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Abstract —The present manuscript is intended to review 
few applications of tensor decomposition model in array 
signal processing. Tensor decomposition models like 
HOSVD, SVD and PARAFAC are useful in signal 
processing. In this paper we shall use higher order 
tensor decomposition in signal processing. Also, a novel 
orthogonal non-iterative tensor decomposition technique 
(SUSVD), which is scalable to arbitrary high 
dimensional tensor, has been applied in MIMO channel 
estimation. The SUSVD provides a tensor model with 
hierarchical tree structure between the factors in 
different dimensions. We shall use a new model known 
as PARATREE, which is related to PARAFAC tensor 
models. The PARAFAC and PARATREE both describe 
a tensor as a sum of rank-1 tensors, but PARATREE has 
several advantages over PARAFAC, when it is applied 
as a lower rank approximation technique. PARATREE 
is orthogonal, fast and reliable to compute, and the order 
of the decomposition can be adaptively adjusted. The 
low rank PARATREE approximation has been applied 
to measure noise suppression for tensor valued MIMO 
channel sounding measurements. 
 
Index Terms —MIMO, SVD, PARATREE, SUSVD, 
tensor decompositions, signal processing 
 

I.  INTRODUCTION  

A higher order tensor is any N-dimensional collection 
of data. It is generally known as tensor or a 
multidimensional array. Tensor decompositions and 
factorizations were initiated by Hitchcock in 1927[1], [2] 
and later developed by Cattell in 1944 [3] and by Tucker 
in 1966[4]. Tensor factorizations or decompositions play 
a fundamental role in enhancing the data and extracting 
latent components. In the era, tensor is used in a wide 
variety of applications such as in signal processing [5], 
data mining [6], neuroscience [7], and many more. In 
various signal processing applications, instrumental data 
contains information in more than two dimensions. 
Recently, researchers have contributed a large amount 

of research regarding several application areas of well-
established matrix operations up to their tensor 
equivalents. Unfortunately, these extensions from their 
matrix counterparts are not trivial. For example the SVD 
has proven to be a powerful tool for analyzing matrix or 
2nd-order tensors, its generalization to higher order 
tensors is not straightforward. There are several 
approaches for doing this, and none of them is superior 
in all aspects. Basically there are three fundamental 
approaches to decompose a higher order tensor, first one 
is Tucker model (multi-linear SVD or HOSVD) [3], 
second is CANDECOMP/PARAFAC [8] and the third 
approach is non- negative tensor factorization. Both the 
CP and Tucker tensor decomposition can be considered 
as higher-order generalization of the matrix SVD and 
PCA respectively. If any tensor decomposes into sum of 
rank-1 tensor, this type of decomposition is often called 
“Canonical Decomposition” (CANDECOMP) or 
“Parallel Factors” model (PARAFAC) [8]. It has been 
applied in many signal processing applications, such as 
image recognition, acoustics, wireless channel 
estimation [9] and array signal processing [10], [11]. 
Recently, a Tucker-model based HOSVD [12] tensor 
decomposition subspace technique has also been 
formulated to improve multidimensional harmonic 
retrieval problems [13]. In this paper, we are attempting 
to pursue the contribution of higher order tensor 
decomposition in signal processing. In signal processing, 
data obtained from MIMO channel sounding 
measurements is a good example of tensor-valued data. 
It is well known that a PARATREE model is an 
enhanced version of PARAFAC model. Also the 
PARATREE tensor model is useful in signal processing; 
it is applied to suppress measurement noise in 
multidimensional MIMO radio channel measurements. 
This is Performed by identifying the PARATREE 
components spanning the noise subspace, and removing 
their contribution from the channel observation. 
Therefore in subsection 3 of section II, a novel 
PARATREE tensor model has been introduced, which is 
accompanied with SUSVD algorithm. As the rank-1 
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tensor decomposition technique is suitable for several 
tensor decomposition models therefore by additionally 
imposing this technique, the PARATREE model can be 
efficiently applied to approximate higher-order tensor. 
One example of such application involves interpreting 
the vector of eigenvalues of a large covariance matrix as 
a tensor, which is then used in a linear algebraic 
expression to finding the FIM. Approximating this 
tensor using PARATREE decomposition allows a 
significant reduction in computational complexity over a 
straight-forward matrix multiplication or any other exact 
solution. PARATREE also achieves a significant 
complexity reduction against HOSVD and PARAFAC. 
However, the use of PARATREE in practice is far more 
convenient than PARAFAC since PARATREE is 
capable of decomposition n-way array into a sequence 
of 1-rank tensor and hence SUSVD does work even 
when the convergence problem by PARATREE arises. 
Also the order of the PARATREE decomposition can be 
easily controlled, and the corresponding approximation 
error is well defined. 

This manuscript is organized as follows: In Section II, 
the useful tensor models and tensor operations are 
described which form the general framework for the 
present study. We have also described three important 
tensor models viz. Tucker, PARAFAC and PARATREE. 
Also, the methods for computing tensor decompositions 
like ALS, HOSVD and SUSVD are discussed in brief. 
Rank approximation, deflating the full SUSVD and 
Deflating the full HOSVD is also described herein. 
Further, in Section III, we have delineated the MIMO 
propagation channel modelling, MIMO system channel 
and signal model, dense multipath component, FIM-key 
quantity of parameter estimation, noise suppression of 
multidimensional radio channel measurements and have 
pursued some of the relevant applications. At the end, 
conclusion over the proposed study has been outlined. 

 

II. USEFUL TENSORS MODELS AND TENSOR 
OPERATIONS 

Some tensor models and tensor operations are useful 
for signal processing e.g. PARAFAC model, which is 
commonly used for signal modelling and estimation 
purposes, and the orthogonal models such as HOSVD 
which better suit for tensor approximation, data 
compression, and filtering applications. In this 
manuscript we are going to apply tensor models to 
MIMO channel modelling. As a preliminary, first we 
describe general tensor operation and models as below: 

A. General tensor operation 
Here we introduce operations for N-mode tensors, the 

term N-mode or N-way tensors can be used to describe 
any N-dimensional data structure. An N-dimensional 
data structure is known as higher order tensor. Some 
basic operations for an N-dimensional tensor 𝒜𝒜 ∈
ℂI1×I2×……×In ×…..×IN  are defined as below: 

1. The N-mode matrix unfolding of a higher order 
tensor 

The N-mode matrix unfolding 𝐀𝐀n  of a tensor 𝒜𝒜 
comprises of:  

1.) Permutation of tensor dimensions into an order 
{n, n + 1, … . . N, 1, … . . , n + 1} and  

2.) Reshaping the permuted tensor into a matrix An  
such that An ∈ ℂIn ×∏ Iii≠n , i.e., 

 
𝐀𝐀n = reshape[permute {𝒜𝒜, (n, n + 1, … . , N, 1, … . . , n −
1)}, {In ,∏ Iii≠n }]                                                                  (1) 

 
The order in which the columns of the matrix after 

unfolding are chosen in the latter step is not important, 
as long as, the order is known and remains constant 
throughout the calculations. A more general treatment of 
the unfolding (or matricization), including nesting of 
several modes in the matrix rows, is given in [14]. 

