
I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11
Published Online February 2012 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijigsp.2012.01.01

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

A Case Study in Key Measuring Software

Naeem Nematollahi, Richard Khoury
Department of Software Engineering, Lakehead University

Thunder Bay, ON, CANADA
E-mail: {nnematol,rkhoury}@lakeheadu.ca

Abstract— In this paper, we develop and study a new
algorithm to recognize and precisely measure keys for the
ultimate purpose of physically duplicating them. The main
challenge comes from the fact that the proposed algorithm
must use a single picture of the key obtained from a regular
desktop scanner without any special preparation. It does not
use the special lasers, lighting systems, or camera setups
commonly used for the purpose of key measuring, nor does
it require that the key be placed in a precise position and
orientation. Instead, we propose an algorithm that uses a
wide range of image processing methods to discover all the
information needed to identify the correct key blank and to
find precise measures of the notches of the key shank from
the single scanned image alone. Our results show that our
algorithm can correctly differentiate between different key
models and can measure the dents of the key with a
precision of a few tenths of a millimeter.

Index Terms— High-Precision Measuring, Object
Recognition, Practical Applications of Computer Vision

I. INTRODUCTION

Key duplication is a profitable business, and the
service is offered today in most hardware stores. Older
generations of these systems had to physically touch the
original key and transmit the measures mechanically to a
blade that cuts the new blank key. The blade moves along
the length of the blank key and cuts the notches to the
depth of the corresponding location on the original key.
In these traditional devices there is no measuring system
to gauge the depth and form of the notches, aside from
the current location being cut. In addition, an operator
must pick the correct key blank among different types of
keys. By contrast, in more recent patents of key
duplication systems, a measuring system is one of the
most important components of the apparatus.

The newer generation of key measuring systems
focuses on the innovative use of diverse light sources.
Some key measuring systems use backlights to generate
an image of the object’s shadows and obtain the outline
of the key. Other systems employ laser technology and
collimated lights to measure the depth of the key shank.
Others still use uniform light sources to evenly illuminate
the surface of the object. Some new developments make
use of 3D cameras and high resolution cameras to capture
the cuts and edges of the key as precisely as possible.

 Adjusting the orientation of the key is another
common problem in several kinds of key duplication
systems. Without information about the position of the

key in the system, it is impossible to measure the details
of the key precisely enough to duplicate it. In older
designs, the original key had to be attached at an
appropriate location and angle, and even a slight error
could lead to wrong cuts and a useless new key. Newer
designs allow the system to automatically detect the
position of the key, and to move it using a combination of
fixation device, rotation platter and stepping motor to
bring it to the correct orientation.

In this paper we introduce a new key measuring
software that uses image processing techniques to
achieve two main objectives: to identify the correct key
blank and to find precise measures of the notches of the
key shank. Given these two pieces of information, a
cutting machine should be able to replicate the key. One
advantage of the system we are proposing is that it
eliminates the need for dedicated key measuring devices
and for the use of sophisticated lighting systems and
cameras. Instead, a common and commercially-available
flatbed scanner is used to capture the image of the key.
Furthermore, the key can be scanned with any angle and
orientation; the operator no longer needs to position the
key properly, nor does the system need a setup to
physically move the key to the correct place. The
challenge of creating sophisticated algorithms to
extrapolate information from a single image and known
models of the objects being analyzed is one attracting a
lot of attention, and for example it has been studied in the
past for the problem of face and gaze detection [1].

The rest of this paper is divided into four sections. In
the next section we describe the current state of patented
technology for key measurement systems as well as some
relevant image processing methods. Our original image
processing algorithm is detailed in section 3. The
software is then thoroughly studied and tested, and the
experimental results are analyzed in section 4. The
concluding remarks are presented in section 5.

II. REVIEW OF PREVIOUS STUDIES

While there exists a great variety of key measuring
devices, modern techniques follow a common basic
principle, which consists in aiming a known light source
of some kind at the key and measuring the light’s features
after it hits the key using a camera. Some parts of the
system, namely the key, the light source, or the camera,
need to be mobile in order to measure the entire key.

2 A Case Study in Key Measuring Software

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

Moreover, the key must often be properly oriented in the
system in order to get correct measurements, which
means that part of the system is dedicated to physically
moving the key to the correct position. The two main
types of light sources that are used in key measuring
systems are laser and backlight. Laser-based systems
basically work by projecting a laser line on each side of
the key and measuring the deflection angle to assess the
shape of the key at each point. Meanwhile, backlight
systems get the outline of the key and measure the
notches.

In its simplest form, a backlight-based system is one
that lights the key from behind in order for the camera to
get a clear shadow image of the key that serves to extract
the outline of the teeth. This is the principle applied
directly in [2] whereby the key is placed on a backlit
transparent platform, with a camera above it. In addition,
this system has a mechanism that automatically adjusts
the key to its ideal position. A second light source
illuminates the key from a perpendicular direction, and
provided the shank of the key is not placed flatly on the
transparent backlit platform, a direct light above a
minimum threshold will be received by an opposite
perpendicular sensor. The vertical elevation of one side
of the transparent platform will be incrementally lowered
until the key is positioned properly to block the
perpendicular light. At this point the backlight is turned
on and some pictures are taken. The number of pictures
taken will obviously depend on the quality and capability
of the camera used, but the system’s patent recommends
that five pictures be taken. The camera is then moved in
three-quarter-inch increments across a distance of about
four inches and more pictures are taken at each location.
These pictures are digitalized and electronically merged
together to generate one silhouette of the key and its
corresponding output signal. Information about the shape,
depth of cut, location of cuts, and location of the shoulder,
are extracted and stored in memory [2].

An alternative proposed in [3] uses both a backlight
and an energized LED for more precise measurements.
The light beam from the LED is projected at the key’s
dents, and reflected and scattered from the surface. By
keeping the projection angle constant and measuring the
point of intersection of the light and the key in the image,
the depth of the dents can be calculated using simple
trigonometry laws. A downside of this system is that the
LED light can produce glare in the images, rendering
them unusable. A popular way of avoiding this problem
in many other systems is to project the shadow image of
the key on a screen, and have the camera measure that
image instead of picturing the key itself [4], [5].

