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Abstract — In present paper the effect of noise and error 

occurring due to noise in fractal dimension of digital 

images has been analyzed. For this purpose, three digital 

images have been used which are added by Gaussian 

noise, salt and pepper noise and speckle noise. The 

fractal dimension of both noisy and non-noisy images 

has been estimated and corresponding error is reported 

in terms of RMSE. The study shows that noise affects 

the fractal dimension and there is an increase in fractal 

dimension due to noise. The average percentage error in 

fractal dimension has been estimated and reported as an 

offset for finding actual fractal dimension from noisy 

images. 

 
Index Terms —Error analysis, fractal dimension, local 

fractal dimension, moving window, noisy images, noise 

models 

 

I. INTRODUCTION  

Fractal geometry has widely been used in digital 
image analysis for image classification, texture 

identification, object recognition, image segmentation, 

roughness measurement and various other applications. 

Study of texture is an important task using fractals [1], 

where texture is analysed and mapped on the basis of 

fractal features. Although measurement of texture is not 

an easy process, it could be studied using various 

parameters. In terms of fractals, the images might be 

modeled with fractals and then the fractal feature 

extracted could be used to explain the textural properties 

of the images. In this direction Pentland [1] modeled the 

images with the help of fractal geometry and showed 

that the textural properties follow the fractal behavior in 

digital images. Various image objects are studied on the 

basis of their size, shape, shade, tone, texture and other 

features. These features may be extracted statistically by 

studying the geometry of various image objects. The 

conventional geometry, i.e., Euclidean geometry deals 
with simple structures, e.g., lines, curves, circles, 

spheres, rectangles and other shapes while the objects 

experienced in practice are not simple. Since natural 

objects are so complex that ordinary geometry is not 

able to represent them accurately, a new kind of 

geometry was required to model them. Mandelbrot [2], 

discovered the fractal geometry and reported various 

applications of fractals in different fields of natural 

science. 

In image analysis, fractal geometry became so famous 

that after its discovery it immediately took a big space. 

Texture analysis is another field where fractals became 

popular [3], [4], [5], [6], [7]. Since texture is estimated 

for a local neighborhood of pixels, the fractal features 

could easily be identified from it as fractal features are 

also estimated for the pixel neighborhood instead of 

individual pixel [5]. Other applications of fractals 

include face recognition, object detection and tracking 

in moving images and many more in digital image and 
video processing [8]. Further, beyond digital images, 

fractal based study is also in practice in remote sensing 

imagery and medical imaging systems [3]. In remote 

sensing, fractals are primarily used in analysis, 

classification, segmentation, feature extraction and 

many other applications. The main reason behind this 

popularity is the analogy of remotely sensed objects 

with the fractal objects [3]. Similarly, in medical 

imaging system, many image objects could easily be 

identified with the help of fractal geometry [5], [8]. 

Fractal geometry deals with specific objects called 

fractals. A fractal is defined to be an object having two 

properties, viz., self-similarity and fractal dimension [1], 

[2], [3]. Self-similarity means the object under 

consideration is exactly similar to original object when 

scaled down or scaled up to any level. The other 

property, i.e., fractal dimension is defined as a self-

similar dimension denoted by D and given by 
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where Nr is the number of self-similar objects when the 

object is scaled down by ratio r, which may be any real 

number. This definition of fractal dimension is the 

simplest one, although various other definitions also 

exist. The self-similar dimension is very common, near 

to the self-similarity property and very easy to estimate 

for the practical point of view. These features justify the 

use of self-similarity dimension for estimation of fractal 

dimension of digital images. 

In most cases, estimation of fractal features from 

digital images is application dependent and requires a 

keen attention [8], [9]. Fractal features include fractal 

dimension, self-similarity, scaling behavior, lacunarity 

and other features however fractal dimension is of 

primary interest. The fractal dimension of digital images 
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is estimated by considering the image pixels with the 

pixel values oriented in 3D space. In most methods, the 

value of Nr is estimated as number of self-similar 

objects in which pixels are oriented in a similar pattern. 

