38 errors 11 keys 
failed 

Averaging the filled and 
unfilled heads 

28 errors 8 keys 
failed 

Averaging two database keys 
(four heads) 

6 errors 3 keys 
failed 

Averaging three database keys 
(six heads) 

2 errors 1 key failed

The only remaining errors at the end of this test occur 
with key type number 7 which is misclassified with key 
type number 5.  An additional refining of the comparison 
is needed to deal with this problem. Looking at the 
images of Figure 6, we note that a clear difference 
between those two models is the size of the decorative 
hole in the key’s head. That is why we computed the ratio 
of hole to object pixels in Section 3.3. We can use this 
ratio as supplementary information to tell apart certain 
key models, such as 5 and 7, since, as we can see in 
Table 6, there is a clear difference in the ratio of those 
two key models. This feature however is not useful for all 
classifications and cannot be used as a reliable factor to 
identify all key types, since there are some overlaps 
among the ratios of other types. Indeed, while the ratios 
between key types number 5 and 7 have a reasonable 
difference, the ratio of model 7 is close to that of model 3 
and the ratio of model 5 is close to that of model 4. This 

method could not therefore distinguish between these 
keys. 

Table 6：Ratio of number of pixels in head hole to number of 
head’s white pixels. 

Ratio (hole pix/head pix) 
A1 0.1734 
B1 0.1746 
C1 0.1727 
A2 0.0660 
B2 0.0664 
C2 0.0630 
A3 0.1175 
B3 0.1170 
C3 0.1218 
A4 0.1048 
B4 0.0909 
C4 0.0938 
A5 0.0957 
B5 0.0978 
C5 0.1013 
A6 0.2303 
B6 0.2274 
C6 0.2271 
A7 0.1186 
B7 0.1285 
C7 0.1292 

The tests have so far classified the 21 sample keys 
compared to each other. As a final verification, we 
examine the classification results using the database we 
built as a prototype of our system. This database models 
the same seven models of keys and stores three pictures 
of each model (different from the 21 sample key pictures), 
plus three additional pictures for two keys that have the 
double-joint feature described in Section 3.3. They are 
key models 2 and 5. We will perform the same set of 
tests as before, to compare the results step by step. 

We begin by computing the difference in moments 
invariants of the 21 test keys compared with one unfilled 
key head image of each key model in the database 
(including a second-joint picture for models 2 and 5). 
This generates a total of 189 difference values, of which 
14 are erroneous in the sense that they correspond to 
wrong matches and are smaller than the values of correct 
matches. The error rate thus stands at 7.4%, not far from 
the 6.9% reported for the same test in Table 5. Note 
however that all these errors are confined to only two 
keys: B6 and C6. Next we compute the difference in 
moments invariants using the filled-hole version of the 
same database head image. This yields only 12 erroneous 
distances, or 6.3%, a small decrease compared to the 
previous test. These last results contrast with those 
reported in Table 5, where the filled image generated a 
higher error rate than the unfilled one, though the 
difference is minor. More importantly, the errors have 
changed somewhat between these two tests: six errors 
that occurred in the first test were corrected in the second 
test when the filled head was used, while four new errors 
appeared.  All in all, four keys were misclassified, 
including B6 and C6. The next step now is to compute 
the average of the original and filled differences. Recall 
that in Table 5, this average led to a modest improvement 
of the results. In the present experiment, the results have 
similarly shown a slight improvement: there are again 12 
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erroneous differences and 4 misclassified keys, the same 
as with the filled head images. 

The next phase of the experiment is to use a second 
picture of the database keys, and compute the average of 
four head images, using heads with and without holes for 
each picture. In this case, the rate of erroneous 
differences decreases noticeably, from 6.3% to 3.1%. 
This shows that the average of multiple differences is 
more reliable than individual differences, and confirms 
the results of Table 5. However, although the number of 
errors in the differences decreased, there are still four 
misclassified keys. The fact that the number of 
misclassified keys has not decreased is somewhat 
disappointing.  On the other hand, it should be noted that 
the number of these keys has remained constant at four 
throughout the last tests whereas in the results reported in 
Table 5 their number has decreased from 11 to 3. In other 
words, the fixed number of four misclassified keys is 
close to the best result of Table 5. Furthermore, most of 
the errors we observe in this test are due to only one of 
the key types in the database, namely, type 5, which is 
responsible for 5 of the 6 erroneous differences. This 
means that we are facing a problem related to one 
specific key type. 