2. The n-mode multiplication 
The n-mode multiplication 𝒜𝒜 ×n 𝐔𝐔 ∈ ℂI1×….×Rn ×….×IN of 

a tensor𝒜𝒜and a matrix𝐔𝐔 ∈ ℂRn ×IN  is defined as 
 

𝒜𝒜 ×n 𝐔𝐔 = Permute {𝒜𝒜𝐁𝐁, (n, n + 1, … … N, 1, … . , n − 1)}   (2) 
 
Where 
 
𝒜𝒜𝐁𝐁 = Reshape{𝐔𝐔𝐀𝐀n , (Rn, In+1, … … , I1, IN , … . . , In−1)}       (3) 
 

3. Rank-1 tensors 
A tensor 𝒜𝒜 is of rank-1, if it can be expressed as an 

outer product of N vectors [15]. For instance the tensor 
𝒜𝒜 in terms of outer product of N vectors can be expressed as: 

 
𝒜𝒜 = 𝐚𝐚(1)ο𝐚𝐚(2)ο… … ο𝐚𝐚N .                                                (4) 
 

The element of 𝒜𝒜 are defined as  
 
αi1i2……iN = ∏ (𝐚𝐚n )in

N
n=1 = ai1

1 . ai2
2 … … aiN

N                         (5) 
 

B.Tensor decomposition  models 
As for as the MIMO study concerns, there are two 

important tensor decomposition data models often 
appeared in multi-antenna (MIMO) communications, 
one is Tucker model and other is PARAFAC. 

1. Tucker Model 
Tucker models (HOSVD) are the models that 

decompose the higher order tensors [4], [16]. In this 
model the key idea is to form a limited set of basis 
vectors for each mode, and express the tensor as a linear 
combination of the outer product of the basis vectors of 
different modes. A higher order tensor 𝒜𝒜  can be 
decompose by Tucker model as  

 
𝒜𝒜 =  𝒞𝒞 ×1 𝐔𝐔1 ×2 𝐔𝐔2 ×3 … … … . .×N 𝐔𝐔N               (6) 
 
where𝒞𝒞 ∈ ℂR1×…..×RN is called the core tensor and the 
matrices 𝐔𝐔n ∈ ℂIn ×Rn  contain the basis vectors. Tucker 
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model for third order tensor can be obtained by putting 
N = 3 in (6) and can be shown as in Fig.1.  
 

 
Figure 1 Tucker Model for N = 3 

 

2. PARAFAC Model 
The PARAFAC model or decomposition of a tensor 

is a sum of Rank-1 tensors. There are a number of ways 
to express PARAFAC decomposition [16]. Let us 
consider an N-mode tensor 𝒜𝒜 ∈ ℂI1×I2…..×IN  and N 
matrices 𝐀𝐀n ∈ ℂIn ×R, where R is the number of factors 
equal to the rank of the tensor. Then the matrices 
𝐀𝐀n , n ∈ [1,2, … . . , N], with columns 𝐚𝐚r

n , r ∈ [1,2, … . , R], can 
be formed such that the tensor 𝒜𝒜  is the sum of outer 
products  

 
𝒜𝒜 =  ∑ 𝐚𝐚r

(1)ο𝐚𝐚r
(2)ο… … ο𝐚𝐚r

(N)R
r=1 ,              (7) 

 
where each outer product of the vectors 𝐚𝐚r

N  is a rank-1 
tensor. Equivalently, the PARAFAC model can be 
expressed element wise as 
 
αi1,i2,…..,iN = ∑ ar,i1

1 . ar,i2
2 … … ar,iN

NR
r=1               (8) 

 
where ii  denotes the index in ith mode. A vectorized 
definition is given by  
 
𝐕𝐕𝐕𝐕𝐕𝐕(𝒜𝒜) = (𝐀𝐀N ⊙𝐀𝐀N−1 ⊙ … …⊙𝐀𝐀1)1R = ∑ 𝐚𝐚r

N ⊗R
r=1

𝐚𝐚r
N−1 ⊗ … . .⊗𝐚𝐚r

1,               (9) 
 
where𝟏𝟏R  is a column vector of R ones. For third order 
tensor (N = 3), PARAFAC model is visualized by Fig.2, 
where the relations from (7) to (9) are given by𝐚𝐚𝐫𝐫𝟏𝟏 = 𝐚𝐚𝐫𝐫, 
𝐚𝐚𝐫𝐫𝟐𝟐 = 𝐛𝐛𝐫𝐫 and 𝐚𝐚𝐫𝐫𝟑𝟑 = 𝐜𝐜𝐫𝐫. 
 

 
Figure 2 PARAFAC Decomposition (a sum of R rank-1 

tensors) 

3. PARATREE Model 
In the present context a novel tensor model 

(PARATREE), which belongs to PARAFAC model, has 
been introduced. This new model has distinct 
hierarchical tree structures. PARATREE model can be 
efficiently applied to approximate higher order tensors 
[28]. One example of such application involves 
interpreting the vector of eigenvalues of large 
covariance matrix as a tensor, which is then used in a 
linear algebraic expression for finding FIM. 