This pattern is needed to be estimated efficiently and 

hence various methods evolved [3], [4], [8]. The 

methods seek for distribution of pixels in a predefined 

space and basically differ in the way how the pixels’ 

distribution is measured. Here the notion of statistical 

self-similarity comes which says that digital images in 

which pixel values are digitized do not follow a strict 

self-similar behaviour, however they follow statistical 

self-similar property. Thus, the statistical properties of 
the images are studied for finding features of the digital 

images. 

Since fractal dimension estimation methods deal with 

the distribution of pixels in local context, their statistical 

distribution matters for the study and noise plays a big 

role in this case. Noise alters the pixel values and thus it 

affects the fractal properties, i.e., fractal dimension 

value. Therefore, there is a strong requirement to 

explore the effect of noise in digital images while 

estimating their fractal dimension. Since fractal 

dimension can be estimated on a global basis or a local 

basis, the details are discussed in section III, 

corresponding effect of noise on both needs necessary 

investigation. The global or local fractal dimension is 

also application dependent and useful for various 

analyses, noise may play significant role in these 

specified applications. Noise affects the image at both 

global and local level and its effect may be interesting to 
test. In case of textural images, the effect of noise is 

local since the area of interest becomes local, however 

for non-textural images; the whole image becomes the 

area of interest. In such a case noise removal techniques 

are efficient which in fact work locally but affect 

globally. Once noise is removed, the images could be 

used for further processing. This strategy, i.e., noise 

removal could erase the fine details and hence the image 

texture [14]. Therefore noise removal cannot be applied 

as such when the image is subjected to textural analysis. 

Thus, the context global and local is significant at 

different places which as a consequence led to study the 

effect of noise at global and local level. 

The paper has been organized in following sections: 

in Section II, noise models for digital images have been 

described briefly. In Section III, the fractal dimension 

estimation methods for digital images are explored 
among which triangular prism surface area method has 

been described in brief. Section IV covers the details of 

data set used in the study and Section V describes the 

methodology of present approach. Section VI describes 

the results and discussions and finally the study is 

concluded in section VII. 

 

II. NOISE MODELS FOR DIGITAL IMAGES 

Noise may be defined as unwanted image components 

which are inherently present in images. Since noise is an 

inevitable part of images occurring due to various 

reasons, it cannot be ignored in image processing and 

analysis and therefore it is to be dealt efficiently [10]. 

One way to deal with the noise is its removal and the 

other to study its consequence without removing it. The 

general noise removal tools are smoothing, averaging 

and other image filtering options [14]; however the 

other approach, i.e., study of the objects in presence of 

noise also makes sense. The extent of noise affects the 

image visibility and thus various image features. 

Therefore, the study of noise and its quality are equally 

challenging for noisy image analysis. The noise may 

occur due to natural reasons, e.g., haze, visibility or due 

to sensor properties, e.g., camera lens or due to image 
transmission or processing or any other reason [11], [14]. 

Consequently there are various types of noise models 

defined [11], however in present study only 3 models 

have been used, viz. Gaussian noise, salt and pepper 

noise and speckle noise. These are very common kind of 

noise models and used frequently in digital image 

analysis. 

A. Gaussian Noise 

Gaussian noise is the additive noise which is the most 

frequently occurring noise in digital images. Gaussian 

noise is a part of almost all the signals since it occurs 

naturally and defined by the probability density function 

(pdf) [12], [13], [14] 
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for any random variable z with mean μ and standard 

deviation σ. In present study, a zero mean distribution, 

i.e., μ=0 has been considered. 

B. Salt and Pepper Noise 

Salt and pepper noise is a kind of tailed noise which 

refers to various processes resulting a degraded image 

[15], [16]. It appears as sprinkling black and white dots 

in the image and hence given the name. It is also called 
impulse noise and defined by the pdf [13], [14] 
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where a and b are assumed to be minimum and 

maximum values of pixels, i.e., for gray level images 

a=0 and b=255 in general. When b>a, the gray level b 

appears as light dot and a appears as black dot in the 

image. 