The final test is to compute the average difference 
between the 21 keys and all three key pictures in the 
database. In this case, the error rate is just half what it 
was when only two key images were used: two keys are 
misclassified instead of four, and 1.5% of the differences 
are erroneous instead of 3.1%. This decrease in the error 
rate and the final values of the distances are in line with 
the results of Table 5. The two remaining misclassified 
keys both belong to model 7, and are both misclassified 
in model 5. This is the same misclassification that 
remained in Table 5. Again, by adding an extra check 
using the ratio of hole to object pixels in the key head, we 
can correct this problem. 

B. Measuring the Dents 

As explained in Section 3, once the algorithm has 
identified the key in the database, it measures the edges 
of the shank with sub-pixel accuracy. Then, by using the 
measure of the key known from the database, we can 
convert these sub-pixel coordinates into real measures 
that a duplicating system can use. The next set of tests 
examines this aspect of the system. To this end, two 
scanned key shanks from different models will be used. 
Keys B2 and B7 were randomly selected from the 21 test 
keys of the previous experiment, and are presented in 
Figure 7. 

 
Figure 7.  Two test key shanks, with five positions marked on each. 

Left: B2, Right: B7. 

Since the main output of our system consists in 
measures of the shank in millimeters, the first question 
becomes how well these measures compare to the real 
dimensions of the key. To address this issue, we selected 
five points easy to recognize on each key, namely local 
maxima and minima of the dents, as shown in Figure 7. 
For starters, the measures of the five points were 
computed by the software. The real key was then 
measured manually using a caliper and the relative error 
between the real measure and the software approximation 
was computed using equation (11). The results are given 
in Table 7. 

  (11) 
Table 7：Measure (in mm) and relative error of the points 

marked in Figure 7. 
 B2 (left) B7 (right) 

Pt  Soft-
ware

Caliper Error Soft-
ware 

Caliper Error 

1 4.1 4.06 0.0099 3.2 3.30 0.0303
2 1.7 1.77 0.0395 1.7 1.77 0.0395
3 4.1 4.19 0.0214 3.0 3.04 0.0131
4 2.4 2.54 0.0551 4.3 4.31 0.0023
5 4.4 4.57 0.0372 4.1 4.31 0.0487

The average relative error of the five sample points 
for key B2 is 3.2%, and that for key B7 is 2.6%. These 
errors could be due to several factors. One factor could 
be the resolution of the picture: a higher-resolution 
scanner would provide more precise data to measure the 
edges. Another factor has to do with the interpolation 
approach: a better sub-pixel interpolation method would 
also yield more accurate coordinates and improve the 
final results. 

We now turn to a verification of the consistency of 
the measurement of the dents.  More specifically, we 
seek to verify how precisely the results obtained from 
two executions of the software using two scans of the 
same key will match each other. To this end, the two 
scans shown in Figure 8 were used and five easily-
recognizable local maxima and minima on the shank 
were again identified for comparison purposes. Their 
measures and relative errors are presented in Table 8 
along with caliper measures for comparison purposes. 

 
Figure 8.  Two scans of the same key. 

Table 8：Measure (in mm) and relative error of matching points 
on the key of Figure 8. 
Pt  Soft-

ware
left 
key 

Soft-
ware 
right 
key 

Error  
left to 
right 

Caliper Error  
caliper 
to left 

Error  
caliper 
to right

1 3.7 3.6 0.028 3.30 0.121 0.091 
2 4.6 4.5 0.022 4.31 0.067 0.044 
3 2.1 2.0 0.048 1.90 0.105 0.052 
4 3.3 3.0 0.091 3.04 0.086 0.013 
5 4.4 4.1 0.068 4.31 0.021 0.049 
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As Table 8 shows, the average relative error between 
two scans of the same key is 4.4%, and in the worst case 
it is always below 10%. By comparison, the error 
between caliper measures of the original key and these 
images is on average 5.5%, and at most 12%. In other 
words, the error between two different scans of the key is 
a little better than the error between each scan and the 
real key. It thus appears that the results of the software 
are consistent, and not subject to variations depending on 
the image. 

