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Abstract— The purpose of this study is to introduce the 

concept of cyclic sparsity or cyclosparsity in 

deconvolution framework for signals that are jointly 

sparse and cyclostationary. Indeed, all related works in 

this area exploit only one property, either sparsity or 

cyclostationarity and never both properties together. 

Although, the key feature of the cyclosparsity concept is 

that it gathers both properties to better characterize this 

kind of signals. We show that deconvolution based on 

cyclic sparsity increases the performances and reduces 

significantly the computation cost. Finally, we use 

simulations to investigate the behavior in deconvolution 

framework of the algorithms MP, OMP and theirs 

respective extensions to cyclic sparsity context, Cyclo-
MP and Cyclo-OMP.  

 
Index Terms— Cyclosparsity, Sparsity, Cyclostationary, 

Deconvolution, Greedy 

 

I. INTRODUCTION 

In this study we focus on Cyclostationary (CS) signals 
made of periodic random impulses. Given the Impulse 

Response (IR), the aim is to retrieve the original object 

which has been distored by passage through a known 

linear and time-invariant system in presence of noise. 

Indeed, improving the resolution of the signal and the 

Signal to Noise Ratio (SNR) from the knowledge of the 

IR corresponds to a deconvolution problem. The 

deconvolution of cyclostationary signals has been 

addressed by severals authors with different approaches. 

In [1], a bayesian deconvolution algorithm based on 

Markov chain Monte Carlo is presented. Cyclic statistics 

are often used for deconvolution, in [2], [3] the 

deconvolution is based on cyclic cepstrum, whereas, in 

[4], [5] the deconvolution is based on cyclic correlation. 

Actually, signal deconvolution is known to be an ill-

posed problem as the IR acts as a low-pass filter and the 

convolved signal is noisy. Fortunately, regularization 
techniques allow to retrieve satisfactory solutions 

accounting for a priori information on the original object. 

Analysing periodic random impluse signals in details 

uncover another a priori information which is sparsity, 

this is because only few impulses are nonzero. Note that 

sparsity is interesting as well as cyclostationarity. 

Our work consists on extending sparse approximation 

to CS signals with periodic random impulses, where the 

aim is to find jointly a sparse approximation of each 

cycle, accounting for the same elementary signals in each 

approximation, but shifted with a multiple of the cyclic 

period and with different coefficients. However, we insist 

in the application of cyclosparse approximation to 

deconvolution. 

The paper is organized as follows, section II defines 

problem statement. In section III, we summarize the 

statement of sparse and cyclosparse approximation 

problems. The main contribution of this paper is 
described in sections IV and V, where we, respectively, 

introduce the concept of cyclosparsity and address the 

problem of deconvolution of cyclosparse objects. Also, in 

section IV, we point-out the link with cyclosparse 

deconvolution. Such a cyclosparse model is taken into 

account in the sparse deconvolution by greedy algorithms 

in section V, which fortunately reduces significantly the 

computation cost. In this paper, we focus on greedy 

algorithms and we propose to test some of these 

algorithms, namely Matching Pursuit (MP) [6] and 

Orthogonal Matching Pursuit (OMP) [7] on the same 

statistical basis, i.e. with the same stopping rule deduced 

from statistical properties of the noise. These algorithms 

are summarized in the cyclosparse case as well. Also it 

seems to be necessary to obtain satisfactory 

deconvolution results, as shown in the simulation results 

section VI. 

II. PROBLEM STATEMENT  

Consider the situation where a known system      is 

excited by a CS signal      consisting of periodic 

random impulses. By periodic, we mean that the signal 

can be partitioned into portions of length   (which is 

known as the cyclic period of the signal) with   impulses 

in each portion. Moreover, the delay factor   of the ith 

impulse    is constant for all portions. Note that in 

general    will be different for different   although in 
most of the cases they may be integral multiples of a 

constant τ. An example of      is shown in Fig. 1 with 

     . Note that the impulse with    as delay factor is 

nonzero for the first and second cycles (              

whereas for the third cycle it is of null amplitude       .  

The output of the system described above can be 

written as,  

         ∑ ∑                        
   

   
            (1) 

Where   is the number of effective impulses in the 

period   with      and    being their amplitude and delay 

factors respectively.   denotes the number of period per 

signal and the sub-index   stands for the period index, so 
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      represents the impulse with    as delay factor in the 

ith-period.      represents the random noise of the 

system. 

