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Abstract —  Scaling behavior is an indicator of the lack 
of characteristic time scale, and the existence of long-
range correlations related to physiological constancy 
preservation. To investigate the fluctuations of the sleep 
electroencephalogram (EEG) over various time scales 
during different sleep stages detrended fluctuation 
analysis (DFA) is studied. The sleep EEG signals for 
analysis were obtained from the Sleep-EDF Database 
available online at  the PhysioBank. The DFA 
computations were performed in different sleep stages. 
The scaling behavior of these time series was 
investigated with detrended fluctuation analysis 
(window size: 50 to 500). The results show that the 
mean values of scaling exponents were lower in  subjects 
during stage 4 and standard deviation of scaling 
exponents of stage 4 was larger than that of the other 
stages. In contrast, the mean value of scaling exponents 
of stage 2 was larger, while a small variat ion of scaling 
exponent is observed at this stage. Therefore, DFA has a 
more stable behavior in stage 2, whereas the random 
variability and unpredictable behavior of DFA can be 
observed in the stage 4. In conclusion, scaling exponent 
indices are efficacious in quantifying EEG signals in 
different sleep stages. 
 
Index Terms — Detrended Fluctuation Analysis, 
Electroencephalogram, Nonlinear Behavior, Scaling 
exponents, Sleep Stages. 
 

I. 0BINTRODUCTION  

Specific transient fluctuations in the signals are 
integrated into the definitions of the stages. 
Understanding the sleep stage distributions permits 

normal and pathological sleep to be differentiated [1]. 
By applying features of brain  wave, eye movements, 
and muscle tone, sleep  stages are generally 
distinguished [2]. electroencephalogram (EEG) signal is 
one of the most important discriminator between 
wakefulness and sleep, and between various sleep stages 
[3]. 

The main states of vigilance consists of wakefu lness, 
rapid eye movement (REM) sleep and nonREM sleep. 
NonREM sleep is further comprised four stages from 
the lightest Stage 1 to the deepest Stage 4 [4]. The 
occurrence of sleep stages varies during the night - in 
the early hours of sleep  slow wave sleep dominates, 
while REM sleep commonly arises in the second part of 
sleep. In fact, low voltage (10 − 30μV) and mixed 
frequency EEG can be observed during wakefulness. 
Stage 1 (drowsiness) is described by low voltage, mixed 
frequency EEG with the highest amplitude in the range 
of 2-7 Hz and their amplitude can extent  to the value of 
about 200 μV. In addition, in this stage eyes move very 
slowly. Sleep 2 stage is the light sleep state in which the 
eye movement is stopped and the brain waves are 
become slower. Stage 2 is described by wave patterns 
sleep spindles and K complexes and the absence of slow 
waves. K complex is a  sharp negative wave fo llowed by 
a slower positive one. Sleep spindles happen in 12-14 
Hz frequency range. The minimum duration of these 
patterns is about 0.5 s. In  stage 3 (deep sleep), ext remely 
slow brain waves called delta waves begin to appear, 
combined with smaller, faster waves. In this case, the 
frequency range of EEG s ignal is about 1-3 Hz, while its 
amplitude is high. By stage 4 (deep sleep, slow wave 
sleep), delta waves are appeared in the brain activity. 
During stages 3 and 4, which are called deep sleep, it is 
very difficult to wake someone up. In stage 4, the EEG 
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amplitude is high, but its frequency range is about less 
than 2 Hz. Subjects have rapid eyes movement along 
with the occasional muscular twitches in sleep 5 (REM) 
stage. In addit ion, theta wave is more predominant in 
this sleep stage. 

It has shown that the physiological systems like brain  
have nonlinear behavior in health [5]. Therefore, several 
nonlinear indexes of EEG t ime series have been studied 
in healthy subjects, in various mental and physical states 
and in different pathologies [6-9]. 

The scalp EEG arises from a large number of neurons 
which have nonlinear interactions [10];  therefore, they 
can generate fluctuations that are not best described by 
linear approaches [11]. The human brain is a complex 
nonlinear system [12]. Some nonlinear method such as 
correlation  dimension and Lyapunov exponents are very 
sensitive to noise and the stationary condition is needed, 
while EEG s ignals have a high non-stationary behavior 
[13]. 

Detrended fluctuation analysis (DFA) is one of 
nonlinear methods, which is widely used in b io-signal 
analysis owing to its robustness and capability to 
recognize nonlinear time series, and also avoids the 
spurious detection of apparent long-range correlations 
that are an artifact of non-stationary. In addition, it is a 
scaling analysis method providing a simple quantitative 
parameter (scaling exponent) to represent the long-range 
correlation properties of a signal [14].  

