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Abstract— Microarray Image contains information about 

thousands of genes in an organism and these images are 

affected by several types of noises. They affect the circu-

lar edges of spots and thus degrade the image quality. 

Hence noise removal is the first step of cDNA microarray 

image analysis for obtaining gene expression level and 

identifying the infected cells. The Dual Tree Complex 

Wavelet Transform (DT-CWT) is preferred for denoising 

microarray images due to its properties like improved 

directional selectivity and near shift-invariance. In this 

paper, bivariate estimators namely Linear Minimum 

Mean Squared Error (LMMSE) and Maximum A Poste-
riori (MAP) derived by applying DT-CWT are used for 

denoising microarray images. Experimental results show 

that MAP based denoising method outperforms existing 

denoising techniques for microarray images. 

 
Index Terms— cDNA Microarray Images, Denoising 

Microarray Images, Bivariate LMMSE estimation, Biva-

riate MAP estimation, Dual Tree Complex Wavelet 

Transform. 

I. INTRODUCTION 

The arrival of microarray imaging technology has lead 

to enormous progress in the life sciences by allowing 

scientists to analyze the expression levels of thousands of 

genes at a time. It is a powerful tool for discovering vari-

ous types of diseases and for diagnosing the type of dis-

ease based upon gene expression measurements. But the 

noise introduced in microarray images gives rise to a 
challenge for engineers to interpret the meaning of the 

immense amount of biological information formatted in 

numerical matrices from the expression levels of thou-

sands of genes, possibly all genes in an organism. 

The two-channel complementary DNA (cDNA) micro-

array is designed to measure the activity of a set of genes 

under two conditions, namely, treatment and control [20]. 

A typical cDNA microarray experiment consists of the 

following major steps. Messenger RNA from control and 

treatment samples are converted into cDNA, labeled with 

fluorescent dyes (green Cy3 dye for control, red Cy5 dye 

for treatment) and mixed together. The mixture is then 

washed over a slide spotted with probes, which are DNA 

sequences from known genes. During this stage, competi-

tive hybridization occurs, which is the pairing of the fluo-

rescent cDNA to the spotted probes. Next, the slide is 

scanned to produce two 16-bit images, one for the green  

channel and another for the red. Each spot on the images 

consists of a number of pixels, wherein the brightness of 

each pixel reflects the amount of Cy3 or Cy5 at the spa-

tial location corresponding to that pixel. Thus, one can 

identify the genes that are differentially expressed be-
tween the two samples by comparing the pixel intensities 

of each spot in the red and green channel images.  

This paper introduces a technique for removing noise 

from microarray images based on Complex Wavelet 

Transforms. There are two major approaches of statistical 

wavelet-based denoising algorithms. In the first approach, 

the wavelet coefficients are modified using certain 

threshold parameters and shrinkage functions. The se-

cond and better approach is to formulate the denoising 

algorithm as an estimation technique for the noise-free 

wavelet coefficients of images by minimizing a Bayesian 
risk, typically under the Minimum Mean Squared Error 

(MMSE)  or Maximum A Posteriori (MAP) criterion . 

Denoising algorithms that assume the wavelet coeffi-

cients of the entire subband are independent and identi-

cally distributed (i.i.d.), are called subband-adaptive.  

II. RELATED WORK 

Studies show that microarray images are corrupted by 

several types of noise that result from the imaging system. 

Some examples of these noises include electronic noise, 

photon noise, dark current noise, and quantization noise 

[9], [21]. Noise may also be introduced from other 

sources such as nonspecific hybridization to the probes 

on the microarray surface and dust on the glass slide [22]. 

Statistical distributions such as the Gaussian [9], Poisson 

[1] and Exponential distributions [5] have been used to 

describe the noise characteristics of microarray images 
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considering additive or multiplicative noise model [2]. It 

is to be noted that many non-additive and non-Gaussian 

noise models for images can be mathematically remod-

eled as the additive Gaussian noise. Since the underlying 

processes that generate noise in the red and green channel 

images of cDNA microarrays are similar, it is expected 

that the noise are correlated between the two channels. 

The reduction of such correlated Gaussian noise is an 

important problem for processing of microarray images. 