A final example of backlit systems [6] has two
sources of uniform light opposite each other to generate
the image of the key located between them. The sources
of uniform light are capable of evenly illuminating the
surface of the key without causing hot spots and glare.
The first light creates a backlit image of the key that
outlines its profile and notably reveals the shape of the
dents. The second light then illuminates the key from the
front, revealing the grooves and indentations which are

used to recognise the type of key. This last system is the
closest to the one we will be developing in this work. As
mentioned earlier, our system uses a flatbed scanner in a
way similar to the second light in [6] in the sense that it
creates a frontal illumination of the key. The front-lit
picture is used as the two images in [6], to get both the
shape and profile of the key and information to identify
its type. Our approach does create a much simpler system
however. Indeed, the design of [6] duplicates the
hardware and software infrastructures: it uses two
different lights and two different sets of algorithms to
handle the front-lit and back-lit images in order to
perform a complete key measuring operation which
makes the device inefficient.

A typical laser-based system, such as the one in [7],
projects a laser beam at a point on the key. Collection
optics in the device receive the deflected light beam onto
a photo-detector, which allows the system to determine
the distance to the point based on the location of the final
beam on the photo-detector. The entire key is then
measured point by point by moving either the laser and
collection optics, or the key itself. The system in [8] uses
a similar approach, but the collection optics simply
detects the presence or absence of reflected light from the
key, instead of the light’s position. A more sophisticated
system in [9] emits the laser beam onto a series of
mirrors and beam splitter, thus creating a two-beam or
multi-beam setup with at least one signal beam and
reference beam. The signal beam reflected from the key
can be compared to the reference beam to calculate the
depth of the key at that point. Once again, the entire key
is measured point by point by moving part of the system.
By contrast, the system in [10] is a true two-laser system.
The lasers are facing each other and are symmetrical
about the plane in which the key is moved. These lasers
illuminate both sides of the key shank. Two video
cameras are fixed relative to the lasers and are inclined
relative to the planes in which light beams lie. The
illuminated profile of the key is captured by the cameras
and the data is then transmitted to a computer for
processing [10].

III. PROPOSED ALGORITHM

The algorithm we propose receives as input an
ordinary scanned image of a key. One of its main
advantages is to eliminate the need for the complex light
and laser systems described in the previous section: it
simply uses an ordinary flatbed scanner, and compensates
with a sophisticated algorithm to measure the shape of
the key and the cuts of the key shank. This information
can then be sent to a cutting device to cut the measured
indentations on the extracted key blank in order to
duplicate the original key, or to a 3D printer to create an
entirely new key.

The pseudo-code of the algorithm we propose is
shown in Figure 1. As can be seen, the first step is to
convert the input image to binary format. This makes it
easier to measure the positions of the cuts and different
parts of the key image. Moreover, it eliminates some
problems such as the local peaks in pixel intensities that

 A Case Study in Key Measuring Software 3

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

are due to glare on the key image. In step 4, we cut the
image into the head and shank parts of the key. Finding
the correct key blank is one of the two crucial tasks of
this algorithm. To this end, we need to compare those
parts of the key that are the same for all keys of the same
model, such as the key’s head which, unlike the shanks,
remains unchanged for all keys of the same model. The
moment invariants of the head are then used to model it
and calculate the distances using predefined head images
in a database. The closest model to the original head
image found in the database provides the necessary
information such as the key model name, number, and
dimensions. After the system finds the correct key blank,
it needs to measure the cuts and depth of dents from the
shank image. It performs this task in the three steps 7 to 9
in the pseudo-code. It begins by getting the contour of the
key from the image, and then refines the edge’s
coordinates by interpolating the sub-pixel coordinates. It
then uses the key’s dimensions, obtained previously from
the database, to convert the coordinates to real-world
measures. The remainder of this chapter will describe in
detail each of these steps.
Input: Key Image, Key Head Database
1. Binary Image ← Convert Key Image to

binary format
2. Binary Image ← Fill Binary Image with

white pixels
3. Binary Image ← Eliminate noises and gaps

from Binary Image
4. Head Image, Shank Image ← Cut Binary

Image
5. Head Image Model ← Compute geometric

invariants of Head Image
6. Key Model, Key Measure ← Match Head

Image Model in Key Head Database
7. Shank Contour Image ← Obtain the

connected contour of Shank Image
8. Shank Contour Image ← Sub-pixel

interpolation of Shank Contour Image
9. Shank Measures ← Convert the positions

of Shank Contour Image into millimetres
using Key Measure

Output: Key Model, Shank Measures

Figure 1. Pseudo-code of the algorithm

A. The Binary Image

The first step of the algorithm is to convert the
grayscale or color image taken by the scanner into a
binary image. This type of conversion is already a
challenge, and studies have shown that the different
approach selected to do it in an algorithm’s pre-
processing steps can have an impact on the quality of the
final results of the algorithm [11]. In this prototype, we
opted to use a simple thresholding function: the function
sets all pixels with intensity greater than a threshold to
white and all other pixels to black. Experimentally, we
found that even a pixel with a low intensity could be an
edge of the shank and must therefore be considered as
part of the binary image while the scanned background is

almost pure white. Moreover, simple steps such as
leaving the scanner’s lid open can prevent the creation of
a misleading shadow. Consequently, we set a threshold
value 0.9 of the intensity of a white pixel (i.e. 230 out of
255 in a grayscale image) to detect the object. Future
versions of the prototype could improve on this
observation, for example by using a learning algorithm to
automatically discover the optimal threshold for each
given image using the 0.9 value as a starting point [12].

The resulting image, however, exhibits a lot of noise
in the form of many small regions and individual pixels
that are not connected to the main body of the key in the
image, as well as a lot of gaps and holes inside the key.
These anomalies result from darker spots in the
background and lighter regions in the original scanned
key, and could lead to problems later in the algorithm. To
eliminate the noise pixels and the gaps and holes from the
image, we invoke the fact that the key is the single largest
object in the scanned picture. Consequently, we can
simply retain the biggest connected component found in
the image and eliminate all other regions. On the other
hand, holes that are entirely surrounded by object pixels
are assumed to be inside the key and are filled in.
Applying these simple rules generates a single and
complete image such as the one in Figure 2a. However,
as can be seen in Figure 2b, irregularities remain because
the filling method cannot correct gaps that are connected
to the background.