Approximating this tensor using PARATREE 
decomposition allows a significant reduction in 
computational complexity over a straight-forward 
matrix multiplication or any other exact solution. 
PARATREE also achieves a significant complexity 
reduction against HOSVD and PARAFAC. However, 
the use of PARATREE in practice is far more 
convenient than PARAFAC, since the SUSVD does not 
suffer from convergence problems. Also the order of the 
PARATREE decomposition can be easily controlled, 
and the corresponding approximation error is well 
defined [28]. In a second novel application the 
PARATREE model is applied to suppress measurement 
noise in multidimensional MIMO radio channel 
measurements [28]. This is performed by identifying the 
PARATREE components spanning the noise subspace, 
and removing their contribution from the channel 
observation. To conclude the above mentioned 
properties the PARATREE model, we have following 
benefits of this model, 

1. It is reduced computational complexity in high 
dimensional inverse problems.  

2. It is beneficial to measurement noise 
suppression or subspace filtering.  

3. It is beneficial to compression of data or 
similar to low rank matrix approximation.  

4. It is beneficial for fast and reliable computation 
and adaptive order (rank) selection.  

5. It is beneficial to revealing of hidden structures 
and dependencies of data. 

We can also think of a PARATREE model as a novel 
hierarchical formulation for PARAFAC-type model 
having not only different number of factors in different 
modes as in block-PARAFAC [18] or PARALIND [17], 
but additionally the number of factors in each mode can 
vary for each branch in the hierarchical tree structure. 
The PARATREE model for a higher order tensor can be 
expressed as the sum of outer products as follows 

 
𝒜𝒜 =
∑ 𝐚𝐚r1

1 ο�∑ 𝐚𝐚r1,r2
2 οR

r2=1 … … … … . . ο∑ (𝐚𝐚r1……rN−2.rN−1
N−1 ο𝐚𝐚r1,

NRN−1
rN−1=1 �R1

r1=1
.                  (10) 

 
The vector 𝐚𝐚r1,….,rn

n in (10) denotes the rn
th  column of 

the nth  mode matrix of basis vectors 𝐀𝐀r1,…..,rn−1
n . The 

subscript r1, r2 … … . , rn−1  indicates the dependency of 
these matrices on the indices of the previous factors of 
that branch in   tree. Also the number of factors 
Rnwithineach mode n can vary over different branches, 
i.e. Rn in (10) is actually a shorthand notation 
forRr1,…..,rn−1

n . 
The visualization of PARATREE model for third way 

tensor in Fig: (3). 
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Figure 3 Three-way PARATREE decomposition, a 

hierarchical sum of R rank-1 tensors 
 
Let us observe the PARAFAC model in Fig.2, 

thera
th basis vector 𝐚𝐚ra  in the first mode may be common 

for several factors in the remaining modes. To clarify 
the illustration of Fig. 3, we simply (10) for N=3 as 
follows 

 
𝒜𝒜 = ∑ 𝐚𝐚raο

Ra
ra =1 ∑ (𝐛𝐛ra ,rbο𝐜𝐜ra ,rb )Rb

rb =1             (11) 
 
where the relation to (10) is obtained by setting 
�𝐚𝐚ra ,𝐛𝐛ra ,rb , 𝐜𝐜ra ,rb � ≡ �𝐚𝐚r1

1 ,𝐛𝐛r1,r2
2 , 𝐜𝐜r1,r2

3 �.It is remarkable that 
the number of factor Rb = Rra

b  for the second and third 
mode (vector 𝐛𝐛ra ,rb  and 𝐜𝐜ra ,rb ) may depend on the factor 
index ra  of the first mode. In addition, the numbers of 
factors in the last two modes are equal. For N=2, the 
PARATREE reverts to the regular matrix SVD model. It 
is noteworthy that one can connect various tensor 
decomposition models using the well-known established 
connection [16]. For instance a PARAFAC model can 
be written as a Tucker model with a super diagonal core 
tensor [16]. On the other hand a Tucker model can be 
written as a PARAFAC model (with R equal to the 
number of elements in the core tensor) [16]. Hence, it is 
straightforward to write the PARATREE model in terms 
of PARAFAC or Tucker models as well. A general 
framework unifying the different decompositions has 
been recently introduced in [19].  

C. Methods for computing the tensor decompositions 

1. ALS Method 
ALS method is the most common algorithm for fitting 

a PARAFAC model [21]. The basic idea is to have the 
number of factors R fixed and obtain an update of the 
nth  mode basis vector 𝐀𝐀n  as  

 
𝐀𝐀�ALS

n = 𝐗𝐗n . �(𝐀𝐀N ⊙ …⊙𝐀𝐀n+1 ⊙𝐀𝐀n−1 ⊙ … .⊙𝐀𝐀1)†�t
,(12) 

 
while keeping the basis vectors of the outer modes fixed. 
An iterative update of the matrices 𝐀𝐀(n) is obtained by 
altering n ∈ [1,2, … … , N]until a convergence is reached. 
The improvement of fit is monotonic. However, 
depending on the initial values for the matrices𝐀𝐀(n), a 
local optimum may be reached instead of the global one 
or the convergence may be very slow. Therefore, 𝐀𝐀(n)are 
typically initialized by either using multiple random 
initial values, or so called rational start (based on either 
generalized rank annihilation or DTLD)), or a semi-
rational start (based on SVD/EVD) [20].  

2. Higher order singular value decomposition 
(HOSVD) 

The HOSVD is obtained by computing the matrix 
SVD for each 1-mode unfolding of the tensor 𝒜𝒜  and 
selecting the left singular vectors as the orthonormal 
basis of each mode, respectively. For the complete 
HOSVD, the basis matrices𝐔𝐔n ∈ ℂIn ×Rn  are hence given 
by the first Rn = rank(𝐗𝐗n) left-hand singular vectors of 
the SVD of𝐗𝐗n , defined as  

 
𝐗𝐗n = 𝐔𝐔(n) ∑  (n) 𝐕𝐕(n)H .            (13) 

 
Having computed the matrices𝐔𝐔(n) ,  n ∈ [1,2, … … , N] 

the core tensor 𝒞𝒞 ∈ ℂR1×R2×…..×Rn  is given in closed form 
as 

 
𝒞𝒞 = 𝒜𝒜 ×1 𝐔𝐔(1)H ×2 𝐔𝐔(2)H ×3 … … .×N 𝐔𝐔(N)H                     (14) 
 

3. Sequential Unfolding Singular Value 
Decomposition (SUSVD) 

Let us describe the SUSVD algorithm for estimating 
the PARATREE tensor model [28]. It is a computational 
method for obtaining an orthogonal PARATREE model. 
It is based on the idea of sequentially applying the 
matrix SVD [20], on an unfolding tensor formed from 
each of the right singular vectors of the SVD in the 
previous mode. SUSVD can be applied for any N-
dimensional real or complex tensor and for N = 2, it is 
equal to the matrix SVD. The SUSVD decomposition 
for an N-way tensor 𝒜𝒜I1×I2×….×IN (I1 ≥ I2 ≥ ⋯ ≥ IN ) is 
described by the following algorithm: 

Algorithm 1[28] 
[{𝐒𝐒}, {𝐔𝐔}] = SUSVD{𝒜𝒜} 
Set 𝒯𝒯0

1 = 𝒜𝒜 
Set R0= 1 
For each n = {1,2, … . . , N − 1}: 
For each rn−1 = {1,2, … . . , Rn−1}: 