Fig. 1. Example of cyclosparse signal. 

III. FROM SPARSE TO CYCLOSPARSE 

APPROXIMATION 

A. Sparse approximation 

The problem of sparse signal approximation consists in 
approximating a signal as a linear combination of a 

limited number of elementary signals (atoms) chosen in a 

redundant collection (dictionary). It can be written as: 

Find sparse   such that       , where   corresponds to 

measured data and   is a known matrix with atoms 

          as columns. Sparse approximations have to 

deal with a compromise between a good approximation 

and the number of involved elementary signals. Such 

compromise results mathematically to minimize the 

criterion: 

     ‖    ‖ 
   ‖ ‖                                            (2) 

Where ‖ ‖  C rd           is the number of 

nonzero components of  . The parameter   controls the 

trade-off between the sparsity of the solution and the 

quality of the approximation. The lower is  , less sparse 
is the solution and better is the approximation. 

Minimizing such a criterion is a combinatory 

optimization problem which is NP hard. Two approaches 

are generally used to avoid exploring every combination: 

Greedy algorithms and convex relaxation algorithms. 

B. Cyclosparse approximation 

The extension of sparse approximation for CS and 

sparse signals will be studied in this article. A 

cyclosparse solution is given by minimizing the 

following criterion: 

     ∑ ‖        ‖ 
  

      ‖ ‖                        (3) 

with          . 

  and   denote respectively the number of 

cycles/periods and the cyclic period.  

The inner    norm encourages diversity along the 

cycles of   so the      mixed-norm measures the 

cyclosparsity along the whole signal as illustrated in Fig. 

1. The choice of      mixed-norm result will be 

illustrated in the next section.  

IV. CONCEPT OF CYCLOSPARSITY 

A. Definition 

A process x is said to be cyclosparse if 

‖ ‖   ‖ ‖                                                                   (4) 

With   can be reshaped as     matrix. 

B. Proof 

Let us first introduce the following notations: 

                       with       

sweeps all elements of the ith period (a total of 

  elements). 

                                  

with       sweeps all kth elements of each 

period(a total of   elements). 

The   -norm of   is defined as follows 

‖ ‖   ∑ |  |
   

                                                                (5) 

As is standard, |  |    if      and |  |    if 

    . 

Using these notations, the equation 5 can be written as, 

‖ ‖    ‖    ‖ 
 ‖    ‖ 

   ‖    ‖ 
 

 ∑|    |
 

 

   

   ∑|    |
 

 

   

   ∑|    |
 

 

   

 

 |    |
 
 |    |

 
   |    |

 
                     

  |    |
 
 |    |

 
   |    |

 
                       

                                                                 

 |    |
 
 |    |

 
   |    |

 
                    

 

Also, we can write  

‖ ‖   (|    |    ||
 
 |    |    ||

 
   

                      |    |    ||
 
)  

  ∑ |   
 

|    ||
 

 

   

  ‖   
 

|    |‖
 

 ‖ ‖    

    |    | stands for   -norm of   along dimension of   
for each value of the period indexed by  . The composite 

norm ‖    |    |‖ 
 is the mixing norm      of   which 

the minimization encourages first diversity along   and 
then sparsity of the resulting vector. 
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V. DECONVOLUTION IN CYCLOSPARSITY 

CONTEXT 

A. Problem formulation 

Let us first specify the boundary condition accounted 

for in the convolution operator. We assume that the 

object is zero-valued outside the signal to reconstruct of 

size   . The convolution of the object leads to a signal of 

size               . Thus, the dictionary is given by 

the               Toeplitz matrix   where the 

columns are built from the IR  . 

Therefore, Eq. 1 can be written with matrix notations 

as, 

             
        ̃     

 ̃
 
 ̃           with D is the cyclosparsity 

operator 

 
 
   ∑ ∑       

      
 

‖ ‖   

   

   

   

 

        di g (∑ ∑       

‖ ‖   

   
   
   )   

where        
  are the canonical basis vectors and    is 

the index of the nth impulse with    as factor delay. Thus, 

 ̃ is a matrix with particular structure i.e. the nonzero 
columns for each cycle are deduced by shifting the 

columns of the first cycle with a multiple of the cyclic 

period  . Hence,  ̃ points out the cyclosparsity property 
in the convolution case. 