Figure 2. a: Binary image of a key. b: Irregularities visible in a close-

up of a.

In order to fill in the gaps and keep the real holes
inside the key head, we apply a 4-connected filter to the
entire image. This filter is designed to fill in all four
orthogonal neighbors of every filled pixel. Although
using this method covers all the remaining gaps of the
image, the resulting key image will be one pixel wider
than its original size. To restore the actual size of the key,
we then erode the object and remove one row of pixels
on the perimeter of the key image, thus eliminating the
extra layer of pixels added by the 4-connected filter.

Another drawback of this method is that it fills in the
decorative holes inside the key head. These holes will be
important later in the algorithm in order to compare the
key with different types of key blanks. Consequently, we
need to restore the holes of the key head. We start with a
simple assumption: that a real hole in the key’s head will
be large when compared to a gap due to an artifact of the
scanning and binary conversion. Finding and restoring
the largest hole in the image is simple enough, but not
sufficient by itself as some keys have more than one
decorative hole. Thus, after finding the biggest hole of

4 A Case Study in Key Measuring Software

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

the key, we also retrieve other holes that are close in size
to that largest one and restore them as well.

When this process is completed, the binary image
will be cleaned and only one connected component will
remain with no gap, false holes, or irregularities.

B. Cutting the Image

At this stage, the two parts of the key, namely the
head and the shank, will be used for two different
purposes. The head of the key, being identical for all keys
of the same model, will be used to recognize the key type.
The shank, on the other hand, has unique cuts that must
be precisely measured in order to be replicated. We use
therefore the line dividing the head from the shank,
which is called the joint of the key, to separate those two
parts.

Telling the head from the shank would be easy, even
trivial, if the key were always scanned in the same way.
This would echo many existing key measuring systems,
where the key must be positioned with great precision to
take the measures and where even a slight deviation
results in the duplicate key having the wrong cuts and
being unusable. However, an important challenge in this
project is to compensate for this weakness. A user of our
system should be able to scan a key in any orientation,
and our algorithm should automatically detect the
orientation and adjust the measures accordingly. We
define the orientation of the key in the image as the angle
(in degrees) between the horizontal axis and the major
axis of an ellipse that has the same second moments as
the region [13], [14], [15]. An image moment is a
function of the weighted average of the image pixels'
intensities. The zeroth moment of the image is simply the
area of the image:

 (1)

The centre of mass is given by the first moments:

 (2)

The second central moments are given in Equation 3:

 (3)

The orientation of an object is defined as the axis of

the least second moment, as given by Equation 4:

(4)

This gives the orientation of the major axis of an

ellipse that fits the key. Next, we identify the coordinates
of the top and bottom of the key. These coordinates are
somewhere on the major axis line, so it is simply a matter
of following that line and marking the first and last object
pixels. From these two points it is straightforward to
compute the coordinates of the geometric centre and the
length of the key. The joint of a key is located very near
the geometric centre. Specifically, we consider “very

near” to be in the neighbourhood of 1/6th of the key
image’s length. Taking a neighbourhood of 1/6th of the
length around the geometric center, or 1/12th before the
centre point to 1/12th after the centre point on the major
axis, gives the cut shown in Figure 3. This figure clearly
shows that there is an important change in the key’s
width between the head and shank at the joint. To
pinpoint the joint, we scan the neighborhood row by row,
where a row has the orientation perpendicular to the
major axis of the key, and for each row we count the
number of object pixels. Next, we compute the difference
between each two successive elements of the array. The
sharpest transition we are looking for is the highest
difference value between two successive rows.

Figure 3. Image cut from 1/12th of the distance before and after the

centre point of the key of Figure 2a.

A final observation is that keys are not balanced,
meaning that the geometric center and the centroid are
not at the same point. The head contains more of the
mass of the key, and consequently the centroid will be
closer to it than the geometric center. We can use this fact
to figure out on which side of the joint the head is:
starting from the geometric center and following the
major axis, it is on the side of the joint towards the
centroid.

C. Identifying the Key

The next stage of the algorithm is to take the image of
the head cut from the original key and to match it to the
correct key blank in a database. We can then retrieve the
information about the key from the database, including
its physical size and model number. Since we are
comparing an image of the head cut from the key to other
images in the database, we need to use a mathematical
model of the images to make the comparison accurate
and tolerant of differences in the images (such as
different sizes and orientations of the heads). For this
purpose, we model the images of the heads using their
moment invariants, which are mathematical measures
that are constant under translation, rotation, and changes
in scale [16].

Given an image of size M × N, the 2D moment of
order (p + q) is defined as [16] as:

 (5)
where p and q are integers. The corresponding central

moment of order (p +q) is defined as:

 A Case Study in Key Measuring Software 5

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

 (6)
where and . The normalized central

moment of order (p + q) is defined as:

 (7)

where + 1. The set of seven moment invariants

used in this project can be derived from the following set
of equations [13]:

 (8)
In order to compare the seven moment invariants of

two images, we simply compute the Euclidian distance
between them. Since the moments can have a sign
difference from one image to the next, it is necessary to
take their absolute value in the following equation:

(9)
Now, we can compare a head’s image to a set of

images, and find the best match as the one with the
smallest distance.

We created a database of key images and information,
using the procedure described so far to extract the heads
from the key images. Each key in the database is
represented by three scans and three head images. The
reason for this is that, despite the processing presented in
section 3.1, differences from glare and light reflections
on the key can introduce noise, and this noise can cause
variations in the values of the moments invariants. Using
several images of each head allows our system to average
out these variations. Experimentally, we found that the
average of three images was enough to deal with almost
all noise problems. To further improve the noise-
tolerance of the system, each scanned key is used to
create two head images: one that maintains the decorative
holes in the head and another where those holes are filled
out. By using the average of all six comparisons we
greatly increase the chance of picking the correct match
in the database.

