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Abstract— The purpose of speech emotion recognition 
system is to classify speaker's utterances into different 
emotional states such as disgust, boredom, sadness, 
neutral and happiness.   

Speech features that are commonly used in speech 
emotion recognition (SER) rely on global utterance level 
prosodic features. In our work, we evaluate the impact 
of frame-level feature extraction. The speech samples 
are from Berlin emot ional database and the features 
extracted from these utterances are energy, different 
variant of mel frequency cepstrum coefficients (MFCC), 
velocity and accelerat ion features. The idea is to explore 
the successful approach in the literature of speaker 
recognition GMM-UBM to handle with emotion 
identification tasks. In addition, we propose a 
classification scheme for the labeling of emotions on a 
continuous dimensional-based approach. 

Index Terms—speech emotion  recognition, valence, 
arousal, MFCC, GMM Supervector,  SVM 

 

I.  INTRODUCTION  

Speech emotion recognition (SER) is an ext remely  
challenging task in the domain of human-robot 
interfaces and affect ive computing and has various 
applications in call centers [1] , intelligent tutoring 
systems [2], spoken language research [3] and other 
research areas. The primary channels for robots to 
recognize human’s emotion include facial expressions, 
gesture and body posture. Among these indicators, the 
speech is considered as a rapid transfer of complex 
informat ion. This signal provides a strong interface for 
communicat ion with computers. Many kind of acoustic 
features have been explored to build the emotion models 
[4].  

Various classification methods have been verified for 
emotional pattern classification such as hidden markov 
models [5], gaussian mixture [6], art ificial neural 

network [7] and support vector machines [8]. In  our 
paper, we investigate the relationship between 
generative method based GMM and d iscriminative 
method based SVM [9, 10].  In addit ion, we present two 
approaches, a categorical-based approach, modeling 
emotions in  terms of distinct and d iscrete categories and 
a dimensional-based approach, modeling emotions on a 
continuous space, in which an emot ion is mapped within 
a bipolar d imension: valence and arousal. The valence 
dimension refers to how positive or negative emotion is. 
The arousal dimension refers to how excited or not 
excited emotion is (see fig.3). Th is concept has gained 
much attention in recent years. 

The rest of paper is organized as follows: First, the 
description of the proposed speech emotion recognition 
system. Second, the experimental results of the system. 
Conclusion is drawn in the final section. 

 

II. EMOTION RECOGNITION SYSTEM 

The proposed speech emotion recognition system 
contains three main modules (see fig.1) namely (1) 
extraction of feature, (2) learn ing the models using 
mach ine learning techniques and (3) evaluation of 
models. First, suitable data sets for train ing and testing 
are collected. Second, relevant features are extracted. 
Third, the extracted features are modeled. Fourth, a  set 
of machine learning techniques could be used to learn 
the training models. Finally, testing unknown emotional 
samples are used to evaluate the performances of the 
models. 
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Figure 1.   Structure of the speech emotion recognition system 

A. Feature extraction 
The first problem that occur when try ing to build a 

recognition framework is the discrimination of the 
features to be used. Common acoustic features used to 
build the emotion model include pitch, intensity, voice 
quality features and formants [9]. Others include 
cepstral analysis [4]. These features can be divided into 
two categories: utterance-level features [10] and frame-
level features [11]. 

In this paper, our feature extractor is based on: Mel 
Frequency Cepstral Coefficients (MFCCs), MFCC-low, 
energy, velocity and acceleration coefficients. They are 
extracted on the frame level. 

• MFCCs have been the most popular low-level 
features. They demonstrate good performance in 
speech and speaker recognition. We use the 
advantage of this representation for our emot ion 
identification task. 

• MFCC-Low are a variant  of MFCC. Mel filter 
banks are placed in [20-300] Hz. Our reason for 
introducing MFCC-low was to represent pitch 
variation. 

• Energy is an important prosodic feature of 
speech. It is, often referred to as the volume or 
intensity of the speech, is also known to contain 
valuable information [13]. Studies have shown 
that short term energy has been one of the most 
important features which  provide informat ion 
that can be used to distinguish between different 
sets of emotions. 

• Velocity (delta) and accelerat ion (delta-delta) 
parameters have been shown to play an important 
role in capturing the temporal characteristics 
between the different frames that can contribute 
to a better discrimination [14]. The time 
derivative is approximated by differentiat ing 
between frames after and before the current. It 
has become common to combine both dynamic 
features and static features. 