C. Speckle Noise 

Speckle noise is a specific noise occurring in coherent 

light imaging which is signal dependent. It is a non-

Gaussian kind of noise and consequently becomes one 

of the complex noise models [17], [18], [19]. Since 

coherent light imaging is used in laser and radar imaging, 

speckle noise is an inherent property of radar images 

and thus it has a specified area of interest in noise 
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analysis. Contrary to the most common Gaussian noise, 

speckle noise is multiplicative in nature and given for 

any image I as Is=I+N×I where Is is speckled image N is 

uniform noise characterized by the pdf [13], [14], [20] 
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where a and b are real numbers and represent the 

bounds of data. The uniform distribution has been 

considered with a=0 and b=1 for present study. 

 

III. FRACTAL DIMENSION ESTIMATION USING 
TRIANGULAR PRISTM SURFACE AREA METHOD 

By definition, fractal dimension is independent of 

scale and for a small portion of a fractal; the value of 

fractal dimension is same as of the original object. This 
fact is theoretically valid however, practically the value 

of fractal dimension changes at local level for 

statistically self-similar objects. This fact leads to 

estimate the fractal dimension in a local context together 

with the global one. Thus the fractal dimension can be 

estimated in a global or local way where the global 

fractal dimension represents the fractal dimension of the 

whole images and represents the overall distribution of 

image pixels [4]. This value is useful when the whole 

image is used for analysis and in this case fractal 

dimension represents the fractal signature of the image 

and mostly used when image size is small. The local 

fractal dimension, on the other hand, represents various 

image features at local level and consequently the fractal 

signatures of individual objects could be identified using 

local fractal dimension [21], [22]. In order to estimate 

the local fractal dimension, a moving window approach 
is usually followed in which the fractal dimension is 

estimated for this defined window. This scheme works 

exactly as a moving mask is used in spatial image filters. 

The size of window is an important issue to be dealt 

with, since this window represents the local 

neighborhood of pixels which as a consequence 

corresponds to the image features of various objects [4]. 

On the basis of window dependency, the local fractal 

dimension (Dw) can be estimated as 
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where w represents the size of local window. The other 

notations are similar to those of equation (1). 
In order to estimate the fractal dimension, triangular 

prism surface area method (TPSAM) has been used in 

present study. This method was proposed by Clarke [3], 

[4], [9], [21], [23], [24]. In this method, the image pixels 

are considered as height columns in 3D space where the 

pixel values represent the column heights. These 

columns are used to generate an imaginary prism in 3D 

with four pixels at four corners and their average value 

in the center. Thus, four triangular prisms are generated 

in 3D space and the total surface area of the four 

triangles at upper level is estimated. The base surface 

area is estimated for this particular configuration and the 

process is repeated for various base resolutions, starting 

from 2×2 pixels. The 2×2 base gives a square of size 

1×1, where 1 represents the pixel distance. This base 

square with side as pixel distance is extended for the 

size 2×2, 4×4 and so on in multiple of 2. Thus, the base 

area varies as 1, 2, 4 and so on for which respective 

upper surface area is calculated. The corresponding 
upper surface area and base area is used to estimate the 

slope (s) of best fit line in a log-log plot and used to 

calculate fractal dimension D by the formula 

 

D = 2.0 − s                                         (6) 

 

Since total upper surface area decreases with an 

increase in base resolution, the value of s in above 

equation usually estimates to be negative and always be 

greater than −1. Thus the fractal dimension of surface is 

estimated between 2.0 and 3.0 [3], [4], [23]. The 

popularity of TPSAM can be seen through the fact that 
various researchers have used it for the study of fractal 

dimension from the day of its availability [3], [4], [9], 

[21], [24]. The method is a generalized one and can be 

used to estimate both global and local fractal dimension 

values. 

There are certain issues in estimation of fractal 

dimension for digital images like uniqueness of the 

value, estimation methods, error in estimation, window 

size selection and few others [3], [4]. The issue of 

uniqueness of the fractal dimension value is a major one. 