It should be noted that both approaches used to avoid 

exploring every combination of the sparse approximation 

problem can be extended to cyclosparse context: greedy 

algorithms and convex relaxation. In this paper, we focus 

on greedy algorithms. 

B. Cyclosparse greedy algorithms 

Let the sub-matrix    built-up from the columns of H 

where the indices are in  ,     {i 
, and  

   
 is the set of 

the selected indices at iteration  . The vectors are defined 

as follows,            
 ,            

 , 

           
  and            

  which denotes 

the residual.   ,    and    stand respectively for the 

length of      and  . Finally, let the vector   
                be the vector of period indices. 

Greedy algorithms are iterative algorithms composed 

of two major steps at each iteration: 1) the selection of an 

additional elementary signal in the dictionary; 2) the 

update of the solution and the corresponding 

approximation. A stopping rule helps to decide whether 

to stop or continue the iteration. 

Let      be the solution of the kth iteration,  
 

   
 being 

its coefficients at indices   and               the 
residual corresponding to this solution (approximation 

error). The typical structure of a greedy algorithm is: 

Initialize             and       . 

Iterate on       until the stopping rule is satisfied: 

 Select the index      corresponding to an atom 

   improving the approximation. 

 Update the solution     , with non-zero 

elements at indices                      and 

the corresponding residual     . 

The various algorithms differ on the selection or the 

updating steps. 

Cyclo-Matching Pursuit (Cyclo-MP) is the extension 

of the MP [6]. The additional atoms (at most   atoms) 
jointly maximize the scalar product with the residual. The 

update corresponds to an orthogonal projection of the 

residual on the selected atoms, so only the solution at the 

selected indices is updated. Note that with such a scheme 

it is possible to select already selected atoms. In order to 

avoid overloading equations, the index         will be 

replaced by    
   

 in the following. 

 Selection of   atoms:                  
   

    

             ∑ |     
        |   

                   (6) 

 Update: 

 solution: 

 
   
   

     
   
   

      ( 
   
   

  
   
   )

  

 
   
   

            (7) 

 residual: 

              
   
   ( 

   
   

  
   
   )

  

 
   
   

            (8) 

 Stopping criterion 

Cyclo-Orthogonal Matching Pursuit (Cyclo-OMP) is 

the extension of the OMP [7]. The Cyclo-OMP differs 

from the Cyclo-MP on the updating step as an orthogonal 

projection of the data on the whole selected atoms is 

performed. This avoids the selection of already selected 

atoms but increases the computation cost as the 

amplitudes associated to all the selected atoms are 

updated. 

 Selection: same as for the Cyclo-MP (6) 

 Update: 

 solution: 

 
    
        ( 

    
      )

  
 

    
                          (9) 

 residual: 

             
    
    

 Stopping criterion 

C. Stopping rule 

The only parameter to set for using these greedy 

algorithms is the stopping rule. In terms of sparse 
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approximation, comparing the norm of the residual to a 

threshold is a natural stopping rule, as it corresponds to 

an expected quality of approximation. On the other hand, 

for deconvolution, the residual for the true object 

corresponds to the noise. So a statistical test on the 

residual may be used as stopping rule, which among to 

decide whether the residual can be distinguished from 

noise. For Gaussian, centred, independent and identically 

distributed (i.i.d.) noise, of known variance   , the norm 

‖ ‖ 
     ∑   

     
    follows a Chi-square 

distribution with   degrees of freedom. So, the Chi-

square distribution may be used to determine the value of 

  for which   (‖    ‖   )     for a given probability, 

e.g.          

D. Discussion 

Note that for the four algorithms, the selection step is 

made jointly over the whole set of cycle indices   thinks 

to cyclosparsity. Also note that the original version of the 
algorithms can be retrieved taking into account a single 

period for      . 

Another advantage of cyclic greedy algorithms is the 

significant reduction of the computation cost. Cyclic 

greedy algorithms select   atoms at time utilizing the 

residual at iteration   i.e. one scalar product with atoms. 

Unlike greedy algorithms that select one atom at time 

utilizing the residual at iteration  , to select an additional 

atom, the residual at iteration       must be calculated 

and then the scalar product with atoms. In consequence, 

to select   atoms,   scalar product must be performed. 
Thus, the computation cost for the selection step is 

roughly divised by  . 