A pioneer work done by Peng et  al. [15] proposed the 
concept of DFA while examin ing a series of DNA 
nucleotides. It has subsequently been used in various 
fields especially in medical and physiological time 
series such as cardiac dynamics [16], breathing [17], 
blood pressure [18], nerve spike intervals [19], human 
gait [20], g lucose levels [21], and EEG t ime series [22]. 

The reliab le evaluation of polysomnographic 
recordings (PSG) is an essential precondition for good 
clin ical practice in sleep medicine. Therefore, many 
publications can be found in the literature on automat ic 
sleep/wake stages analysis. Zoubek et al. [23] applied 
frequency and time domain features on sleep EEG. Ferri 
et al [24] characterized the different levels of EEG 
synchronization during sleep (in  the 0.25–2.5 Hz band) 
by means of the synchronization likelihood (SL) 
algorithm and analyzed its long-range temporal 
correlations. In another study [6], the sleep  EEG 
analysis is carried out using non-linear parameters such 
as correlation dimension, fractal dimension, largest 
Lyapunov, entropy, approximate entropy, Hurst 
exponent, phase space plot and recurrence plots. 
Employing recurrence analysis, Carrubba et al [25] 
developed a method for capturing and quantifying the 
dynamical states of the brain  during sleep. Recently, 
Brignol et al [26] proposed a new phase space-based 
(main ly based on Poincaré plot) algorithm for automat ic 
classification of sleep–wake states in humans using 
short-time EEG data. 

This study is concerned with quantifying dynamic 
properties of human sleep EEG in terms of power laws. 
Therefore, to investigate the fluctuations of the sleep 

EEG over various time scales during different sleep 
stages DFA is studied.      

The outline of this study is as follows. In the next 
section, we briefly describe the set of EEG t ime series 
used in our study. Then, the computation of the DFA 
and scaling exponent is exp lained. Finally, the results of 
the present study are shown and the study is concluded. 

 

II. BACKGROUND  

A.  Data selection 
The EEG data for analysis were obtained from the 

Sleep-EDF Database available from the Physionet 
databank [27]. This is a collection of sleep recordings 
from 8 healthy individuals. Each record ing consist of 
two EEG signals, electrooculogram (EOG), and an event 
marker, and is accompanied by a manually-scored 
hypnogram. Four recordings also include sub-mental 
electromyogram (EMG), and the other four recordings 
also include the sub-mental EMG envelope, oro-nasal 
airflow, and body temperature. The recordings were 
obtained from Caucasian males and females (21—35 
years old) without any medication. The recordings were 
taken for 24 hours from eight subjects. Sleep EEG for 
80 hours is extracted from the recordings and sampled at 
100 Hz. The sleep stages are scored according to 
Rechtschaffen and Kales based on Fpz-Cz/Pz-Oz EEG 
[28]. In this study, EEG signals of these two channels of 
7 subjects were analyzed. 

B. Detrended fluctuation analysis 
The method of detrended fluctuation analysis has 

proven useful in revealing the extent of long-range 
correlations in time series. Briefly, in order to analyze 
the time series (with N samples), it is integrated at first. 
Next, the integrated time series is divided into boxes of 
equal length, n. In each box of length n, a least squares 
line is fit to the data (representing the trend in  that box). 
The y coordinate of the straight line segments is denoted 
by yn(k).  

Next, the integrated time series, y(k), is detrend by 
subtracting the local trend, yn(k), in each box. The root-
mean-square fluctuation of this integrated and detrended 
time series is calculated by: 
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This calculation is repeated over all time scales (box 

sizes) to describe the relat ionship between F(n), the 
average fluctuation, and the box size, n. Typically, F(n) 
will increase with box size. A  linear relat ionship on a 
log-log plot indicates the occurrence of power law 
(fractal) scaling. Under such conditions, the fluctuations 
can be characterized by a scaling exponent, the slope of 
the line relating log F(n) to log n. 

The study of the dependence of F(n) on the window 
size n, which ranges from 5 to 500 in this study, is the 
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essence of DFA. If it is a power-law behavior: 
 

αnnF ∝)(  (2) 

 
Then the scaling exponent α is an indicator of the 

nature of the fluctuations in EEG. It  may be v iewed  as a 
nonlinear index o f the complexity of the EEG signals 
[12,29]. 

The study of the dependence of F(n) on the window 
size n  is the essence of DFA. If there is a power-law 
behavior ( αnnF ∝)( ), α is an indicator of the nature of 
the fluctuations in the EEG. This exponent is 0.5 for 
uncorrelated white noise [29]. If α <0.5, the correlations 
in the signal are anti-persistent (i.e. an increment is very 
likely to be followed by a decrement, and vice versa), 
while if α >0.5 the correlations in the signal are 
persistent (i.e., an increment is very likely to be 
followed by an increment, and vice versa) [30]. The 
exponents estimated by DFA lie between 0 and 2. 