The fractal dimension of two or more fractals may be 

same despite of their different construction and 

orientation [4]. TPSAM covers all the image pixels 

equally if considered from different image 

configurations, i.e., if the image is rotated by 90° or in 

its multiples, same value of fractal dimension is 

obtained [21]. The other issue is related to the methods 
available for fractal dimension estimation. Since various 

methods are now available, there is no unique or unified 

way which could estimate the fractal dimension of 

digital images accurately [3], [4], [8], [21]. All the 

methods have respective benefits and they can be used 

according to the problem requirements, like complexity 

and faster estimation. TPSAM is again suitable in these 

both factors and hence popular [3], [21]. Another issue 

is the outbound values of fractal dimension [4], [21]. 

Since the digital images are discretized images, they do 

not estimate the slope in log-log plot accurately in few 

cases leading an outbound value of D, which may be 

less than 2.0 or greater than 3.0. The reason for the error 

in estimation of the slope is discrete values of image 

pixels. However, this fact does not affect the study too 

much [3], [4], [21]. The issue of window selection while 

local fractal dimension is under consideration needs 
attention. The description of window size selection and 
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its consequences could be found in [4]. The minimum 

suitable size of local window is 5×5 as described in [4] 

which has been followed in present study too. 

 

IV.   DATA SET USED 

The data set comprises of three standard digital 

images namely Cameraman, Lena and Peppers which 

are displayed in Fig. 1 (a), (b) and (c). The standard 

images are grayscale images with the size 256×256 

pixels. The gray values range from 0 to 255 in the 

images, thus the images are of 8-bit pixel depth. The 

single band grayscale images have been chosen 

intentionally since fractal dimension can be estimated 
for single band images only; however in multiband 

images, fractal dimension is needed to be estimated for 

each band individually. 

The images are added with noise in appropriate extent 

to generate noisy images. The parameter for Gaussian 

noise is variance which is chosen as 0.001 for noise 

generation. The parameter for salt and pepper noise, i.e., 

noise density is considered as 0.01. Similarly, the 

parameter for speckle noise, i.e., variance is chosen to 

be 0.005. These values of parameters for each noise are 

not arbitrary and considered after a careful selection. For 

this purpose, various values of noise parameters are 

considered and applied on original images and 

corresponding observations are made so that the noise 

effect is explicitly visible in the images. The noisy 

images generated from first image using Gaussian, salt 

and pepper noise and speckle noise are shown in Fig. 2 

(a), (b) and (c) respectively. Similarly, the noisy images 
corresponding to second and third image are shown in 

Fig. 3 and 4 (a)-(c) respectively. 

 

   

(a)   (b) 

 

(c) 

Figure 1. (a) Cameraman image, (b) Lena, (c) Peppers 

  

(a)   (b) 

 

(c) 

Figure 2. Noisy images of Cameraman with (a) Gaussian 

noise, (b) Salt and pepper noise and (c) Speckle noise 

 

  

(a)   (b) 

 

(c) 

Figure 3. Noisy images of Lena with (a) Gaussian noise, 
(b) Salt and pepper noise and (c) Speckle noise 
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(a)   (b) 

 

(c) 
Figure 4. Noisy images of Peppers with (a) Gaussian 

noise, (b) Salt and pepper noise and (c) Speckle noise 

 

V. METHODOLOGY 

The methodology of present work is straightforward. 

Since the input images are all grayscale images, they are 

used directly without any preprocessing for the 

estimation of fractal dimension. In first step, the value of 

global and local fractal dimension has been estimated 

for each image using TPSAM. The global fractal 

dimension representing the roughness of whole image is 

noted down for each image. This value is not much 

informative as far as the image roughness is concerned; 

however it is useful for error analysis and comparison 

purpose. 

In second step, local fractal dimension for window 

size 5×5 has been estimated for each of the images. 

When a moving window approach is used for estimation 

of fractal dimension, new images could be generated 

with these local fractal dimension values. These images 

drawn with local fractal dimension values are called 
fractal images. The fractal images are also generated in 

this step. 