Another problem that must be dealt with at this point
is the fact that some keys have two joint divisions. Indeed,
we find the joint of the key as the sharpest change in
width in a neighborhood of 1/6th of the length of the key
image around the geometric center of the key. Some keys
have two such step width changes, as illustrated in figure
4. Both steps have roughly the same size, and small noise
differences could make our system find either one as the
joint. This width change adds or removes a bit of length
from the head, which in turns causes potentially
important differences in the values of the moments

invariants. Our solution to this problem is to create two
sets of images for keys that have two joint divisions, one
set for each possible head. Both of these sets refer to the
same key blank in the database.

Figure 4. Left: a key with two joints. Right: close-up, showing clearly

the two step changes in width.

In addition to the moment invariants, we developed a
second function that works as a supplement in order to
enhance the accuracy of the key blank detection. That
function counts the number of pixels in head’s holes and
the number of head pixels. The ratio of these two
numbers is not unique for each key head image, but it can
still be used as a factor to double-check and confirm our
comparison results. We use this function to resolve
ambiguous cases where the difference between moment
invariants of two different keys is too small to guarantee
that the algorithm picked the correct one.

D. Measuring the Cuts

The final task of the algorithm is to measure the
depths of the dents of the original key. To do this, it starts
with the shank side of the image extracted in section 3.2,
determines an outline of the dents with sub-pixel
accuracy, and then converts the coordinates into physical
measures.

To identify the outline of the key, a Canny edge
detector, which is a commonly-used and powerful edge
detector [17] is used. This algorithm detects the details of
the image clearly and produces a clean edge map, with a
connected contour one pixel in thickness. But, even
though each pixel in that contour represents a position
along the shank of the key, measuring the positions of
cuts in pixels is not accurate enough to duplicate the key.
More precise sub-pixel coordinates for the points
observed in the image must therefore be interpolated.

For each edge pixel detected, we will posit that the
real edge lies somewhere within a 3 by 3 neighborhood
centered on that pixel. Thus, for each pixel, we retrieve
the intensity value of the corresponding nine-pixel
neighborhood in the original grayscale key image. We
further assume that this 3 by 3 neighborhood can be
locally represented as a two-dimensional surface. The
equation of a two-dimensional surface is a degree-two
polynomial of the form given in equation (10), where x
and y are the coordinates of the point, p(x,y) is the
intensity of the pixel at that coordinate, and the nine ci are
nine unknown constant coefficients. The nine individual
pixels in the neighborhood give nine different evaluations
of this equation. It thus becomes possible to solve the
equation and discover unique values for the nine

6 A Case Study in Key Measuring Software

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

unknown coefficients. The Vandermonde method [18]
can be applied to interpolate the equation of the surface
fitting the nine points and to solve for the coefficient
values. To find the edge, we must find the minimum
value of this polynomial within the 3 by 3 neighborhood.
Moreover, with the polynomial known, the problem
becomes a simple local optimization derivation, solvable
by any numerical optimization tool. The result, shown in
Figure 5, is a set of sub-points around the detected edge
of the key shank.

(10)

Figure 5. Sub-pixel points around the edges of a segment of the key

shank. The top part of the shank has dents, while the bottom of the
shank is a straight edge.

The sub-pixel points are the coordinates of the dents
of the key. However, a cutting machine will need depth
measures in order to cut a new key blank. These depth
measures can be computed by measuring the shortest
distance between each edge sub-pixel point and the major
axis line of the key obtained earlier. The final challenge
in this new method is to convert these depth measures
from pixel values to physical measures. To do this, we
need two bits of information obtained previously:
specifically, the length of the key in pixels, which is
simply the distance between the two ends of the key we
measured in Section 3.2, and the physical size of the key,
which has been retrieved from the database in Section 3.3.
Comparing those two measures of the dimensions of the
key gives us a conversion from pixels to millimeters,
which we can then apply to convert the pixel depth
measures of the dents to real-world millimeter measures.

IV. EXPERIMENTAL RESULTS

We conducted two sets of tests to verify the two
major objectives of the project, namely identifying the
correct match for the original key image and measuring
the depth of the cuts and edges of the original key shank.

A. Comparing Key Models

Section 3.3, presented a comparison of a key’s head
to six images in the database, three images of the head
with its decorative holes intact and three with the holes
filled up. This first experiment is meant to demonstrate
the need to perform this number all those of comparisons.
We will now focus on 21 different scanned images of our
test keys, that is three images (labeled A, B and C) for
each of the 7 test keys. Figure 6 shows one image for

each of the seven models for illustrative purposes. The
heads of the keys were extracted using the methodology
of section 3, and the seven moments invariants were
computed for each head. Three keys were randomly
selected as query keys that we will try to match to the
correct models among the other 20. These are keys A2,
A5 and A7; they should ideally be matched to keys B2
and C2, B5 and C5, and B7 and C7, respectively.

Figure 6. Test key images A1 to A7.

As explained earlier, keys are matched to those with
the minimum distance in their moments invariants using
equation (9). The starting point for our experiments, then,
is to compute the distance between the moments
invariants of the three test keys and all other keys. The
results are presented in Table 1. As the table shows, when
key A5 is compared to B5 and C5, the two other keys of
the same type, the result corresponds to the minimum
distance. However, some of the other distances are also
very close to that minimum value as illustrated by the
three keys of model 3. This creates the potential for
confusion in the system. The test with key A2 further
illustrates this problem. While B2 does give the minimal
distance, three other keys, namely B5, C5 and A7,
incorrectly show a smaller distance than C2. The test
with A7 gives even worse results: after the correct match
with B7, five heads show a smaller distance than C7.
This shows that the distance between these pairs of key
heads is not sufficient to pinpoint the correct match. A
system that used C2 and C7 as its database head, for
example, would not correctly recognize keys A2 and A7.