If there are only short-term correlations, the init ial 
slope may  be different from 0.5, but α will approach 0.5 
for large window sizes. If α is greater than 0.5 and less 
than (or equal to) 1, it indicates the persistent long-range 
power-law correlations. In  contrast, 0 < α  <0.5 indicates 
a different type of power law correlation such that large 
and small values of the time series are more likely to 
alternates [30]. A special case of α = 1corresponds to 1/f 
noise [31,32]. For α ≥ 1, correlations exist but cease to 
be of a power-law fo rm; α = 1.5 indicates Brown noise, 
the integration of white noise. The α exponent can also 
be viewed as an indicator that describes the roughness of 
the original t ime series: the larger the value of α, the 
smoother the time series. In this context, 1/f no ise can be 
interpreted as a compromise between the complete 
unpredictability of white noise (very  rough landscape) 
and the very smooth landscape of Brownian noise 
[33,34].  

C. Statistical analysis  
In this study, the Wilcoxon of the null hypothesis that 

the data in the vector x and y are independent samples 
from identical continuous distributions with  equal 
medians, against the alternative that they do not have 
equal medians. The result of the test is returned in p-
value. P-value→0 ind icates a rejection of the null 
hypothesis at the 5% significance level (p<0.05). P-
value→1 indicates a failure to reject the null hypothesis 
at the 5% significance level. 
 

III. RESULTS 

Two channels of EEG recordings (Fpz-Cz/Pz-Oz) and 
the hypnogram scoring are shown in Figure 1.  

In DFA calculation, the window size varied from 50 
to 500, and a linear regression was made. All the 
computations were performed using MATLAB. 

Figure 2 depicts the typical DFA computation results 
of each sleep stage and in wakefulness in one subject.  

For quantifying  these trends, scaling exponent, the 

slope of the line relat ing F(n) to n is calcu lated. Plot of 
means and standard deviations of scaling exponents for 
each sleep, REM and waken stage are presented in 
Figure 3. The DFA of EEG signals were computed, and 
scaling exponents were obtained as shown in Table I. 

 

 
Figure 1.  EEG recordings (Fpz-Cz / Pz-Oz channels) and 

hypnogram scoring. 
 
As shown in Table I, DFA approach has shown 

significant deviations during different sleep stages from 
the normal range of scaling exponents. Therefore, these 
differences might be an indicator of dysfunction in the 
dynamics of related neuronal networks.  

 

IV. DISCUSSION 

The scaling behavior of EEG t ime series in d ifferent 
sleep stages and in wakefu lness was analyzed using 
DFA. Using this approach, it was shown that the scaling 
exponents cannot be considered as constant over these 
stages. In other words, the Wilcoxon test disclosed 
significant differences between different sleep stages 
and the wakefulness range of scaling exponents. These 
scaling properties were found in both channels for all 
subjects. 

DFA is one of the most frequently used techniques to 
analyze long-range correlations in various bio-signals, 
specially the EEG signals. It has been used to study the 
dissimilarit ies between the scaling behavior of EEG 
signals in sleep apnea and control subjects [35]. It has 
shown that the scaling exponents of EEG signals during 
apnea were lower than that of the healthy subject for all 
the stages. 

To study the fluctuations of the sleep EEG over 
various time scales during major depressive episodes, 
scaling behavior is considered by means of DFA [36]. It 
has shown that Major depressive episodes are 
characterized by a modification in the correlation 
structure of the sleep EEG time series. The authors 
claimed that the observed modifications in scaling 
behavior in acutely depressed patients could be an 
explanation of the sleep fragmentation and instability 
found during major depressive episodes. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

 
Figure 2.  F(n) vs. (n) for each sleep, REM and waken stage representation. (a) Wake, (b) Stage 1, (c) Stage 2, (d) Stage 3, (e) 

Stage 4, (f) REM. 
 

 

By applying DFA to the synchronizations between the 
high frequency component of heart rate variability and 
all sleep power bands, Dumont et al [37] stated that the 

interdependence and the scaling exponent are not 
modified in patients suffering from Sleep Apnea–
Hypopnea Syndrome (SAHS) as compared to controls.
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In this art icle, using scaling exponents, some 
interesting results can be achieved: 1) For different sleep 
stages,  not only the mean value of scaling exponent was 
different, but also different sleep stages led to dissimilar 
EEG activ ity patterns in different regions of brain (Fpz-
Cz and Pz-Oz Channels); 2) Compared with the 
wakefulness,  the mean value of scaling exponent of  
stage 4 was smaller, while the mean value of scaling 
exponent of  stage 2 was larger; 3) Standard deviation of 
scaling exponent did not have similar trend. In fact, 
Standard deviation of scaling exponents of stage 4 was 
larger than that of others, while this value had a small 
variation in REM, stage 1 and stage 2. Therefore, one 
can conclude that DFA has a more stable behavior in 
stage 2, whereas the random variability and 
unpredictable behavior of DFA can be observed in the 
stage 4.  