1. Unfold the tensor 
𝐓𝐓r1,r2,…..,rn−1

n = �𝒯𝒯r1,r2,…….,rn−1
n �

(1)
, 

2. Compute the SVD 𝐓𝐓r1,r2,…..,rn−1
n = 𝐔𝐔n ∑  n 𝐕𝐕nH , 

3. For each rn ∈ {1,2, … … . , Rn },  with , Rn =
rank(𝐓𝐓r1,r2,….,rn−1

n ) 
(a) Store σr1,r2,……,rn−1

n = (∑  n )rn rn  in {𝐒𝐒} 
and 𝐔𝐔r1,r2,….,rn

n = (𝐔𝐔n)rn  in {𝐔𝐔}, 
(b) Then, if n < 𝑁𝑁 − 1, 

-Reshape �𝐕𝐕(n)∗�rn
 in to a tensor 𝒯𝒯r1,r2,……,rn

n+1 ∈
 ℂIn +1×……×IN , or else,  
-Store the vector  
𝐮𝐮r1,r2,…….,rN−1

N = �𝐕𝐕(N−1)∗�rN−1

 . 
 
The SUSVD method and its reconstruction are 

visualized for a (2 × 2 × 2)-third order tensor in fig.4. 
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Figure 4 The SUSVD decomposition for an arbitrary (2×2×2)-

tensor 
 
The core idea of the algorithm is to apply the matrix 

SVD on the 1-mode matrix unfolding of the tensor (see 
Definition 1) to form the basis vectors of the first mode. 
Then each of the conjugated right-hand singular vectors 
𝐯𝐯r1

1∗ is reshaped into tensors, and the matrix SVD is 
applied on the 1-mode unfolding of these tensors. This 
is repeated to construct the PARATREE model, until 
there are only the elements of the last mode contained in 
the right-hand singular vectors. Note that for a full 
SUSVD (all possible factors included) described in 
algorithm 1, the number of basis vectors within each 
mode is the same for all branches and is given by 

 
Rn = min⁡{Mn,∏ Mj

N−1
j=n+1 }.              (15) 

 
Hence, the total number of orthogonal components in 

the decomposition is given by 
 

R =  ∏ Rn
N−1
n=1                (16) 

 
The (2 × 2 × 2)-third order tensor in fig. 4 can be 

reconstructed with the PARATREE model as  
 

𝒜𝒜 =  ∑ σr1
1 .𝐮𝐮r1

1R1
r1=1 ο∑ σr1,r2

2 .𝐮𝐮r1,r2
2 ο𝐮𝐮r1,r2

3R2
r2=1             (17) 

 
For avoiding the confusion in Fig.4 of the SUSVD 

decomposition for (2 × 2 × 2)  tensor. Different colors 
shows to different dimensions of the tensor. A square σ 
denotes a singular value, dashed blocks are elements of 
the tensors, and solid lines are used to separate the 
columns vectors. The tensor is first unfolded to a 
matrix𝐓𝐓0

(1). After applying SVD on this matrix, each of 
the right-hand singular vectors is reshaped and another 
SVD is applied on them. The procedure is repeated for 
each “branch” and “sub-branch”, until no additional 
dimensions remain in the right hand basis vectors, i.e., 
the matrix 𝐕𝐕N−1has only IN  rows.The full (R1 = 2, R2 =
2)  reconstruction is given in Fig.5. In this fig.5 a 
PARATREE tensor is reconstructed as a sum of outer 
product of weighted (by σr1

1 σr1,r2 , ) basis vectors 
𝐮𝐮r1

1   ,𝐮𝐮r1,r2
2 and 𝐮𝐮r1,r2

3 . The tree structure allows common 
basis vectors in the previous dimensions. 

 
Figure 5 A PARATREE tensor is reconstructed as a sum of 

outer product of weighted unitary basis vectors 𝐮𝐮𝐫𝐫𝟏𝟏
𝟏𝟏 ,𝐮𝐮𝐫𝐫𝟏𝟏,𝐫𝐫𝟐𝟐

𝟐𝟐 and 
𝐮𝐮𝐫𝐫𝟏𝟏,𝐫𝐫𝟐𝟐
𝟑𝟑 . 

 
The relation of the values in (17) to the ones in the 

3D-PARATREE formulation (11) or the general form 
(10) is given by  

 
𝐚𝐚ra = 𝐚𝐚r1

1 = σr1
1 𝐮𝐮r1

1  
𝐛𝐛ra ,rb = 𝐚𝐚r1,r2

2 = σr1,r2𝐮𝐮r1,r2
2  

                                𝐜𝐜ra ,rb = 𝐚𝐚r1,r2
3 = 𝐮𝐮r1,r2

3 . 
 
Note that the basis vectors of the SUSVD are exactly 

the same for the first mode as those of the HOSVD. 
However, the number of basis vectors of the latter 
modes is limited to Rn = rank(Xn )  for HOSVD, 
whereas in SUSVD the basis is formed independently 
for each branch. The result is that the total number R of 
individual rank-1 contributions, (e.g., as if the 
decomposition would be written in PARAFAC) from (7), 
is typically much less for the SUSVD than for the 
HOSVD. Another difference between the two 
decompositions is the fact that the HOSVD is unique, 
whereas for the SUSVD the solution depends on the 
order of the modes.  

4. Reduced Rank Approximations 
The individual rank-1 contributions of the HOSVD 

and SUSVD are orthogonal to each other. The practical 
implication of this property is that for a reduced rank 
approximation  𝒜𝒜A of a tensor 𝒜𝒜, the squared 
magnitudes of individual terms directly contribute to the 
squared magnitude of the approximated tensor. Hence, 
the squared Frobenius norm of the tensor approximation 
is given for the SUSVD by 

 
�𝒜𝒜A,SU�F

𝟐𝟐 = ∑ �ar𝐀𝐀
1 οar𝐀𝐀

2 ο. . . οar𝐀𝐀
N �

F
2

r𝐀𝐀 = ∑ σr𝐀𝐀
1 . . .σr𝐀𝐀

N−1,rA (18) 
 
whereσr𝐀𝐀

n denotes the nth  mode singular value and r𝐀𝐀 
denotes an index of a rank-1 component included in the 
reduced rank decomposition. Equivalently, the squared 
Frobenius norm of the HOSVD approximation is given 
by 
 
�𝒜𝒜A,HO�F

2 = ∑ �(𝒞𝒞)rA �
2

rA               (19) 
 
where(𝒞𝒞)rA  denotes an element of the HOSVD core 
tensor, and index rA  denotes the indexes contributing to 
the approximation.  