Reduction of noise from microarray images can be per-

formed in the pixel-domain [9], or in a transform domain 

[18].  

Although the pixel-based methods are simpler to im-

plement in general, methods developed using an appro-

priate transform domain are more efficient in reducing 

noise. Among the various transforms, the Discrete Wave-

let Transform (DWT) has shown a significant success in 

image de-noising due to its space-frequency localization 

and high energy compaction properties, and flexibility of 

choosing a suitable basis function [10]. Further, the DWT 

being a multi-resolution analysis allows one to efficiently 

process an image at more than one resolution. For this 

reason, the DWT is gaining attention among researchers 

for developing new techniques to conduct several tasks in 

the microarray experiments such as gridding, spot recog-
nition and analysis of differential gene expression [17]. A 

wavelet-based noise reduction algorithm may be embed-

ded into the routines of such wavelet-based techniques 

for analyzing gene expression data so that the entire pro-

cess of image processing and data analysis becomes fast-

er, automated, and efficient. The Complex Wavelet 

Transform (CWT) is preferred to the discrete wavelet 

transform for de-noising of microarray images due to its 

improved directional selectivity for better representation 

of the circular edges of spots and near shift-invariance 

property. 

The better approach is to formulate the denoising algo-

rithm as an estimation technique for the noise-free wave-

let coefficients of images by minimizing a Bayesian risk, 

typically under the Minimum Mean Squared Error 

(MMSE) [15] or Maximum A Posteriori (MAP) criterion 

[11]. Denoising algorithms that assume the wavelet coef-

ficients of the entire subband are independent and identi-

cally distributed (i.i.d.), are called subband-adaptive. It is 

well known that the wavelet coefficients have strong in-

trasubband and weak interscale dependencies. Hence, 

locally-adaptive methods that estimate a wavelet coeffi-

cient from its local neighboring region provide a better 

denoising performance as compared to the subband-

adaptive ones. A few methods have considered both the 

intrasubband and interlevel dependencies while denoising 

an image [12]. These methods provide slightly better 

denoising performance than those that use only intrasub-
band dependency, but at the expense of increased compu-

tational complexity.  In this paper, two bivariate estima-

tors namely Maximum A Posteriori (MAP) and Linear 

Minimum Mean Squared Error (LMMSE) are presented 

for the CWT-based denoising of microarray images. 

III. DENOISING USING COMPLEX WAVELET 
TRANSFORM 

The Complex Wavelet Transform (CWT) differs from 

the DWT in having complex-valued scaling and wavelet 

functions, viz., ɸ1 + jɸ2 and ψ1 + jψ2, respectively, and 
form Hilbert pairs [13], [14]. Various methods have been 

proposed for obtaining CWT coefficients [8], however, 

due to the simplicity of implementation and lower redun-

dancy, the dual-tree CWT (DT-CWT) that has been pro-

posed by Kingsbury [8] and later generalized by Se-

lesnick [13], is becoming popular. The DT-CWT consists 

of two trees of DWT in parallel and provides four pairs of 

sub-bands (Figure.1). The implementation of DT-CWT 

requires that the functions ɸ1 and ψ1 operate on the odd 

numbered data samples, and ɸ2 and ψ2   operate on the 

even numbered data samples. 

 

Figure 1: DT-CWT sub-band decomposition 

Thus, in general, processing of the magnitude compo-

nents of an image is more efficient than that of the phase 

components. The choice of scaling and wavelet functions 

of DT-CWT is such that this transform can capture six 

directional features, namely, 15, 45 and 75 and -15,-

45,and -75 degrees of an image. Hence, the CWT pro-

vides a better directional selectivity as compared to the 

DWT that has only three angle-selective sub-bands. In 

order to improve the shift-invariance property, the DT-

CWT avoids down-sampling operation in the first-level 

decomposition. Hence, the CWT has much lower shift 

sensitivity than the DWT.  

A. Estimation of CWT Coefficients 

Let fr(i,j) and  fg(i,j) be pixels of the red and green 

channel images, respectively, at the spatial  location. As-

sume that these pixels are corrupted by additive noise. 