Finally, to verify the accuracy of the measurements of 
the dents, we compare the errors of the measures of the 
key calculated by our algorithm with the errors of an 
actual duplicate. The previous tests compared the image’s 
measures to those of the original key, and reported a 
percentage of errors. The present test will determine how 
these errors compare to normal key duplication errors. To 
conduct this test, we create a physical duplicate the key 
of Figure 8 using a normal hardware store’s duplication 
machine, and scan the original key three times to get 
three different sets of measures using our algorithm. We 
also use the same five comparison points as before. The 
results are presented in Table 9. As can be seen, the 
hardware-store key duplicate has an average relative 
error of 4.9%. The measures obtained by our algorithm, 
on the other hand, show an average error of 7.9% with 
the first scan, 3% with the second scan, and 1.9% with 
the third scan, for an overall average of 4.2% which is 
comparable to the physical duplicate. The results of the 
individual scans show that it is possible for the measures 
computed by the algorithm to be up to 3% better or worse 
than the traditional measures, which in real terms 
corresponds to a negligible error of a few tenths of a 
millimeter only. 

Table 9：Measures (in mm) and error of a duplicate and three 
scans of a key. 

Point 1 2 3 4 5 
Original 3.30 4.31 1.90 3.04 4.31 
Duplicate 3.17 4.06 1.77 2.79 4.31 
Error Original to 
Duplicated 

0.039 0.058 0.068 0.082 0.000

Scan 1 3.7 4.6 2.1 3.3 4.4 
Error Original to 
Scan 1 

0.121 0.067 0.105 0.085 0.020

Scan 2 3.5 4.4 1.9 3.2 4.4 
Error Original to 
Scan 2 

0.060 0.020 0.000 0.052 0.020

Scan 3 3.3 4.2 2.0 3.1 0.019
Error Original to 
Scan 3 

0.000 0.025 0.052 0.019 0.002

V. CONCLUSION 

This paper presents a new key measuring algorithm 
that is able to find the correct key blank in a key model 
database, and to measure the depth of the key’s dents in 
millimeters. This algorithm could then be connected to a 
cutting machine or a 3D printer to create a new copy of 
the original key automatically. 

The main advantage of this new algorithm is that it 
only requires a commercially-available flatbed scanner 
rather than the sophisticated laser or backlight systems 
used today. The software uses image processing 
techniques to compensate the lack of accuracy in the 

images taken by the scanner. It also does not require the 
key to be adjusted to an exact position by the operator or 
by a physical mechanism, as many other key measuring 
systems do. 

The development of the key model database is also an 
important part of this work. This database stores pictures, 
measures and model information about different keys. In 
order to find the correct match of the original key, the 
software compares the head of the original key with 
images of other key heads in the database.  Using the 
measures retrieved from the database, the software can 
convert its sub-pixel coordinates of the key’s dents to 
actual physical depth measures. 

Our results show that the algorithm can accurately 
find the key model in the database corresponding to a 
scanned key. We can minimize the effect of errors and 
noise by averaging the results of three database images of 
each model, and use some extra information such as the 
hole to object ratio to handle some ambiguous cases. 
Furthermore, the depth measures obtained by the 
algorithm are on par with those of a traditional hardware 
store’s duplicate key. 

Future work should begin by extending the database. 
The prototype developed in this research defines seven 
different key models in the database. These models were 
selected to be a representative sample. They include both 
single-sided and two-sided keys, keys with double-joints, 
and some similar-looking key models. However, there 
are more than 200 key types on the market today. 
Covering more key types will create additional 
challenges, namely in the form of new ambiguous cases 
to handle. The comparison could also be made more 
accurate by using a different set of moments invariants. 
Indeed, Flusser and Suk [19], [20] showed that the 
traditional invariant set developed by Hu, which is the 
one used in this prototype, is missing the third order 
independent moment invariant. To remedy this 
shortcoming, they propose an extended set of moments 
invariants. Alternatively, Hamidi and Borji [21] propose 
using a set of image properties selected based on a study 
of biological vision and recognition to create an image 
recognition algorithm with improved accuracy and 
invariance to image distortions. It is possible that using 
one of these new measures will simplify the prototype by 
requiring fewer database images to average and will 
consequently reduce the number of ambiguous cases. As 
regards the measurement of the edges and depths of the 
dents of the key, our method is already comparable to 
those commonly used in industries today. It could 
nonetheless be improved by using a more accurate sub-
pixel interpolation method. 
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