Table 1：Distance between the test keys and other head images.
A2 A5 A7

A1 4.8909 2.4648 3.2439
B1 4.7721 2.3336 3.1203
C1 4.8349 2.3896 3.1978
A2 0 2.7090 1.7755
B2 1.1245 2.0260 1.3331
C2 1.9752 1.4203 1.1286
A3 3.5983 1.3807 2.0239
B3 3.6802 1.4175 2.1185
C3 3.7469 1.3974 2.1730
A4 4.7566 2.5368 3.1610
B4 4.3923 2.4698 2.9329
C4 4.3017 2.2962 2.7988
A5 2.7090 0 1.5842
B5 1.8914 1.3318 1.5039
C5 1.8090 1.3459 1.3229
A6 3.0202 1.7141 1.3261
B6 3.6592 2.0992 2.0975
C6 3.5032 2.1187 1.9614
A7 1.7755 1.5842 0
B7 2.4468 1.5263 1.0440
C7 2.2360 2.0892 1.5241

This first test was done using images of the keys’
heads that maintained the decorative holes. As explained
in section 3, we improve accuracy by also computing the
moment invariants and the distances of filled versions of
key heads. To illustrate the impact of this change, the
same set of comparisons of Table 1 were repeated using
filled heads. The results of this second test are presented

 A Case Study in Key Measuring Software 7

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

in Table 2. The table shows that errors are still present,
though they are different from those in Table 1.
Previously, A2 was misclassified with respect to B5, C5
and A7 in preference to C2. In the new results, those
three keys exhibit a much higher distance, but C3
generates a new error. In the same vein, A7 had
erroneous small distances with B2, C2, B5, C5 and A6 in
Table 1. Now, four of these five keys have higher
distances and only B5 remains an error, along with B6.
By contrast, while the minimum distances for A5 in table
1 occurred when it was compared to keys B5 and C5, in
Table 2 four errors show up with C2, B6, C6 and C7. On
the other hand, the three keys of model 3, which were
almost matched in Table 1, have much higher bigger
distances now.

Table 2：Distance between the three test keys and the other head
images, using filled heads.

 A2 A5 A7
A1 3.9479 5.9733 9.2432
B1 3.6977 5.7708 9.0026
C1 3.7018 5.6605 8.9675
A2 0 3.0470 5.4493
B2 1.4078 2.8008 6.1385
C2 1.9058 1.4494 4.7843
A3 2.4278 3.7288 7.2117
B3 2.1936 3.8065 7.1373
C3 1.5503 3.5142 6.5974
A4 5.1856 7.1180 10.3886
B4 5.6390 7.8020 10.9205
C4 4.6303 6.8113 9.8869
A5 3.0470 0 4.0654
B5 4.9842 2.4089 2.7318
C5 5.1465 2.4560 3.0383
A6 6.2251 3.8461 3.4573
B6 4.1904 1.5740 2.9139
C6 4.1194 1.4408 3.0365
A7 5.4493 4.0654 0
B7 6.6276 4.0183 3.0034
C7 4.5969 2.0344 2.5890

Clearly, neither the comparison between unfilled
heads nor that between filled heads is sufficient by itself
to pair the heads without errors. However, as noted
before, the errors are mostly different between the two
comparisons. Table 3 shows the results of averaging out
the distance values of Tables 1 and 2. As can be seen, the
low values of the correct matches in each of these tables
average out to a similarly low distance value, while the
erroneous matches that had a low value in one table and a
high value in the other average out to a greater distance
than the correct matches. Of particular interest is B5,
which was an erroneous match compared to A7 in both
tests. Using unfilled heads, it showed a distance of
1.5039 compared to A7, which was smaller than the
1.5241 value for C7 but bigger than the 1.0440 for B7.
Using filled heads, its distance became 2.7318, which is
smaller than that of B7 which stands at 3.0034 but greater
than that of C7 at 2.5890. This means that B5 was always
an erroneous low-distance match, but always outranked a
different one of the two correct keys. After averaging out
the distance values, B5 has a distance of 2.1178 with
respect to A7, which is greater than the distance between
A7 and B7 at 2.0237 or A7 and C7 at 2.0565.

Table 3：Average distance between the three test keys and the
other head images.

A2 A5 A7
A1 4.4194 4.2190 6.2435
B1 4.2349 4.0522 6.0614
C1 4.2683 4.02505 6.0826
A2 0 2.8780 3.6124
B2 1.2661 2.4134 3.7358
C2 1.9405 1.4348 2.9564
A3 3.0130 2.5547 4.6178
B3 2.9369 2.6120 4.6279
C3 2.6486 2.4558 4.3852
A4 4.9711 4.8274 6.7748
B4 5.0156 5.1359 6.9267
C4 4.4660 4.5537 6.3428
A5 2.878 0 2.8248
B5 3.4378 1.8703 2.1178
C5 3.4777 1.9009 2.1806
A6 4.6226 2.7801 2.3917
B6 3.9248 1.8366 2.5057
C6 3.8113 1.7797 2.4989
A7 3.6124 2.8248 0
B7 4.5372 2.7723 2.0237
C7 3.4164 2.0618 2.0565

Computing the average distance value of filled and
unfilled versions of the same image yields the desired
results for A2 and A7, but in some cases the average
distance values between A5 and the two other keys of its
model are not the minimum. Indeed, C2, B6 and C6
exhibit the lowest averages with respect to A5. Moreover,
in some correctly-classified cases the average distance of
a wrong key is not sharply greater than that of the same
key type. In fact, the difference can be as low as 0.06 (or
3% of the distance value), as in the case of the A7-C7
match compared to A7-B5. Clearly the potential for
errors still exists.

As explained in section 3, to further reduce the
impact of noise and increase the chance of finding the
correct match, we compute the distances between the
original head image and three different images of a key
head of each type. To this end, we computed the average
distance between each test image and all three images of
each type (two images for the test image’s type, since the
third image is the test image). As we can see in Table 4,
averaging the distance of three images gives results that
are much more robust and resilient to noise. In all three
sample cases, the test keys show the lowest average
distance with keys of the same type. In addition, the
difference between the distance of a correct and incorrect
match becomes more significant. In the specific case of
our previous example, the difference between A7-tpye 7
and A7-type 5 is five times higher, at 0.3 or 15% of the
distance value.

Table 4：Average distance between the three test keys and three
head images.