Then, the noisy pixels are given as in (1), 

gr(i,j)= fr(i,j) + εr(i,j) 

gg(i,j)= fg(i,j) + εg(i,j)                                                       (1) 

Where εr(i,j) and εg(i,j) are the noise samples at refer-

ence location. It is assumed that noise-samples of the red 

and green channel images are correlated and distributed 

as i.i.d. zero mean bivariate Gaussian having equal vari-

ance σε
2
 and correlation coefficient ρε. The standard devi-

ation σε indicates the strength of  noise and ρε  measures 
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the amount of linear dependency of noise between chan-

nels. 

B. Denoising Algorithm 

De-noising algorithm (Figure.2) consists of the follow-

ing steps:- 

1) Add Gaussian noise of different strengths and com-

pute the Complex Wavelet Transform of the noisy 

image. 

2) Modify the noisy wavelet coefficients according to 

LMMSE and MAP estimators,that take into account 

the inter-channel dependency of the magnitude 

components of CWT coefficients of the image.  

3) Compute the Inverse Complex Wavelet Transform 
using the modified coefficients for getting the de-

noised image. 

4) Perform Gridding and Segmentation of de-noised 

image in order to estimate the Log Intensity Ratio.  

 

Figure 2: Steps for denoising microarray images 

The wavelet coefficients in the lower level subbands 

are dominated by noise unlike that in the higher levels. 

As a consequence, overall denoising performance is high-

ly dependent upon the efficiency of noise removal from 

the subbands at the lower levels. In other words, it is 
more important to choose a joint probanility density func-

tion (pdf) that provides a better fit to the magnitude com-

ponents of the subbands in a lower level to achieve a sat-

isfactory denoising performance. Hence, for the purpose 

of denoising, the bivariate Gaussian pdf is an appropriate 

choice. In addition, an attractive feature of bivariate 

Gaussian pdf is that it is mathematically tractable for 

developing an estimator. So the bivariate LMMSE and 

MAP estimators are derived using this pdf as a joint prior 

function [16]. 

C. Bivariate LMMSE Estimator 

Let x = [xr,xg]
T
, y = [yr,yg]

T
 and v=[vr,vg]

T
 be the sam-

ples of the random vectors X,Y and V representing mag-

nitude components of the noise-free coefficients, noisy  

coefficients and noise coefficients respectively. The 

LMMSE estimator for x given the corrupted observation 

y is a linear function of y that can be written in (2), 

)(1'
YYXYX yx   

                                       (2) 

Where µX and µY are the mean of the random vectors 

X and Y, ΣXY  is the cross-covariance matrix of X and 

Y,and ΣY is the covariance matrix of  Y . The matrices 

may be written as in (3) and (4), 

}))({( T
YXXY YXE                            (3) 

and 

}))({( T
YYY YYE                               (4) 

Where E{.} is the mathematical expectation. Since the 

image and additive noise are independent,  μY = μX + μV 

and ΣXY = ΣX, where μV is the mean vector of V, μX is the 

mean vector of X, and ΣX is the covariance matrix of X . 

D. Bivariate MAP Estimator 

The MAP estimator for x given the corrupted observa-

tion y is the mode of the posterior density function ρX|Y
(x|y)

 

and is given in (5). 
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Where ρX (.) is the bivariate Gaussian pdf and ρV(.)  is 

the bivariate Rayleigh pdf. Then the bivariate MAP esti-

mator for red and green channel images is given in (6). 
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E. Log Intensity Ratio(R) Estimation 

The purpose of microarray image denoising is to im-

prove the extraction of information regarding gene ex-

pression levels instead of visual enhancement as in tradi-

tional image denoising. Therefore, a successful microar-

ray denoising algorithm is one that reduces noise with 

minimal loss of information for downstream statistical 

analysis. In cDNA microarray experiments, information 

regarding gene expression is commonly expressed in 

terms of the log-intensity ratio(R) that is given in (7), 
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Where Sr  and Sg  denote the pixels of red and green 

channel images respectively and n is the number of pixels 



 Noise Removal From Microarray Images Using Maximum a Posteriori Based Bivariate Estimator 35 

Copyright © 2013 MECS                                                        I.J. Image, Graphics and Signal Processing, 2013, 1, 32-39 

in the region of interest(ROI) and br  and bg  are the medi-

an of the pixels of local background corresponding to the 

ROI of two channels. 