B. The acoustic emotion gaussians model 
GMMs have been successfully employed in emotion 

recognition [15]. The probability density function of the 
feature space for each emotion is modeled with a 
weighted mixture of simple gaussian components.  

,1
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=∑                                   (1) 

 
where N(; ,) is the gaussian density function, wi, µi and 

i are the weight, mean  and covariance matrix of the i-th 
gaussian component, respectively. 

This module is assured by the construction of a 
universal background model (UBM), which is trained 
over all emotional classes. There are a number of 
different parameters involved in the UBM training 
process, which are the mean vector, covariance matrix 
and the weight.  

These parameters are estimated using the iterative 
expectation-maximization (EM) algorithm [17]. Each 
emotional utterance is then modeled separately by 
adapting only the mean vectors of UBM using 
Maximum A Posteriori (MAP) criterion [18], while the 
weights and covariance matrix were set to the 
corresponding parameters of the UBM. To use a whole 
utterance as a feature vector, we transform the acoustic 
vector sequence to a single vector of fixed dimension. 
This vector is called supervector and it takes the form as: 

 

                                                                     (2) 

 
This transformation allows the production of features 

with a fixed d imension for all the utterances. Therefore, 
we can  use the GMM supervectors as input for SVM 
classifier. 

C. SVM Classification Algorithm 
The support vector machines (SVM) [19] are 

supervised learning machines that find the maximum 
margin hyperplane separating two classes of data. SVM 
solve non-linear problems by projecting the input 
features vectors into a h igher dimensional space by 
means of a mercer kernel.  

This powerfu l tool is explored  for discriminating the 
emotions using GMM mean supervectors. The reason 
for choosing the SVM classifier for this task is that, it 
will provide better discrimination even with a high 
dimension feature space. In  our research, we g ive each 
training supervector sample with the corresponding 
emotion class label. After that, we input them to the 
SVM classifier and gain  a SVM emotional model. The 
output of each model is given to the decision logic. The 
model having the best score determines the emotion 
statue. The output of the matching step is a posteriori 
probability.  

In this work, we investigate two SVM kernels in the 
proposed GMM supervector based SVM: linear and 
gaussian RBF kernels. The two  kernels, take the form as 
equations (3) and (4) respectively. 

 
( , ) . .i ik x v x v=                                                          (3) 

21( , ) exp ( ) .
2i ik x v x v
σ

 = − −  
                         (4) 
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where x is the input data, vi are the support vectors and 
 is the width of the radial basis function. 
We select in  each experiment the best of the two  

kernels. One against one strategy is used for multi-class 
classification.   

Our experiments are implemented using the LibSvm 
[20]. The whole speech emotion recognition is shown in 
Fig. 2. 

 
Figure 2.  UBM-SVM based speech emotion recognition. 

 

III. EXPERIMENTS AND RESULTS 

A. Emotional speech database 
The database used in this paper is the Berlin database 

of emotional speech (EMO-DB) which is recorded by 
speech workgroup leaded in the anechoic chamber of the 
Technical University in Berlin. It is a simulated open 
source speech database. This database contains about 
500 speech samples proven from ten professional native 
German actors (5 actors and 5 actresses), to simulate 7 
different emotions.  

The length of the speech samples varies from 2 
seconds to 8 seconds. Table 1 summarizes the different 
emotions. 

 
TABLE.1 NUMBER OF UTTERANCES BELONGING TO EACH 

EMOTION CATEGORY  

Emotion Label Number 
Anger A 128 

Boredom B 81 
Disgust D 44 

Fear F 69 
Happiness H 71 
Sadness  S 45 
Neutral N 62 

 
Fig. 3 illustrates the distribution of this set of 

emotions in the two-dimensional space valence and 
arousal. 

 
Figure 3.  Distribution of the seven emotions in valence-

arousal space. 

B. System Description 
The data were recorded at a sample rate of 16 KHZ 

and a resolution of 16 bits.  First, the signal is 
segmented into speech and silence. Then, silence 
segments are thrown away and the speech segments are 
pre-emphasized with a coefficient of 0.95. From pre-
emphasized speech, each feature vector is extracted 
from at 8 ms shift using a 16 ms analysis window. A 
hamming window is applied to  each signal frame to 
reduce signal discontinuity.  