Some limitations of our study merit consideration. 
First of all, fractal scaling behavior identified from the 
EEG in  our study is only reported within  one scaling 
regions, whereas it  can be characterized  accurately by 
the slopes in two  reg ions in which the first region 
corresponds to small window size and the second one 
corresponds to larger window size. Next, the result of 
this study is performed in two channels of EEG signals. 
For examin ing the effect of different sleep stages on 
brain behavior, this method could be extended on 
various electrode positions of the scalp. Finally, 
although our results show that the DFA was 
significantly different in various sleep stages, further 
studies with a larger sample size are required to prove 
the usefulness of this methodology. 
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(b) 

Figure 3.  The mean and standard deviation of the scaling exponents in (a) Fpz – Cz channel and in (b) Pz – Oz 
 

 
TABLE I: SCALING EXPONENTS (Α – VALUES) OF EEG SIGNALS (IN TWO CHANNELS: FPZ – CZ AND PZ – OZ) FOR 

DIFFERENT STAGES OF SLEEP. 
Pz-Oz Fpz-Cz  

R 4 3 2 1 W R 4 3 2 1 W Record Number 
1.0153 0.9928 0.8800         0.8783     0.7383     1.2914     0.9885 1.0050     0.9032     0.9690     0.8516     1.0723     sc4002e0 
0.8651 - 0.7589           0.9346     0.8143     0.8797     1.0410 -    1.0097        1.0752     0.9365     1.0510     sc4012e0 
0.8962 - 0.8225     0.9276     0.9073     0.9648     0.9999 - 0.9983     1.0160     0.9767     1.0114     sc4102e0 
0.7078 0.5494     0.6342     0.7404     0.6207     0.7265     0.8585 0.5923     0.7768     0.7904     0.7327     0.8595     sc4112e0 
0.9230 0.8276     0.7780     0.8118     0.8480     0.9111     1.3148 1.3369     1.1966     1.2291     0.9849     0.8456     st7022j0 
- 1.8441        1.9007     1.7483     1.3999     1.4913     - 1.5623        1.8154     1.6371     1.2116     1.3914     st7052j0 
1.3057 0.8937     1.3311     1.6164     1.1830     1.2396     1.3060 0.8666     1.4635     1.4199     1.2739     1.0757     st7121j0 
            p-value < 0.05 

Note: The sleep stages Wake, stage1, stage2, stage3, stage4, REM are abbreviated by W, 1, 2, 3, 4, R. 
 

Authors’ Profiles 

Ateke Goshvarpour, Obtained a Masters in Biomedical 
Engineering from Islamic Azad University, Mashhad 
Branch, Iran  in  2010. She is a  Ph.D. student at Sahand 
University of Technology, Tabriz, Iran. Her research 
interests include biomedical signal processing, 
mathematical modeling, nonlinear analysis and neural 
networks. 
 
Ataollah Abbasi, received the B.Sc. degree in 
biomedical engineering from Sahand university, Tabriz, 
Iran in 2003, the M.Sc. degree in b iomedical 
engineering from Sharif university of technology, 
Tehran, Iran in 2005, and the Ph.D. degree in 
biomedical engineering from Sharif university of 
technology, Tehran, Iran in 2010. Since 2010, he has 
been a faculty member at Sahand university of 
technology in Tabriz, Iran, and serving as chair of 
Sahand university of technology Electronic Learning 
Center from 2010 to present. Currently he is an assistant 
professor of b iomedical engineering at SUT and head of 
Computational Neuroscience Laboratory (CNLab). 
His research interests are Neuroscience (b iomedical 
Signal processing and Modeling of neurological 
disorders), Cognitive Science, Functional Electrical 
Stimulation (FES), Brain Computer Interface (BCI), and 
Medical Instrumentation.  
 

Atefeh Goshvarpour, Obtained a Masters in 
Biomedical Engineering from Islamic Azad  University, 
Mashhad Branch, Iran in  2010. She is a Ph.D. student at 
Sahand University of Technology, Tabriz, Iran.  Her 
research interests include biomedical signal processing, 
mathematical modeling, nonlinear analysis and neural 
networks. 


	I. INTRODUCTION 
	II. BACKGROUND 
	A.  Data selection
	B. Detrended fluctuation analysis
	C. Statistical analysis 

	III. RESULTS
	IV. DISCUSSION
	REFERENCES