To calculate R, the first step is to identify target areas 

in the red and green channel images. In general, the target 

area is a square or rectangular region on an image enclos-

ing one spot. These regions are identified by placing a 

grid over the entire image. The next step, known as seg-
mentation, consists of identifying the pixels that belong 

to the ROI and background in a target area. There exist 

several segmentation methods, each having certain ad-

vantages and drawbacks. Some of these methods have 

been compared in [22] and [19]. In this paper, an adap-

tive segmentation technique is implemented that is a hy-

brid of the fixed circle-based [3] and histogram-based [7] 

segmentation methods, in order to benefit from the ad-

vantages of both these methods. Segmentation is per-

formed separately for the red and green channel images.  

The hybrid segmentation method has the following two 
notable features that make it superior to the traditional 

fixed circle and histogram-based segmentation methods. 

First, the ROI selected by this method does not assume 

any perfectly circular shape at the center of target area as 

in the case of fixed circle-based method. Thus, the hybrid 

method provides a better separation of foreground when 

the spots have varying radii, irregular shapes, or spatial 

offsets from the center of the target area. Secondly, in 

selecting the pixels for a spot and its corresponding back-

ground the hybrid segmentation method considers the 

spatial contexts that are ignored in the histogram-based 

method.  

IV. IMPLEMENTATION DETAILS  

The experiments are conducted on a set of microarray 

images that have been downloaded from the website of 

the Stanford MicroArray Database[23] and [24]. In order 

to conduct the experiments original noise-free images are 
necessary. Since perfectly noise-free images are not 

available in practice, noise-free images those that appear 

to be corrupted with very little noise are chosen.The im-

ages that have been used in the experiments are of 

size1000 x 1000 in 16-bit tagged image file format 

(.TIFF). The algorithm is implemented in MATLAB. 

A. Algorithm 

Input: Noisy microarray image 

Output: De-noised image 

           begin 

 Symmetric extension of noisy image by calling 

symextend function 
        do 

            Apply DT-CWT by calling cplxdual2D 

            function 

        until level<=4 

              Modify CWT coefficients by calling lmm-

se_estimator or map function 

                     do 

            Apply inverse DT-CWT by calling 

icplxdual2D function 

        until level<=4 

            end 

B. User Defined Functions 

The functions implemented are discussed below in de-

tail. 

 symextend(x,2^(J-1)): This function performs the 

symmetric extension of the pixels in the noisy im-

age by taking the noisy pixel values (x) and the 

number of levels (J) as inputs. 

 cplxdual2D(x, J, af, sf): This function calculates 

the DT-CWT coefficients by taking the noisy im-

age (x), number of levels (J), analysis (af) and syn-

thesis (sf) filter results for trees as arguments. 

 normcoef(W,J,nor): This function calculates the 

normalized coefficient values by taking the noisy 

CWT coefficients (W) and number of DT-CWT 

stages (J) as inputs. 

 expand(Y_parent_real): This function expands the 

real coefficient values. 

 expand(Y_parent_imag): This function expands 

the imaginary coefficient values. 

 lmmse_estimator(Y_coef,Y_parent): This function    

estimates the LMMSE estimator values by taking 

the noisy CWT coefficients (Y_coef) and parent 

coefficients (Y_parent) as inputs. 

 map(Y_coef,sigmar,sigmag,m1,m2): This function 

calculates the MAP estimator values by taking the 

noisy CWT coefficients (Y_coef), standard devia-
tion (sigmar,sigmag) and mean (m1,m2) of red and 

green channel images as arguments. 

 bishrink(Y_coef,Y_parent,T): This function modi-

fies the noisy CWT coefficients by taking the es-

timated CWT values (Y_coef), parent coefficient 

(Y_parent) values and threshold (T) values as in-

puts. 

 icplxdual2D(W, J, Fsf, sf): This function performs 

inverse DT-CWT operation by taking  estimated 

coefficient values (W), number of decomposition 

levels (J) and synthesis filter (Fsf, sf) results as in-

puts. 