Our baseline system is built  using 128 UBM gaussian 
component from the acoustic data of different emot ional 
sentences. Individual emot ion models are MAP-adapted. 
Only  the mean vectors are adapted with  a relevance 
factor of 16. 

C. Results and discussion 

1) Categorical emotion results 
In these experiments, we diverse emot ions labeling to 

discrete states. 
Table 2 presents the results conducted on different 

variants of MFCC in order to extract the most reliab le 
feature. 

 
TABLE.2 RECOGNITION RATE FRO M DIFFERENT VARIAN T OF MFCC 

Data Range of filter banks  Recognition 
rate (%) 

MFCC 300-3400 72.85 
Low-MFCC 0-300 62 
Combined 

MFCC 
0-3400 81.35 

 
Combination of MFCC and MFCC-low led to an 

accuracy of 81.35%.  MFCC-low features perform well 
in comparison with the small scale o f filter banks used, 
it may be due to its ability to capture voice source 
quality variations. For the rest of the paper, we choose 
the combined MFCC (CMFCC). 

The table below (table 3) shows the full feature set 
used for evaluation. 
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TABLE3. DIFFERENT SPEECH FEATURE VECTORS 

Data Features Size of 
features 

Data1 Combined MFCC 12 
Data2 Combined MFCC+Log Energy 13 
Data3 Combined MFCC+ Δ 24 
Data4 Combined MFCC + Δ(MFCC) + 

Δ Δ(MFCC) 
36 

Data5 Combined MFCC+ Δ(MFCC) + Δ 
Δ(MFCC) + Δ(log energy)+ Δ 

Δ(log energy) 

39 

 
Table 4 presents the results from a series of 

recognition experiments to determine the effect of 
different frame-level features performance. As it can be 
seen, the recognition rate is varied between (79.50%) 
and (83.36%). We can conclude from these results that 
we can  get an accuracy of 81.35% with  only 12 features 
comparing with an accuracy  of 83.36% with the total 39 
features. 

 
TABLE. 4 RECOGNITION RATE BY USING DIFFERENT FEA TURES 

Data Feature Recognition rate(%) 

Data1 81,35 

Data2 82,12 

Data3 79,92 

Data4 79,50 

Data5 83,36 
 

Fig. 4 shows emotion recognition accuracies by 
analysis over all emotions associated with all previous 
studied data.  

 

 
Figure 4.  Summary of emotion recognition accuracies over all 

emotions 
 
We can observe that negative emotion (sadness, 

boredom, d isgust, fear) got the highest classification rate; 
this could be attributed to the exaggerated expression of 
emotion by the actors. The lowest rate was for the 
neutral synthesized speech at 50%, this cloud be 
explained by the fact  that neutral speech doesn’t contain 
specific emotional information. 

The addition of energy is beneficial for emot ions like 
anger (from 89.47% to 97.37%), disgust (from 92.31% 
to 100%) and sadness (from 81.47% to 84.21%). The 
addition of derivatives significantly improves the 
recognition rate at the happy emotion (from 71.43 to 
80.95). We also conclude that GMM SVM achieves 
higher recognition rate even when the training data size 
is small (45 utterances for sadness).  

More detailed results in the confusion matrix (table 5),  
are further shown to analyze the confusion between 
different emotions associated with MFCC features. The 
columns show the emotions that the system tried to 
induce, and the rows are the output recognized emotions.  

From these results, we can see that happiness and 
anger are the most frequently confused emotions. The 
confusion is also noted between neutral and boredom. 
This matrix reveals that there are similarities between 
different categories of emot ions that we will try to 
understand in the rest of the paper. 

 
TABLE. 5 M ISCLASSIFICATION  BE TWEEN 7 DIFFERENT 

EMOTIONAL STATES 
Recognized As Ang Disg Fear Happ Neut Sad Bor 

Ang 34 1 0 2 1 0 0 

Disg 0 12 0 0 0 1 0 

Fear 0 0 20 1 0 0 0 

Happ 5 0 1 15 0 0 0 

Neut 0 1 0 0 5 0 8 

Sad 0 0 0 0 0 17 2 

Bor 0 0 0 0 0 1 23 

 

2) Dimensional emotion results 
In these experiments, we diverse emot ions labeling to 

binary arousal and valence. The confusion matrix, which 
can be seen in table 6, illustrates the classificat ions of 
the two arousal classes individually (high vs low). The 
recognition rate is 98.24% for low arousal and 97.84 % 
for h igh arousal. As can be seen, high and low emotions 
are easy classified. 