In third step, using discussed noise models, noise is 

added to each image. Estimation of fractal dimension 

values is done in noisy image again in global and local 

way. The global values of fractal dimension for noisy 

images have been estimated and compared with those of 

non-noisy images and corresponding error is estimated. 

The local fractal dimension for noisy images for 

discussed window size is estimated and compared with 

that of non-noisy images. Corresponding error is also 

estimated for local fractal dimension. 

In the last step error analysis is done. The error has 

been estimated in terms of root mean square error 

(RMSE) and percentage error. The RMSE, as the name 

indicates is the square root of mean squared error which 

is obtained by finding the squared error. Here the error 

represents the difference of actual value and estimated 

value. In case of present experiment, the error represents 

the difference of fractal dimension of noisy and non-

noisy images which is obtained in previous step. The 

RMSE for global fractal dimension of noisy images has 

been estimated which is followed by the RMSE for local 

fractal dimension values. The percentage error for both 

global and local fractal dimension values has also been 

reported for each image. 

All the steps are summarized in the flow diagram 

shown in Fig. 5. As the last step indicates, an offset 
value based on percentage error has been sought as a 

conclusion, which is of major concern of the study. 

 

Input Image 

(Grayscale)

Noisy Image

Noise

Fractal Dimension 

Estimation

Global 

Value

Local 

Value

Error (noisy vs non-

noisy image)

RMSE

Percentage 

Error

Offset Value

 
Figure 5. The Methodology of Proposed Approach 

 

VI. RESULTS AND DISCUSSIONS 

The fractal images generated by local fractal 
dimension values are generated for each of the images 

and displayed. The fractal images corresponding to the 

images of Fig. 1 (a)-(c) are shown in Fig. 6 (a)-(c). The 

fractal images of noisy images, i.e., Fig. 2, 3 and 4 (a)-(c) 

are shown in Fig. 7, 8 and 9 (a)-(c) respectively. 
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(a)   (b) 

 

(c) 

Figure 6. Fractal images of Fig. 1 (a)-(c) generated with 
local window 5×5 

 

  

(a)   (b) 

 

(c) 

Figure 7. Fractal images of Fig. 2 (a)-(c) generated with local 

window 5×5 
 

 

 

  

(a)   (b) 

 

(c) 

Figure 8. Fractal images of Fig. 3 (a)-(c) generated with local 

window 5×5 
 

  

(a)   (b) 

 

(c) 

Figure 9. Fractal images of Fig. 4 (a)-(c) generated with local 

window 5×5 

 
A visual inspection of the images also draws the 

attention. It can be seen in fractal images that the objects 

which are intermixed with neighbouring pixels are not 

visible in fractal images. Similarly, the edges of objects 

which have different pixel values as of their 

neighbouring pixels are highlighted in the fractal images. 

Although, these edges are not very sharp as obtained by 

conventional edge detectors, they are useful to separate 



 Noise Error Analysis in Fractal Dimension Estimation of Digital Images 61 

Copyright © 2013 MECS                                                        I.J. Image, Graphics and Signal Processing, 2013, 8, 55-62 

various image objects from others. Another visual cue 

from the fractal images can be obtained for salt and 

pepper noise which is easy to identify in these images. 

Since salt and pepper noise creates the black and white 

dots in the images, these dots are clearly identifiable in 

fractal image. 

The global fractal dimension for all the three images 

along with noisy images is listed in table 1. 

Corresponding percentage error and the RMSE has also 

been mentioned in the table. The average value of local 

fractal dimension using window size 5×5 for each image 

is listed in table 2. Since local fractal dimension is not a 

single value for each image, the average value has been 
used and reported. The effect of noise can be seen from 

the tables 1 and 2. Table 1 represents the values of 

global fractal dimension for all the images along with 

corresponding percentage error values. For each image 

with noisy image, the error has been represented 

together with the RMSE. A similar kind of data has been 

represented in table 2 where the values are calculated for 

local fractal dimension. It can be observed from table 1 

and table 2 that the maximum value of RMSE is 0.03 for 

global value of fractal dimension whereas it is up to 0.14 

for average value of local fractal dimension values. 