C. Assessment Measures 

The de-noising performance of the algorithm is quanti-

fied in decibels (dB) using the peak signal-to-noise ratio 

(PSNR) which is given in (8). 
















)'(

65535
log10)'(

2

10
fMSE

fPSNR                                    (8) 

Where MSE(f’) is the mean squared error of the de-

noised image f’. This measure is inversely proportional to 

the residual error in an image.  



36 Noise Removal From Microarray Images Using Maximum a Posteriori Based Bivariate Estimator  

Copyright © 2013 MECS                                                        I.J. Image, Graphics and Signal Processing, 2013, 1, 32-39 

Signal-to-noise ratio (often abbreviated SNR or S/N) is 

a measure used in science and engineering to quantify 

how much a signal has been corrupted by noise. It is de-

fined as the ratio of signal power to the noise power cor-

rupting the signal. A ratio higher than 1:1 indicates more 

signal than noise.  

MSE

crI
SNR




2),(
                                                      (9) 

Where MSE is the Mean Squared Error which is the 

difference between the original image and the denoised 

image and I means original image (without noise), r 

means row, and c means column of the microarray image. 

Image fidelity (IFy) refers to the ability of a process to 

render an image accurately, without any visible distortion 

or information loss. Image fidelity is measured in physi-

cal characteristics (luminance, dynamic range, distortion, 

resolution, and noise) and with psychophysical tech-

niques, including receiver operator characteristics analy-

sis with clinical images and testing with contrast-detail 

patterns to determine threshold contrast. 

SNR
IFy

1
1                                                             (10) 

Where SNR is the Signal to Noise Ratio. 

Image quality is a characteristic of an image that 

measures the perceived image degradation (typically, 

compared to an ideal or perfect image). Imaging systems 

may introduce some amounts of distortion or artifacts in 

the signal, so the Correlation Quality(CQy) assessment is 

an important problem.  

),(

),(*),(

crI

crIcrI
CQy d




                                      (11) 

Where for an image of R*C (rows-by-columns) pixels, 

r means row, c means column, I means original image 

(without noise), and Id means denoised image. 

Image quality loss resulting from artifacts depends on 

the nature and strength of the artifacts as well as the con-

text or background in which they occur. In order to in-

clude the impact of image context in assessing artifact 

contribution to quality loss, regions must first be classi-
fied into general categories that have distinct effects on 

the subjective impact of the particular artifact. These ef-

fects can then be quantified as Structural Content (SCt) 

which is used to scale the artifact in a perceptually mean-

ingful way. 

2

2

),(
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crI

crI
SCt

d


                                          (12) 

Where for an image of R*C (rows-by-columns) pixels, 

r means row, c means column, I means original image 

(without  noise), and Id means denoised image. 

 

V. EXPERIMENTAL RESULTS 

Noisy images are created by adding bivariate Gaussian 

noise to the noise-free images considering four values of 

standard deviation, viz., 500, 600, 700,and 800. Figure 3 

and Figure 4 shows the denoising results of a microarray 

image by applying Dual tree Complex Wavelet Trans-

form on both red and green channel images separately. 

Also, Figure 5 represents the Gridding and Segmentation 
steps of the denoised images needed for the estimation of 

log intensity ratio. 

 
(a)                              (b)                         (c) 

Figure 3: (a) Noise free Microarray Image Array 1. (b) Noisy Red 

Channel Image. (c) Noisy Green Channel Image. Here Noisy images are 

formed by adding Gaussian noise of standard deviation σ=500 

 

(a)                            (b)                         (c) 

Figure 4: Denoised Images obtained by applying Dual Tree Complex 

Wavelet Transform (a) Denoised Image (b) Red channel Image (c) 

Green Channel Image 

Calculated PSNR values are tabulated in Table 

1.Higher PSNR implies a better noise reduction perfor-

mance. Also, the log-intensity ratio values are estimated 

from the denoised images. Table 2 tabulates the average 

PSNR values and Log intensity ratio estimated using both 

LMMSE and MAP estimator techniques by applying 

different noise strengths on the microarray images. 