5. Deflating the full SUSVD 
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The PARATREE model builds with SUSVD can be 
deflated to form reduced rank approximation of tensors. 
This can be done either offline after building the full 
SUSVD or online during the computation of the 
decomposition [28]. Here the discussion is limited to the 
offline approach. Due to orthogonality of the 
decomposition, the approximation error can be 
equivalently expressed in terms of the sum of the 
product of the singular values related to each factor. 
These can be interpreted as the magnitudes of the single 
rank-1 components in the PARATREE and are given by 

 
σ�r1,…..,rN−1 = σr1

1 .σr1,r2
2 …σr1,….,rn−1

n−1             (20) 
 
By stacking all the R in (15)-(16), magnitude values 

of (20) is in descending order to a vector 𝛔𝛔� ∈  ℝR×1, the 
normalized SUSVD approximation error can be 
expressed as  

 

ϵr,SU =  ‖𝒜𝒜−𝒜𝒜A‖F
‖𝒜𝒜‖F

=  �1 −
∑ σ�rA

2R A
rA =1
∑ σ�r  

2R  
r=1

             

 
Or equivalently ϵr,SU

2 = 1 −  ‖𝛔𝛔�A‖F
2

‖𝛔𝛔�‖F
2            (21) 

 
The Offline PARATREE approximation method is 

described by the following algorithm: 
Algorithm 2[28] 

[{SA}, {UA }] = PACK_SUSVD_OFFLINE({S}, {U}, {ϵr}) 
1. Compute the products of the singular value (20) 

for each of the R Possible branches (15)-(16) of 
the full PARATREE structure.  

2. Sort all the products in descending order to a 
vector 𝛔𝛔 � ∈  ℝR×1. 

3. Pick the minimum number RA  of singular 
values 𝛔𝛔 �𝐀𝐀 ∈  ℝR×1 , fulfilling the criterion 
equation (21)  

 
‖𝛔𝛔 �𝐀𝐀‖F

2 ≥ (1 − ϵr
2)‖𝛔𝛔 �  ‖F

2 
 

4. Construct {SA}, {UA }  based on the selected 
singular values𝛔𝛔 �𝐀𝐀 

 
The input data to the approximation function are the 

abstract tree structures {S} and {U} from the SUSVD 
and threshold ϵr  for the target normalized approximation 
error (21). The output data consist of similar structures, 
but with reduced number of factors to approximate the 
tensor. The rank of the approximation is given by 

 
RA =  ∑  R1

r1=1 ∑  Rr1
2

r2=1 … …∑ Rr1,…,rN−2
N−1Rr1,…,rN−3

N−2

rN−2=1 .          (22) 
 
The number of factor Rr1,r2,…..,rn−1

n in each mode n of 
each branch r1, r2, … … , rn−1, depends on how the factor 
magnitudes are distributed among different branches. 
The described offline approach allows for defining the 
achieved relative approximation error (21) precisely at 

the price of having to form the full SUSVD. This is 
most useful, when saving in the computational 
complexity of the SUSVD decomposition itself is not 
crucial for the application at hand. This is the case in 
both of the example applications in next Section. Further, 
improvements in computational complexity can be 
achieved by truncating the decomposition in an online 
fashion, but then controlling the normalized error of the 
obtained approximation would not be as straightforward. 

6. Deflating the full HOSVD 
The HOSVD can be deflated either by reducing the 

least significant basis vectors from the matrices𝐔𝐔n , or 
by considering the full decomposition, and selecting the 
elements from the core tensor that one wishes to include 
in the approximation. Here, the discussion is limited to 
the latter approach as that strategy for controlling the 
approximation error is similar to the one applied for the 
SUSVD deflation. Hence, the deflation of the HOSVD 
is obtained by setting the undesired contributions in the 
core tensor to zero, yielding a sparse core tensor 𝒞𝒞A . The 
obtainedHOSVD approximation error is given by 

 
ϵr,HO

2 = 1 −  ‖𝒞𝒞A‖F
2

‖𝒞𝒞‖F
2 .               (23) 

 
It should be noted that the low rank tensor 

approximations obtained by deflation are suboptimal for 
both SUSVD and HOSVD. However, in the proposed 
application example in next Section, the optimality of 
the approximation in LS sense may be sacrificed to the 
benefit of a computationally efficient method yielding 
an approximation with a low rank-1 number factor in the 
decomposition (nonzero core tensor elements for 
HOSVD). For HOSVD, the truncation could be 
performed also by reducing the rank of each mode, 
which would allow optimizing the solution using 
Tucker3-ALS [16]. However, this method is time 
consuming, the achievable approximation error would 
not be as precisely controllable, and the obtained 
decomposition may still contain numerous in significant 
rank-1 factors. Applying a similar target approximation 
error requirement for a general PARAFAC model would 
require a trial and error approach for finding a proper 
rank. Also the convergence of the alternating least 
squares algorithms used for PARAFAC is very slow for 
high dimensional or ill-conditioned problems [22], [23]. 

 

III. APPLICATIONS 
Let us explain some important application of above 

tensor decomposition models in signal processing. 

A. MIMO propagation channel modeling 
The forging SUSVD algorithm for estimating the 

PARATREE model for any given tensor valued data is 
useful in multi-antenna communications (MIMO). The 
concept of SUSVD algorithm and the PARATREE 
tensor model emerged while solving the problem of 
restoring the Kronecker structure of a data mode 
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appearing in multi-antenna communication. In order to 
understand this concept we shall go through MIMO 
system as below.  

1. MIMO System 
In wireless communications a MIMO system is a 

wireless communication system that has more than one 
antenna in both transmitter and receiver [24]. The use of 
MIMO systems enables many different benefits that can 
be used to increase the performance of a data 
transferring network. These include spatial multiplexing 
gain, spatial diversity gain and array gain, often referred 
to as beam forming gain [28].  