A2 A5 A7
Key type No. 1 4.3075 4.0987 6.1291
Key type No. 2 2.2364 2.2420 3.4348
Key type No. 3 2.8661 2.5408 4.5436
Key type No. 4 4.8175 4.8390 6.6814
Key type No. 5 3.2645 1.8856 2.3744
Key type No. 6 4.1195 2.1321 2.4654
Key type No. 7 3.8553 2.5529 2.0401

To further illustrate the advantage of averaging out
the distance results, we compared all 21 test keys with a
set of one, two, and three keys. The results, shown in

8 A Case Study in Key Measuring Software

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

Table 5, confirm that the comparison becomes more
accurate when we average more sample images together.
The results of Table 5 are obtained by comparing each of
the 21 keys of Figure 6 with the other 20 keys. This gives
a total of 420 comparisons. When using one unfilled head
image only, 10 keys are matched with the wrong model.
Moreover, there are 29 distances that are wrongly higher
than the correct key distance, which is to say that 6.9% of
distances are erroneous. Using only one filled head image
gives even worse results: 11 keys are misclassified, and
38 of the distances, or 9%, are erroneous. Averaging the
filled and unfilled key head images gives a small
improvement in the results: 28 of the distance averages
(6.7%) are erroneous and 8 out of 21 keys are not
identified correctly. Although the improvement is small,
it confirms that averaging both images is more accurate
than using either image separately. Averaging two
different key heads for each key gives better results. With
three different heads per key model, there are three
different pairs of key heads or 19 comparisons for each of
the 21 keys and 378 average distances in total. As we can
see in Table 5, the number of errors drops sharply in this
case: only 3 of the 21 keys are misclassified, and only 6
of the distances, or 1.5%, are erroneous. Finally, taking
the average between the original key and the three keys
in each set (two keys in the set of the same key type)
gives results that are nearly perfect: only one key is
misclassified and only 2 distances, or 1.4% of them, are
erroneous. This test illustrates the reason why we chose
to have three keys of the same key type in each key set in
the database.

Table 5：Comparison errors of all 21 keys with the database
images.

Test Count of Erroneous
Distances

Count of
Failed Keys

Comparing to one unfilled
database head

29 errors 10 keys
failed

Comparing to one filled
database head

38 errors 11 keys
failed

Averaging the filled and
unfilled heads

28 errors 8 keys
failed

Averaging two database keys
(four heads)

6 errors 3 keys
failed

Averaging three database keys
(six heads)

2 errors 1 key failed

The only remaining errors at the end of this test occur
with key type number 7 which is misclassified with key
type number 5. An additional refining of the comparison
is needed to deal with this problem. Looking at the
images of Figure 6, we note that a clear difference
between those two models is the size of the decorative
hole in the key’s head. That is why we computed the ratio
of hole to object pixels in Section 3.3. We can use this
ratio as supplementary information to tell apart certain
key models, such as 5 and 7, since, as we can see in
Table 6, there is a clear difference in the ratio of those
two key models. This feature however is not useful for all
classifications and cannot be used as a reliable factor to
identify all key types, since there are some overlaps
among the ratios of other types. Indeed, while the ratios
between key types number 5 and 7 have a reasonable
difference, the ratio of model 7 is close to that of model 3
and the ratio of model 5 is close to that of model 4. This

method could not therefore distinguish between these
keys.

Table 6：Ratio of number of pixels in head hole to number of
head’s white pixels.

Ratio (hole pix/head pix)
A1 0.1734
B1 0.1746
C1 0.1727
A2 0.0660
B2 0.0664
C2 0.0630
A3 0.1175
B3 0.1170
C3 0.1218
A4 0.1048
B4 0.0909
C4 0.0938
A5 0.0957
B5 0.0978
C5 0.1013
A6 0.2303
B6 0.2274
C6 0.2271
A7 0.1186
B7 0.1285
C7 0.1292

The tests have so far classified the 21 sample keys
compared to each other. As a final verification, we
examine the classification results using the database we
built as a prototype of our system. This database models
the same seven models of keys and stores three pictures
of each model (different from the 21 sample key pictures),
plus three additional pictures for two keys that have the
double-joint feature described in Section 3.3. They are
key models 2 and 5. We will perform the same set of
tests as before, to compare the results step by step.

We begin by computing the difference in moments
invariants of the 21 test keys compared with one unfilled
key head image of each key model in the database
(including a second-joint picture for models 2 and 5).
This generates a total of 189 difference values, of which
14 are erroneous in the sense that they correspond to
wrong matches and are smaller than the values of correct
matches. The error rate thus stands at 7.4%, not far from
the 6.9% reported for the same test in Table 5. Note
however that all these errors are confined to only two
keys: B6 and C6. Next we compute the difference in
moments invariants using the filled-hole version of the
same database head image. This yields only 12 erroneous
distances, or 6.3%, a small decrease compared to the
previous test. These last results contrast with those
reported in Table 5, where the filled image generated a
higher error rate than the unfilled one, though the
difference is minor. More importantly, the errors have
changed somewhat between these two tests: six errors
that occurred in the first test were corrected in the second
test when the filled head was used, while four new errors
appeared. All in all, four keys were misclassified,
including B6 and C6. The next step now is to compute
the average of the original and filled differences. Recall
that in Table 5, this average led to a modest improvement
of the results. In the present experiment, the results have
similarly shown a slight improvement: there are again 12

 A Case Study in Key Measuring Software 9

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

erroneous differences and 4 misclassified keys, the same
as with the filled head images.

The next phase of the experiment is to use a second
picture of the database keys, and compute the average of
four head images, using heads with and without holes for
each picture. In this case, the rate of erroneous
differences decreases noticeably, from 6.3% to 3.1%.
This shows that the average of multiple differences is
more reliable than individual differences, and confirms
the results of Table 5. However, although the number of
errors in the differences decreased, there are still four
misclassified keys. The fact that the number of
misclassified keys has not decreased is somewhat
disappointing. On the other hand, it should be noted that
the number of these keys has remained constant at four
throughout the last tests whereas in the results reported in
Table 5 their number has decreased from 11 to 3. In other
words, the fixed number of four misclassified keys is
close to the best result of Table 5. Furthermore, most of
the errors we observe in this test are due to only one of
the key types in the database, namely, type 5, which is
responsible for 5 of the 6 erroneous differences. This
means that we are facing a problem related to one
specific key type.