Since RMSE is not very high, for global fractal 

dimension, it can be said that the noise affects very 

slightly the images as far as the global fractal dimension 

is concerned. The RMSE for average local value is 

higher so the effect of noise on local level is significant. 
 

TABLE 1. PERCENTAGE ERROR AND RMSE FOR GLOBAL 

VALUES OF FRACTAL DIMENSION 

Image Cameraman Lena Peppers 

D (Global) 2.28 2.29 2.24 

D (Gaussian) 2.31 2.32 2.27 

% Error 1.26 0.97 1.60 

D (Salt and Pepper) 2.29 2.30 2.26 

% Error 0.78 0.02 0.97 

D (Speckle) 2.30 2.32 2.28 

% Error 0.98 1.14 1.78 

RMSE 0.02 0.01 0.03 

 
TABLE 2. PERCENTAGE ERROR AND RMSE FOR LOCAL 

VALUES OF AVERAGE FRACTAL DIMENSION FOR WINDOW 

SIZE 5×5 

Image Cameraman Lena Peppers 

D (w=5×5) 2.24 2.25 2.26 

D (Gaussian) 2.42 2.38 2.36 

% Error 7.94 5.63 4.77 

D (Salt and Pepper) 2.31 2.31 2.31 

% Error 3.29 2.50 2.42 

D (Speckle) 2.38 2.38 2.36 

% Error 6.26 5.92 4.46 

RMSE 0.14 0.06 0.12 

 

The percentage error can be seen from table 1 and 

table 2. It is clear from the tabular data that in case of 

global value, the error is at most 1.78% which is for the 

image Peppers for speckle noise whereas it is 0.02 for 

Lena which is minimum. On an average, it is roughly 

1% for all the images displayed in table 1. Thus the 

percentage error is very low for global fractal dimension. 

On the other hand, the percentage error is relatively high 

for average local fractal dimension. It is up to 7.94% for 

the image Cameraman for Gaussian noise. The 

minimum value of error for average local fractal 

dimension is 2.42% which is for the image Peppers for 

salt and pepper noise. Again, from table 2, the average 

value of error is 4.8%, i.e., about 5%, which is not so 

high. 

These average values suggest that the error rate for 

global value of fractal dimension is about 1% whereas it 

is 5% for average local fractal dimension value. These 

values could be used as offset values for estimation of 

fractal dimension for noisy images. As a conclusion 

from table 1 and 2, it could be said that if fractal 

dimension is estimated for whole image, the noise 
effects the images by 1% on an average, i.e., if fractal 

dimension of noisy image is estimated, the actual value 

could be considered to be 1% lesser than the estimated. 

Similarly, it is about 5% less than that of estimated 

average local fractal dimension of noisy images. 

 

VII. CONCLUSION 

The present study dealt with the effect of noise in 

fractal dimension of digital images. The focus of the 

study was to analyse the error occurring due to the noise. 

It was observed that noise had a significant effect in 

fractal dimension of images. The noise changes the pixel 

values and hence the orientation of pixels when seen in 

a 3D space, i.e., the height of pixel columns gets altered. 

This causes a change in pixel distribution and hence the 

roughness of image surface. As a result the fractal 

dimension of the images changes due to this added noise. 

It is observed in the study that in general, the fractal 
dimension increased for noisy images as compared to 

non-noisy images. 

Since noise caused error in actual fractal dimension, it 

required a careful analysis so that the extent of its 

consequence could be traced. Once the error rate is at 

hand, the noisy images could directly be used for 

estimation of fractal dimension without any 

preprocessing for noise removal. The error is tested on 

the basis of RMSE for both global and local fractal 

dimension of the images under experiment. The study 

showed that on an average 1% and 5% error occurred in 

global and local fractal dimension when noise was 

added to the images. Thus an offset of 1% and 5% 

respectively could be set to find the value of actual 

global and local fractal dimension. The initial results are 

encouraging and the study requires more attention and 

further investigations to generalize the results. 
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