2. Channel and Signal Model 
We can present a typical MIMO system including the 

signal processing subsystems, 
 

 
Figure 6 Process of MIMO system 

 
and wireless channel part is extracted below: 
 

 
Figure 7 MIMO wireless channel part 

 
In the above fig7x is transmitted signal vector, y is 

received signal vector, n is noise vector and H is a 
channel matrix. The received signal vector y can be 
expressed in terms of the channel matrix H as: 

 
𝐲𝐲 = 𝐇𝐇𝐇𝐇 + 𝐧𝐧,              (24) 
 
where the symbols are 
 

𝐲𝐲 =  �

y1
y2
..

yn

�  = received signal vector, 𝐱𝐱 =  �

x1
x2
..

xn

�  = 

transmitted signal vector, 

𝐧𝐧 =  �

n1
n2
..

nn

�= noise vector 

and 𝐇𝐇 =  

⎣
⎢
⎢
⎢
⎡

h11 h12 … … h1M
h21 h22 … . . h2M

: : … … . :
. … … … .

hN1 hN2 … . . hNM ⎦
⎥
⎥
⎥
⎤
 = Channel matrix 

3. Tensor valued data in MIMO communications 
(MIMO principal) 

The principle of a MIMO communication system is 
illustrated in fig 8. The system in fig 8 has multiple (MT) 
transmit (Tx) antennas and multiple (MR) receive (Rx) 
antennas. The coefficients of the spatial channel 
between each Tx-TR antenna pair are typically 
represented by a narrowband MIMO channel tensor ℋ. 

 

 
Figure 8 MIMO principal 

 
The tensor valued measured radio channel ℋ ∈

 ℂMf ×MT ×MR  contains the complex coefficients describing 
the channel transfer function of the radio channel 
between the MT  transmitter antenna ports and MR  
receiver antenna ports sampled at Mf  frequencies. 
Realizations of such MIMO channels are obtained from 
MIMO channel sounding measurements. The 
measurement model for the radio wave propagation is 
assumed to be comprised of two model components: the 
dominant propagation path ℋs ,  and the diffuse 
scattering ℋD  also DMC. In the following, the 
polarization effects are ignored to simplify the 
description. The propagation paths can be expressed as a 
constrained PARAFAC model.  

 
ℋS(θ) =
∑ γp

P
p=1 �𝐛𝐛f�τp� ο 𝐛𝐛(T)�𝛗𝛗T,p ,𝛝𝛝T,p� ο 𝐛𝐛(R)�𝛗𝛗R,p ,𝛝𝛝R,p��  (25) 

 
where P is the number of individual propagation paths. 
Each rank-1 component in model (25) is parameterized 
with L parameters. The parameter vector θ ∈ ℝLP ×1  is 
defined as  
 
θ =  �𝛕𝛕T𝛗𝛗T

T𝛝𝛝R
T𝛗𝛗R

T  ℜ{log(γT)}  𝔍𝔍 {log(γT)}�T           (26) 
 

B. Dense multipath component 
The Dense Multipath Component (DMC) is a 

necessary part of the MIMO channel model in order to 
provide means to mathematically describe the 
contribution of the rich diffuse scattering in the 
propagation channel, which cannot be modeled by the 
dominant propagation paths. Another way to distinguish 
between a propagation path and DMC is through their 
time varying nature. If a channel would be constant, one 
may be able to fully reconstruct the whole channel 
transfer function using a very high number of 
propagation paths. However, this model fails if the 
channel changes even slightly. This is due to the fact 
that most of the individually less significant channel 
contributions result from a superposition of signals 
having different patio-temporal structure. Moreover, the 
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true dominant propagation paths shall prevail within a 
larger spatial region. Especially in a dynamic channel 
while either one of the terminals, or possibly a source of 
propagation mechanism is moving, it is evident that, 
regardless of the measurement system, only part of the 
radio channel can be modeled using the dominant 
propagation paths. The diffuse scattering component is 
defined as a tensor valued complex circular symmetric 
normal distributed random variable  

 
ℋ ∼  𝒩𝒩C(0, 𝓡𝓡),               (27) 
 
with a covariance tensor ℛ ∈  ℂMf ×MT ×MR ×Mf ×MT ×MR . 

The following Kronecker structure is assumed for the 
covariance tensor reshaped into a (M × M, with M =
MfMTMR) matrix 

 
𝐑𝐑D = E{vec(ℋD )vec(ℋD )H} = Rf ⊗ RT ⊗ RR ∈ ℂM×M .(28) 

 
The matrices Rf ∈ ℂMf ×Mf , RT ∈ ℂMT ×MT  and 

RR ∈ ℂMR ×MR are the covariance matrices of the 
frequency, the transmit array, and the receive array 
modes, respectively. Estimation of these covariance 
matrices is discussed in [24]. Furthermore, a tensor 
ℋN(k)  is defined, denoting zero mean normal 
distributed complex circular symmetric noise with 
covariance 

 
RN = E{vec(ℋN )vec(ℋN )H } =  σN

2 I.             (29) 
 
Using (25), (27) and (29) the model for the full 

measured complex transfer function of the ratio channel 
tensor at time k is defined as 

 
ℋ(k) =  ℋS (k) + ℋD (k) + ℋN (k)~ 𝒩𝒩C (ℋS ,ℛ),           (30) 
 
where the covariance tensor is defined asℛ =  ℛD + ℛN .  

The covariance tensor of (30) can be written in matrix 
form as  

 
R = E{vec(ℋN )vec(ℋN )H } = Rf ⊗ RT ⊗ RR + σN

2 I      (31) 
 
The contribution of the model components ℋS , ℋD , 

and ℋN  in the PADP of a MIMO radio channel 
measurements. 

C. The FIM – key quantity of parameter estimation 

1. Computational challenges of the FIM in 
propagation Parameter Estimation 

The model for the propagation paths (25) in 
vectorized form is defined as  

 
hs(θ) = vec (ℋS(θ)).                         (32) 

 
The Parameters (θ)  used for identifying the model 

s(θ)  may be estimated using, iterative Maximum 
Likelihood (ML) [25], or Extended Kalman Filter (EKF) 
[26], [27]. Both of these estimation methods rely on the 
evaluation of the expression  

 

𝐉𝐉 = 2ℜ{𝐃𝐃H𝐑𝐑−1𝐃𝐃},             (33) 
 
which is commonly known as the FIM- a measure of the 
amount of information about θ  carried in hs(θ) . This 
expression contains as inverse of the measurement 
covariance matrix R (31), as well as a Jacobian matrix  
 
𝐃𝐃 = ∂hs (θ)

∂θ
∈  ℂM×L′ .              (34) 