The final test is to compute the average difference
between the 21 keys and all three key pictures in the
database. In this case, the error rate is just half what it
was when only two key images were used: two keys are
misclassified instead of four, and 1.5% of the differences
are erroneous instead of 3.1%. This decrease in the error
rate and the final values of the distances are in line with
the results of Table 5. The two remaining misclassified
keys both belong to model 7, and are both misclassified
in model 5. This is the same misclassification that
remained in Table 5. Again, by adding an extra check
using the ratio of hole to object pixels in the key head, we
can correct this problem.

B. Measuring the Dents

As explained in Section 3, once the algorithm has
identified the key in the database, it measures the edges
of the shank with sub-pixel accuracy. Then, by using the
measure of the key known from the database, we can
convert these sub-pixel coordinates into real measures
that a duplicating system can use. The next set of tests
examines this aspect of the system. To this end, two
scanned key shanks from different models will be used.
Keys B2 and B7 were randomly selected from the 21 test
keys of the previous experiment, and are presented in
Figure 7.

Figure 7. Two test key shanks, with five positions marked on each.

Left: B2, Right: B7.

Since the main output of our system consists in
measures of the shank in millimeters, the first question
becomes how well these measures compare to the real
dimensions of the key. To address this issue, we selected
five points easy to recognize on each key, namely local
maxima and minima of the dents, as shown in Figure 7.
For starters, the measures of the five points were
computed by the software. The real key was then
measured manually using a caliper and the relative error
between the real measure and the software approximation
was computed using equation (11). The results are given
in Table 7.

 (11)
Table 7：Measure (in mm) and relative error of the points

marked in Figure 7.
 B2 (left) B7 (right)

Pt Soft-
ware

Caliper Error Soft-
ware

Caliper Error

1 4.1 4.06 0.0099 3.2 3.30 0.0303
2 1.7 1.77 0.0395 1.7 1.77 0.0395
3 4.1 4.19 0.0214 3.0 3.04 0.0131
4 2.4 2.54 0.0551 4.3 4.31 0.0023
5 4.4 4.57 0.0372 4.1 4.31 0.0487

The average relative error of the five sample points
for key B2 is 3.2%, and that for key B7 is 2.6%. These
errors could be due to several factors. One factor could
be the resolution of the picture: a higher-resolution
scanner would provide more precise data to measure the
edges. Another factor has to do with the interpolation
approach: a better sub-pixel interpolation method would
also yield more accurate coordinates and improve the
final results.

We now turn to a verification of the consistency of
the measurement of the dents. More specifically, we
seek to verify how precisely the results obtained from
two executions of the software using two scans of the
same key will match each other. To this end, the two
scans shown in Figure 8 were used and five easily-
recognizable local maxima and minima on the shank
were again identified for comparison purposes. Their
measures and relative errors are presented in Table 8
along with caliper measures for comparison purposes.

Figure 8. Two scans of the same key.

Table 8：Measure (in mm) and relative error of matching points
on the key of Figure 8.
Pt Soft-

ware
left
key

Soft-
ware
right
key

Error
left to
right

Caliper Error
caliper
to left

Error
caliper
to right

1 3.7 3.6 0.028 3.30 0.121 0.091
2 4.6 4.5 0.022 4.31 0.067 0.044
3 2.1 2.0 0.048 1.90 0.105 0.052
4 3.3 3.0 0.091 3.04 0.086 0.013
5 4.4 4.1 0.068 4.31 0.021 0.049

10 A Case Study in Key Measuring Software

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

As Table 8 shows, the average relative error between
two scans of the same key is 4.4%, and in the worst case
it is always below 10%. By comparison, the error
between caliper measures of the original key and these
images is on average 5.5%, and at most 12%. In other
words, the error between two different scans of the key is
a little better than the error between each scan and the
real key. It thus appears that the results of the software
are consistent, and not subject to variations depending on
the image.

Finally, to verify the accuracy of the measurements of
the dents, we compare the errors of the measures of the
key calculated by our algorithm with the errors of an
actual duplicate. The previous tests compared the image’s
measures to those of the original key, and reported a
percentage of errors. The present test will determine how
these errors compare to normal key duplication errors. To
conduct this test, we create a physical duplicate the key
of Figure 8 using a normal hardware store’s duplication
machine, and scan the original key three times to get
three different sets of measures using our algorithm. We
also use the same five comparison points as before. The
results are presented in Table 9. As can be seen, the
hardware-store key duplicate has an average relative
error of 4.9%. The measures obtained by our algorithm,
on the other hand, show an average error of 7.9% with
the first scan, 3% with the second scan, and 1.9% with
the third scan, for an overall average of 4.2% which is
comparable to the physical duplicate. The results of the
individual scans show that it is possible for the measures
computed by the algorithm to be up to 3% better or worse
than the traditional measures, which in real terms
corresponds to a negligible error of a few tenths of a
millimeter only.

Table 9：Measures (in mm) and error of a duplicate and three
scans of a key.

Point 1 2 3 4 5
Original 3.30 4.31 1.90 3.04 4.31
Duplicate 3.17 4.06 1.77 2.79 4.31
Error Original to
Duplicated

0.039 0.058 0.068 0.082 0.000

Scan 1 3.7 4.6 2.1 3.3 4.4
Error Original to
Scan 1

0.121 0.067 0.105 0.085 0.020

Scan 2 3.5 4.4 1.9 3.2 4.4
Error Original to
Scan 2

0.060 0.020 0.000 0.052 0.020

Scan 3 3.3 4.2 2.0 3.1 0.019
Error Original to
Scan 3

0.000 0.025 0.052 0.019 0.002

V. CONCLUSION

This paper presents a new key measuring algorithm
that is able to find the correct key blank in a key model
database, and to measure the depth of the key’s dents in
millimeters. This algorithm could then be connected to a
cutting machine or a 3D printer to create a new copy of
the original key automatically.

The main advantage of this new algorithm is that it
only requires a commercially-available flatbed scanner
rather than the sophisticated laser or backlight systems
used today. The software uses image processing
techniques to compensate the lack of accuracy in the

images taken by the scanner. It also does not require the
key to be adjusted to an exact position by the operator or
by a physical mechanism, as many other key measuring
systems do.