 

(a)                          (b)                           (c) 

Figure 5: (a) Denoised Image (b) Gridding (c) Segmentation 

Based on the estimated Log intensity ratio (R) values, 

the expression of genes in the microarray images are 

measured as follows. 

 R=0  means gene is expressed equally in both con-

trol and treatment sample. 

 R<0 means gene is expressed more in control 

sample. 

 R>0 means  gene is expressed more in treatment 

sample.  

http://en.wikipedia.org/wiki/Noise
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Table 1: PSNR values estimated in Db at various Noise Strengths for 

Microarray Image Array1 

 

Table 2: Average PSNR values and Log intensity ratio estimation of 

Stanford Microarray Database Images 

 

Figure 6 shows the denoising results of another micro-

array image obtained by applying Dual tree Complex 

Wavelet Transform on both red and green channel imag-

es separately. Figure 7 shows the PSNR values estimated 

for different noise strengths by both LMMSE and MAP 

estimator method for two microarray images. It shows 

that, increase in Noise Strength decreases the PSNR Val-

ues. This implies that when more noise is present, per-

formance of LMMSE and MAP decreases. The algorithm 

gives good results for the Gaussian noise having standard 

deviation below 750. 

 

Figure 6: (a) Noisy Image Array2 (b) Denoised image (c) Denoised red 

channel image (d) Denoised green channel image 

 

Figure 7: Performance analysis ofproposed method (a) LMMSE method 

and (b) MAP method. 

The other assessment parameters that are used to eval-

uate the performance of noise reduction of microarray 

images are Signal to Noise Ratio (SNR), Image Fidelity 

(IFy), Correlation Quality (CQy), and Structural Content 

(SCt). These parameters are estimated for determining 

the quality of denoised microarray images. Table 3 shows 

the estimated parameter values for the given denoising 

algorithm. 

The presented denoising method based on DT-CWT is 

compared with the existing BiShrink Method for calculat-

ing CWT coefficients proposed by I.W.Selesnick. Table 
4 tabulates the average PSNR values calculated by 

LMMSE, MAP estimators and BiShrink Method. Also, 

compared with other de-noising techniques by applying 

filters like median and wiener at various noise strengths 

by adding Gaussian noise. Table 5 and Table 6 tabulates 

the assessment parameters like PSNR, SNR, Image Fidel-

ity (IFy), Correlation Quality (CQy), and Structural Con-

tent (SCt) estimated by applying Median filter and Wie-

ner filter on various microarray images. Higher values of 

SNR show better de-noising performance. 

Table 3: Performance Measurements 

 

Table 4: Performance Comparison 

 

Figure 8 shows the average PSNR values estimated in 

dB for microarray images by applying Gaussian noise 

and using techniques like LMMSE, MAP, BiShrink 
method, Median and Wiener Filters. From the Figure 8, it 

is understood that the proposed LMMSE and MAP Esti-

mator techniques show better de-noising performance 

than other methods. Also, Wiener filter results shows 

better denoising performance than Median filter and 

BiShrink method. 

Table 5: Performance measures of Median filter 

 

Table 6: Performance measures of Wiener filter 
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Figure 8: Comparison of PSNR values of various methods 

Hence, the experimental results obtained by conduct-
ing the five denoising experiments on the available mi-

croarray data set shows that the denoising algorithm us-

ing DT-CWT with MAP estimator outperforms the other 

denoising algorithms.  

VI. CONCLUSION 

The cDNA microarray images are contaminated by dif-

ferent sources of noise that are introduced during various 

steps of the microarray experiments. The noise must first 

be reduced from these images for extraction of accurate 

gene expression measurements. In this paper, two CWT-

based denoising methods have been implemented for 

microarray images using the standard MAP and LMMSE 

estimation criteria. The main strength of the proposed 

denoising methods is that unlike existing methods that 

are capable of processing each image separately, the pro-

posed bivariate estimators incorporate the correlation 

information of the images as well as noise between the 
red and green channels. The experimental results show 

that the MAP estimator technique shows better denoising 

performance than other existing denoising techniques. 
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