Following [7], [8] one can take advantage of the matrix 

inversion lemma to compute iteratively 

( 
           

   
 

  
           

   
 
)

  

at a low cost, from the 

knowledge of  ( 
      
        )

  
  

VI. SIMULATION 

A. Description 

We consider simulation example with the following 
parameters. A CS signal based on periodic random 

impulses (         and     , so the nomber of 

periods is    ). This input signal consists of      

periodic random impulses of the same positions (7, 9, 11, 
13 and 15) in each cycle. The signal is then filtered by an 

ARMA system where the transfer function is given as: 

      
         

                   . Then i.i.d. gaussian noise 

(        as      ) is added to the convolved signal 

as illustrated by 1, such that the SNR is 14dB. 

For the first evaluation we consider the time 

representations of the reconstructed signals given by each 

algorithm versus the the true signal. Fig. 2 reports the 

true signal (blue line) described by (1) and the estimated 

signal (colored line) for each method. We note that we 

constrained the plot to the three first periods in order to 

avoid overloading figures. Regarding each algorithm and 

its corresponding extension, we note from Fig. 2 that 

deconvolution across cyclosparsity hypothesis allows to 

detect/restore impulses even drowned in noise, reduce 

flase/missing detections and estimate well the amplitude 

of impulses. Comparing all algorithms, we deduce that 

the Cyclo-OMP provided the best estimation. 

B. Mean Squared Error and Histogram 

We aim to examine the effects of increasing noise on 

the performances of these methods. The evaluation 

quantities for our simulation study, comparing the 

performances of these methods, were averageMean 

Squared Error (MSE) and average histogram.  

The simulation is made with the same parameter as the 

first example except the SNR which will vary from 1dB 

to 30dB. And for each value of the SNR, 500 Monte 

Carlo (MC) runs will be implemented. Thus, for each 

MC run: the periodic random impulses keep the same 

positions but with random amplitudes, the input signal is 

filtered by the IR and then i.i.d. gaussian noise is added 

to the convolved signal, as illustrated by (1), such that the 

SNR is set to the desired value. 

The MSE of the estimated signal  ̂ with respect to   is 

defined as, M E  ̂  E   ̂     . These MSE will be 

averaged over the number of MC runs. 

Fig. 3 shows the v ri tion of e ch output’s  ver ge 

MSE with the SNR. We note from the trend of the graph 

that the MSE decreases with increasing SNR. 

Furthermore, as can be seen from this figure, the 

 lgorithms’ beh vior with respect to the M E against 

noise can be decomposed into two parts: SNR less or 

greater than 6dB. For SNR greater than 6dB, the MSE of 

the algorithms can be sorted in descending order as, MP; 

Cyclo-MP; OMP; Cyclo-OMP. However for SNR less 

than 6dB, the MSE can be sorted in descending order as, 

(MP and OMP); Cyclo-MP; Cyclo-OMP. 

Fig. 4 shows the v ri tion of e ch output’s  ver ge 

histogram obtained by varying SNR from 1dB to 30dB. 

As the histogram is been almost periodic, we constrained 

the plot to the first period in order to avoid overloading 

figures. 

We note from Fig. 4 that false/missing detections 

increase with decreasing SNR. Consequently, the 

histogram confirms the MSE behavior of the algorithms 

and leads to the same sorting of the algorithms. 

VII. CONCLUSION 

Deconvolution based on cyclosparsity allows to detect 

and restore impulses even drowned in noise provided that 

these impulses being significant for the other cycles of 

the signal. The Cyclic algorithms perform more better 

than their corresponding classical ones even for low SNR. 

The Cyclo-MP has the bad performances. What happened 

to the behavior of the Cyclo-MP can be explained by the 

distance between adjacent impulses. So when nonzeros 
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elements are so close and strongly correlated, false 

detections occur often because the orthogonal projections 

are made over only the   selected atoms unlike OMP and 

Cyclo-OMP where the orthogonal projections are made 

over the whole selected atoms. 
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Fig. 2. The reconstructed signal versus the original one (the SNR is 14dB).  
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Fig. 3. The effect of varying SNR over MC runs on the MSE. 
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MP Cyclo-MP 

  
OMP Cyclo-OMP 

Fig. 4. The effect of varying SNR over MC runs on the histogram. 

 

 

 

 

 

 