The development of the key model database is also an
important part of this work. This database stores pictures,
measures and model information about different keys. In
order to find the correct match of the original key, the
software compares the head of the original key with
images of other key heads in the database. Using the
measures retrieved from the database, the software can
convert its sub-pixel coordinates of the key’s dents to
actual physical depth measures.

Our results show that the algorithm can accurately
find the key model in the database corresponding to a
scanned key. We can minimize the effect of errors and
noise by averaging the results of three database images of
each model, and use some extra information such as the
hole to object ratio to handle some ambiguous cases.
Furthermore, the depth measures obtained by the
algorithm are on par with those of a traditional hardware
store’s duplicate key.

Future work should begin by extending the database.
The prototype developed in this research defines seven
different key models in the database. These models were
selected to be a representative sample. They include both
single-sided and two-sided keys, keys with double-joints,
and some similar-looking key models. However, there
are more than 200 key types on the market today.
Covering more key types will create additional
challenges, namely in the form of new ambiguous cases
to handle. The comparison could also be made more
accurate by using a different set of moments invariants.
Indeed, Flusser and Suk [19], [20] showed that the
traditional invariant set developed by Hu, which is the
one used in this prototype, is missing the third order
independent moment invariant. To remedy this
shortcoming, they propose an extended set of moments
invariants. Alternatively, Hamidi and Borji [21] propose
using a set of image properties selected based on a study
of biological vision and recognition to create an image
recognition algorithm with improved accuracy and
invariance to image distortions. It is possible that using
one of these new measures will simplify the prototype by
requiring fewer database images to average and will
consequently reduce the number of ambiguous cases. As
regards the measurement of the edges and depths of the
dents of the key, our method is already comparable to
those commonly used in industries today. It could
nonetheless be improved by using a more accurate sub-
pixel interpolation method.

REFERENCES
[1] J. Y. Kaminski, D. Knaan, A. Shavit. Single image face

orientation and gaze detection. Machine Vision and Applications,
Springer Berlin / Heidelberg, 21(1):85-98, 2009.

[2] R. Almblad, J. Blin, P. Jurczak. Method and apparatus for
automatically making keys. U.S. Patent 5 807 042, 1998.

[3] P. R. Wills, R. F. Kromann, N. N. Axelrod, W. A. Schroeder, J. A.
Berilla, B. Burba. Method and Apparatus for Using Light to
Identify a Key. U.S. Patent 6 064 747, 2000.

 A Case Study in Key Measuring Software 11

Copyright © 2012 MECS I.J. Image, Graphics and Signal Processing, 2012, 1, 1-11

[4] V. Yanovsky. Shadow image acquisition device. U.S. Patent 6 175
638, 2001.

[5] J. S. Titus, J. E. Bolkom. Key Measurement Apparatus and
Method, U.S. Patent 6 406 227, 2002.

[6] J. Campbell, G. Heredia, M. A. Mueller. Key Identification
System, U.S. Patent 6 836 553, 2004.

[7] J. S. Titus, W. Laughlin, J. E. Bolkom. Key Duplication
Apparatus and Method. U.S. Patent 6 152 662, 2000.

[8] V. Yanovsky, A. Sirota. Key Imaging System and Method. U.S.
Patent 6 449 381, 2002.

[9] R. M. Prejean. Key Manufacturing Method. U.S. Patent 6 647 308,
2003.

[10] S. Pacenzia, E. Casangrande, E. Foscan. Method To Identify a
Key Profile, Machine To Implement The Method and Apparatus
for the Duplication of Keys Utilizing the Machine. U.S. Patent 6
895 100, 2005.

[11] L. Benedetti, M. Corsini, P. Cignoni, M. Callieri, R. Scopigno.
Color to gray conversions in the context of stereo matching
algorithms. Machine Vision and Applications, Springer Berlin /
Heidelberg, in press.

[12] E. Cuevas, D. Zaldivar, M. Pérez-Cisneros. Seeking multi-
thresholds for image segmentation with learning automata.
Machine Vision and Applications, Springer Berlin / Heidelberg,
22(5):805-818, 2011.

[13] R. C. Gonzalez, R. E. Woods. Digital Image Processing. Prentice
Hall, Inc., 2nd ed., New Jersey, 2002.

[14] R. C. Gonzalez, R. E. Woods, S. L. Eddins. Digital Image
Processing Using MATLAB. Tata McGraw Hill Education Private
Limited, New Delhi, India, 2010.

[15] L. Fletcher. Binary Image Analysis. Available:
http://users.cecs.anu.edu.au/~luke/cvcourse_files/online_notes/lect
ures_2D_2_binary_morph_6up.pdf, 2010.

[16] M. K. Hu, Visual pattern recognition by moment invariants.
Information Theory, IRE Transactions, pp. 179-187, 1962.

[17] M. Heath, S. Sarkar, T. Sanocki and K. Bowyer. Comparison of
Edge Detectors: A Methodology and Initial Study. Proceedings of
the 1996 Conference on Computer Vision and Pattern Recognition,
pp.143–148, 1996.

[18] D. W. Harder, R. Khoury. Numerical Analysis for Engineering
Available:
https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/05Interpol
ation/, 2010.

[19] J. Flusser, T. Suk. Rotation Moment Invariants for Recognition of
Symmetric Objects. Institute of Information Theory and
Automation, Academy of Sciences of the Czech Republic, pp.
3784 – 3790, 2006.

[20] J. Flusser. On the Independence of Rotation Moment Invariants.
Pattern Recognition, vol. 33, pp. 1405-1410, 2000

[21] M. Hamidi, A. Borji. Invariance analysis of modified C2 features:
case study—handwritten digit recognition. Machine Vision and
Applications, Springer Berlin / Heidelberg, 21(6):969-979, 2010.

Naeem Nematollahi obtained a Masters in Electrical and
Computer Engineering from Lakehead University in 2011. His
thesis research focused on developing new digital image
processing algorithms. In addition to this, his research interests
include wireless sensor networks, computer networks,
embedded systems, and VLSI systems.

Richard Khoury obtained a Ph.D. in Electrical and Computer
Engineering from the University of Waterloo in 2008. He now
works as an Assistant Professor in the Department of Software
Engineering at Lakehead University. His research interests
include natural language processing, computer vision, machine
learning, and other branches of artificial intelligence.