 
TABLE. 6 CONFUSION MATRIX OF AROUSAL CLASSIFICATION  
Recognized as  High Low 

 
High 91 2 
Low 1 56 

Accuracy(%) 97,85 98,24 
 

In valence, there are 3 classes which  are positive, 
neutral and negative. We will classify the affective 
states into these classes. The obtained recognition rate is 
100% for negative, 21.42% for neutral and 57.14% for 
positive on the valence dimension separately. The worst 
performance is observed in classifying the neutral state. 
The table highlights that positive and neutral emotions 
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were confused with negative emotions with the same 
arousal characteristics. 

 
TABLE. 7  CONFUSION MATRIX OF VALENCE CLASSIFICATION  

Recognized as  Negative Neutral Positive 

Negative 94 0 0 

Neutral 11 3 0 

Positive 9 0 12 

Accuracy(%) 100 21,42 57,14% 

 
Table 8 shows the percentage of misclassification 

between negative and positive emotions. The obtained 
recognition rate is 100% for negative and 38.09 % for 
positive emotions. The average classification accuracy 
achieved was 61.4%.  

 
TABLE.8  CONFUSION MATRIX :NEGATIVE VS POSITIVE  

 
Finally, we make a distinction between emotional and 

neutral speech. As can be seen in table 9, the phrases 
belonging to neutral state are totally misclassified. 

 
TABLE.9  CONFUSION MATRIX :EMO TIONAL VS NEUTRAL 

Recognized as  Emotional Neutral 

Emotional 108 7 

Neutral 14 0 

Accuracy(%) 93,91 0 

 
In contrast to arousal, recognition of valence seems to 

be very challenging, resulting in no more than 60%. 
Thus it appears that some emot ional states share similar 
acoustic characteristics which make it difficult to 
discriminate between these emotions.  

Positive emotions are poorly recognized, this is due to 
the fact that happiness which is a positive expression is 
generally confused with anger which is a negative 
expression. Given that these two emot ions have exactly 
the same highest rating on the dimension of arousal that 
suggests that arousal plays an important role in the 
recognition of emotions. This is one of the reasons why 
acoustic discriminability on the valence d imension is 
still prob lematic: there are no strong discriminative 
speech features available to discriminate between 
positive speech and negative speech.  

On the other hand, acoustic features are more 
discriminative between aroused speech (e.g., anger) and 
not aroused speech (e.g., sadness). 

 

IV. CONCLUSION  

Emot ional speech recognition is gaining interest due 
to the widespread applications into various fields.  

In our work, this task has been evaluated using frame 
level features, modeled by GMM-SVM and tested on 
EMO-DB. Results showed that MFCC, with filter banks 
placed in [0-3400] ext racted at the frame level 
outperform the tradit ional MFCC.  

Results in emotion recognition experiments are hard 
to compare, because different database designs are used. 
Some use elicited speech, whereas others collect 
spontaneous emotions, some are multi-speaker and 
others are not. Different basic emotions sets are 
considered and different data sets are used. Possibly the 
work presented in [21] is the closest to this one, as acted 
speech with the same list of emotions. In this paper, 
Schwenker describe the use of EMO-DB and utilize 
RASTA-PLP features. Recognition accuracy obtained is 
79%.  

In addition, we investigated separability on the 
valence dimension and on the arousal dimension. We 
found that the arousal dimension seems to be better 
modeled than the valence dimension. 

Recognizing emotions by computer with high 
recognition accuracy still remains a challenge due to the 
lack of a full understanding of emotion in  human  minds. 
The problem is extremely complicated and thus, the 
researchers usually deal with acted emotions, just like in 
our paper. However, in real situations, different 
individuals show their emotions in a diverse degree and 
manner. In our future work, we will t ry to study the 
performance of the proposed system in  a spontaneous 
emotional database. We will explore the possibilit ies of 
integrating other modalit ies such as manual gestures and 
facial expression and combine with the result of some 
other mach ine learning methods such as KNN, HMM or 
Random Forest. 
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