 
Due to the structure of the data model in our example 

application (25), the expression of the FIM (33) can be 
expanded as  

 
𝐉𝐉 = 2ℜ{(𝐃𝐃f ◊ 𝐃𝐃T ◊ 𝐃𝐃R)H. �𝐑𝐑f ⊗𝐑𝐑T ⊗𝐑𝐑R + 𝛔𝛔N

2 I�−1. (𝐃𝐃f ◊
𝐃𝐃T ◊ 𝐃𝐃R)H }.               (35) 

 
Straight-forward computation of (34) has very high 

computational complexity𝒪𝒪(ΠiMi
3 = M3) . Expression 

(34) also requires memory for storing the full matrix 
R ∈  ℂM×M and D ∈ ℂM×L′ .To facilitate feasible 
computation of the FIM (32), the positive definite 
covariance matrix R (31) can be expressed in terms of 
its eigenvalue decomposition as  

 
𝐑𝐑 =  𝐔𝐔𝐔𝐔𝐔𝐔H + 𝛔𝛔2IM = (𝐔𝐔R ⊗𝐔𝐔T ⊗𝐔𝐔f)(𝚲𝚲R ⊗𝚲𝚲T ⊗𝚲𝚲f +
𝛔𝛔2IM ). (𝐔𝐔R ⊗𝐔𝐔T ⊗𝐔𝐔f)H .            (36) 

 
The FIM can thus be expressed as can thus be 

expressed as  
 

𝐉𝐉 = 2ℜ{(𝐃𝐃R
′ ◊  𝐃𝐃T

′  ◊ 𝐃𝐃f
′)HΛ−1(𝐃𝐃R

′  ◊ 𝐃𝐃T
′ ◊  𝐃𝐃f

′)}          (37) 
 
Where 
 
𝐃𝐃i
′ = 𝐔𝐔i

H𝐃𝐃i , i ∈ {f, T, R}             (38) 
 
and 𝚲𝚲 = (𝚲𝚲R ⊗𝚲𝚲T ⊗𝚲𝚲f + 𝛔𝛔2IM  ).            (39) 

 
This form has computational complexity 𝒪𝒪(L′2ΠiMi), 

and it requires storing the full matrix D (33). Let us 
reshape the diagonal elements of 𝚲𝚲−1  in (38) into a 
tensor ℒ ∈  ℂMf ×MT ×MR  as  

 
ℒ = reshape(diag(𝚲𝚲−1), {𝐌𝐌f ,𝐌𝐌T,𝐌𝐌R}).           (40) 

 
This tensor is, in general, of full rank. One feasible 

solution for computing the FIM (36) is then given by  
 

𝐉𝐉0 =
2ℜ�∑ �𝐝𝐝fm f

′H 𝐝𝐝fm f

′ ⊙Mf
mf =1

∑ �𝐝𝐝Tm T

′H 𝐝𝐝Tm T

′ ∑ �lmf ,mT ,mR .𝐝𝐝Rm R

′H 𝐝𝐝Rm R

′ �MR
mR =1 �MT

mT =1 ��,       (41) 
 
wheredim i

′ , i ∈ {f, T, R}, denotes the mi
th  row of matrix Di

′  
in (37). Expression (40) is exact and does not require 
storing the full matrix D in (33), but has the same 
computational complexity 
 
𝒪𝒪(L′2 ∏ Mii )               (42) 
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as in (37). 

2. PARATREE model for solving the FIM 
The PARATREE model can be applied to reduce the 

computational complexity of (41). The tensor ℒ in (40) 
is decomposed into a PARATREE model with a single 
matrix of basis vectors Lf ∈  ℝMf ×Rf  for the f-mode, and 
Rf  matrices Lrf

T ∈  ℝMT ×RT  and Lrf
R ∈  ℝMR ×RT  for the T-

modes and R-modes. Then a PARATREE 
approximation JPT  for the FIM can be expressed as  

 
𝐉𝐉PT = 2ℜ�∑ �(𝐃𝐃f

′H𝚲𝚲rf
(f)𝐃𝐃f

′) ⊙∑ [(𝐃𝐃T
′H𝚲𝚲rf ,rT

(T) 𝐃𝐃T
′ ) ⊙RT

rT
Rf
(rf =1) 

 (𝐃𝐃R
′H diag𝚲𝚲rf ,rT

(R) 𝐃𝐃R
′ )]��,             (43) 

 
where 𝚲𝚲rf ,rT

R = diag(�𝐋𝐋rf
R �

rT
)  denotes a diagonal matrix 

formed from the rT
th  column of Lrf

R  etc. this solution has 
computational complexity 
 
𝒪𝒪(L′2 . 2Rf(Mf + RT(MT + MR))).             (44) 

 
In practice Rf ≪ Mf and RT ≪ MT , see [36], which 

provides a significant reduction in computational 
complexity compared to (42).Similar to (43), an 
expression for evaluating the FIM using PARAFAC is 
given by  

 
𝐉𝐉PF =
2ℜ�∑ �(𝐃𝐃f

′H𝚲𝚲r
(f)𝐃𝐃f

′) ⊙ (𝐃𝐃T
′H𝚲𝚲r

(T)𝐃𝐃T
′ ) ⊙ (𝐃𝐃R

′H𝚲𝚲r
(R)𝐃𝐃R

′ )�Rf  
rf

�, 
                                                         (45) 
 
which has computational complexity in the order of  
 
𝒪𝒪�L′2 . 2R(MT + MR + Mf)�.              (46) 

 
Furthermore, a computational strategy for evaluating 

the FIM using HOSVD is given by 
 

𝐉𝐉HO = 2ℜ�∑ �(𝐃𝐃f
′H𝚲𝚲rf

(f)𝐃𝐃f
′) ⊙∑ �(𝐃𝐃T

′H𝚲𝚲rT

(T)𝐃𝐃T
′ ) ⊙RT

rT
Rf
rf

∑ [srf ,rT ,rR .RR
rR

 (𝐃𝐃R
′H𝚲𝚲rR

(R)𝐃𝐃R
′ )]���,              (47) 

 
where 𝑠𝑠𝑟𝑟𝑓𝑓 ,𝑟𝑟𝑇𝑇 ,𝑟𝑟𝑅𝑅  denotes an element of the core tensor. In 
(47) only the terms corresponding to a nonzero core 
tensor value need to be evaluated. Hence, the 
computational complexity of (47) is given by  
 
𝒪𝒪�L′2 . 2(RfMf + ∑ [Rrf

T MT +  MR .∑ Rrf ,rT
R

rT ]rf )�,            (48) 
 
where numerical value is again based on the 
decomposition yielding. It should be mentioned that 
further reduction in computational complexity using 
HOSVD could be achieved, at the cost of very high 
memory consumption, if all the terms 𝐷𝐷𝑖𝑖′

𝐻𝐻𝛬𝛬𝑟𝑟𝑖𝑖
(𝑖𝑖)𝐷𝐷𝑖𝑖′  would 

be stored while computed for the first time. However, 
with the current system dimensions in Algorithm 3 (and 
also considering that a much higher value for 𝐿𝐿′ is 
possible), the memory requirements for such strategy 

become prohibitive. Given the proposed approaches to 
approximate the FIM using PARATREE (43), 
PARAFAC (45) and HOSVD (47), the 
PARATREE/SUSVD provides the best performance in 
terms of computational complexity. 

D. D. Noise Suppression of Multidimensional Radio 
Channel Measurements 

Another novel application to utilize the 
PARATREE/SUSVD is noise suppression for MIMO 
channel sounding measurement data [37], [38]. These 
data are often directly used, e.g., in link-level 
simulations of a wireless communication system (as 
opposed to drawing channel realizations based on 
measurement-based parametric modeling [39]). The 
tensor decomposition based filtering is very useful for 
enhancing the SNR (Signal-to-Noise Ratio) of the 
measured channel data to be used in the simulator. This 
allows a wider range of noise power (or other interfering 
signals) to be defined within the simulation. For 
convenience, the time index k in (30) is dropped and a 
single snapshot ℋ of a channel sounding measurement 
isconsidered. The nominal SNR of the measurement is 
definedas 

 
SdB (ℋ) = 10. log10

PH−PN

PN
,               (49) 

 
where PH = ‖ℋ‖F

2  is the total power in the 
measurement,and PN = ‖ℋN‖F

2 is the power of the 
measurement noise.These quantities are assumed to be 
known, which is a validassumption in channel sounding 
(the noise power 𝑃𝑃𝑁𝑁 may be assessed, e.g., by sampling 
while 𝑇𝑇𝑋𝑋  is off or by estimating it from excess delay 
samples). The suppression of themeasurement noise is 
achieved by the following procedure: 

Algorithm 3 
1. Compute the SUSVD of ℋ, as described above 

algorithm in section. 
2. Define a threshold 𝜖𝜖𝑟𝑟  (21) for selecting the 

factors, i.e., the signal subspace, for the 
approximation.  

. Here ϵr =  �PN
PH

 is chosen, i.e., only the factors 

whose cumulative power exceeds the noise 
power are included in the decomposition.  

3. Approximate ℋ by ℋ𝐴𝐴 , with the procedure 
described in Table II. 

This filter can be equivalently expressed using a 
projector matrix to the signal subspace [37] defined as 

 
∏  A = �𝐔𝐔A

(R) ◊  𝐔𝐔A
(T) ◊  𝐔𝐔A

(f)� �𝐔𝐔A
(R) ◊  𝐔𝐔A

(T) ◊  𝐔𝐔A
(f)�

H
,       (50) 

 
where the matrices UA

i ∈ ℂMi ×RA  contain all the RA  (23) 
factor combinations expanded in PARAFAC fashion 
(redundancy in columns possible). The filtered channel 
estimate is then given by 
 
vec(ℋA ) =  ∏  𝐀𝐀 vec(ℋ )              (51) 
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This method effectively suppresses the measurement 
noise. It will also be shown that the approximation is 
beneficial in terms of data compression.  

 

IV  CONCLUSION 

This paper reviews sequential unfolding SVD 
(SUSVD) a novel orthogonal, non-iterative tensor 
decomposition technique, which is scalable to arbitrary 
high dimensional tensors. The SUSVD provides a tensor 
model with hierarchical tree structure between the 
factors in different dimensions. The new model, named 
as PARATREE, is related to the family of PARAFAC 
tensor models. Links between PARATREE and other 
existing models are enlightened in the paper as well. 
The PARATREE model can be used for flexible low 
rank tensor approximation with precisely defined 
approximation error level through deflation of the 
orthogonal rank-1 components. The low rank 
PARATREE approximation can be used for reducing 
the computational complexity in high dimensional 
problems, measurement noise suppression, data 
compression, as well as providing insight on structures 
and dependencies in the data. Whereas similar strategy 
is obtainable forTucker3 based HOSVD, the 
PARATREE clearly outperforms HOSVD (as well as 
PARAFAC) in terms of computational complexity while 
solving the Fisher Information matrix in a given 
application example. This is due to rich structure of the 
basis vectors resulting from the SUSVD, yielding more 
precise approximation with smaller tensor rank. Another 
novel application example involves noise suppression 
for tensor valued MIMO channel sounding 
measurements. The results for this application also 
indicate the superiority of PARATREE over HOSVD. 
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Nomenclatures 
List of Symbols  List of Abbreviations 

A,B,.. Matrix FIM Fisher Information Matrix 
𝓐𝓐,𝓒𝓒, .. Higher Order Tensor MIMO Multiple-Input Multiple-Output 
𝛐𝛐 Outer Product ALS Alternative Least Squares  
◊    Khatri-RaoProduct(Column-wise product) SVD Singular Value Decomposition 
⊗ Kronecker Product EVD Eigen Value Decomposition 
⊙ Schur-Hadamard (element wise) Product  HOSVD Higher Order SVD 
×𝐧𝐧 n-mode multiplication CANDECOMP Canonical Decomposition 
ℂ Set of Complex Numbers PARAFAC Parallel Factorization 

a, b,... Vectors PARATREE Tree Structured Tensor Model 
a, b,.. Scalars Rx Radio Receiver 
𝐀𝐀∗ Complex Conjugate of A Tx Radio Transmitter  

𝕽𝕽{𝐀𝐀} Real part of A PADP Power-Angular-Delay-Profile 
Diag{A} Vector of the diagonal elements of A DCM Dense Multipath Component 
Vec(A) Stacks all the elements of A into a vector M Total number of samples in an observation 
𝐀𝐀𝐧𝐧 Matrix of nth mode basis vectors R Number of factors in a tensor decomposition 
H MIMO channel matrix t Time 
𝓗𝓗 MIMO channel tensor 𝛬𝛬 Diagonal matrix of eigenvalues  
P Number of propagation paths. 𝝈𝝈 Singular value 
𝛕𝛕 Time delay of arrival γ Vector of all complex path weights 

𝛗𝛗𝐓𝐓/𝐑𝐑 Azimuth angle of departure/arrival at Tx/Rx x Vector of transmitted signal 
𝛝𝛝𝐓𝐓/𝐑𝐑 Elevation angle of departure/arrival at Tx/Rx y Vector of received/measured signal 

𝐛𝐛(𝛗𝛗,𝛝𝛝) Steering vector 𝒯𝒯 Auxiliary tensor in SUSVD 
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