
I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 
Published Online September 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijigsp.2014.10.01 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

Algorithmic Tricks for Reducing the Complexity 

of FDWT/IDWT Basic Operations 

Implementation 
 

Aleksandr Cariow 
Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, 

Szczecin, Poland 

E-mail: atariov@wi.zut.edu.pl 
 

Galina Cariowa 
Faculty of Computer Science and Information Technology, West Pomeranian University of Technology, 

Szczecin, Poland 

E-mail: gtariova@wi.zut.edu.pl 

 

 

Abstract—In this paper two different approaches to the 

rationalization of FDWT and IDWT basic operations 

execution with the reduced number of multiplications are 

considered. With regard to the well-known approaches, 

the direct implementation of the above operations 

requires 2L multiplications for the execution of FDWT 

and IDWT basic operation plus 2(L-1) additions for 

FDWT basic operation and L additions for IDWT basic 

operation. At the same time, the first approach allows the 

design of the computation procedures, which take only 

1,5L multiplications plus 3,5L+1 additions for FDWT 

basic operation and L+1 multiplications plus 3,5L 

additions for IDWT basic operation. The other approach 

allows the design of such computation procedures, which 

require 1,5L multiplications, plus 2L-1 addition for 

FDWT basic operation and L+1 addition for IDWT basic 

operation.  

 

Index Terms—Discrete wavelet transform, fast 

algorithms, matrix notation.  

 

I.  INTRODUCTION 

Recently, a discrete wavelet transform (DWT) has 

been used in numerous computer graphics, signal and 

image processing applications [1-11].  

In 1989, Stéphane Mallat proposed a fast wavelet 

decomposition and reconstruction algorithm [1]. The 

basic idea of the fast algorithm is, in case of both 1D 

DWT and 2D DWT, the decomposition of the original 

signal (or image) using a pair of filters (high- and low-

pass) on two components and following the 

decomposition of the low pass component in the same 

hierarchical manner. This decomposition process is called 

analysis. The inverse process is called reconstruction (or 

synthesis) [3, 5, 7].  

The cores of multilevel DWT decomposition and  

 

 

reconstruction procedures are forward DWT (FDWT) and 

inverse DWT (IDWT) “basic operations” – the 

multiplication of data vector by FDWT or IDWT base 

matrix, which describes the filter coefficients [12]. 

In the matrix-vector form FDWT basic operation can 

be defined in the following way: 

 

)(

12

)(

12

l

LL

l

  XFY , 0,1,k , 2 1kl N             (1) 

 

While the inverse operation used to recreate signal 

from DWT coefficients (inverse DWT base operation) 

looks as demonstrated in (2): 

 

  )(

12

T

2

)(

1

~ l

L

l

L   YFX                          (2) 

 
where N  – is a number of the original signal samples, L  

– is a size of sliding window that defines the part of the 

signal processed by the given base operation, 

1...,,1,0  Kk  – is a decomposition step number 

indicating the granularity degree of data resolution, K  – 

the total number of the decomposition steps. 

Vector 

  ],[ 122

)(

12 ll

l yyY - is a two-element output 

data vector for each basic operation (1)-(2), where 
ly2
 

and 12 ly  are, respectively, detail and approximation 

components, which are computing as a result of the 

execution of FDWT basic operations. 

Vector 

  ],...,,[ 12122

)(

1 lLll

l

L xxxX  in (1) represents a 

column vector of length L  whose elements represent the 

corresponding sequence of signal samples and vector 


  ]~,...,~,~[
~

12122

)(

1 lLll

l

L xxxX  in (2) represents the 

approximation of the vector )(

1

l

LX  obtained as a result of 

the reconstruction of initial data from two-element vector 

DWT coefficients )(

12

l

Y . 



2 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation  

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

Matrix  

 

0 1 2 1

2

1 1 3 0

L

L

L L L

c c c c

c c c c





  





 
  

  
F  

 

in (1) is a FDWT base matrix with dimensions of )2( L , 

whose elements represent the coefficients of the high-

pass and low-pass filter respectively. Formulas (1), (2) 

define FDWT and IDWT basic operation respectively 

[12].  

From expressions (1) and (2) it is clear that the 

implementation of the FDWT basic operations required to 

perform 2L  multiplications and )1(2 L  additions 

whereas the implementation of the IDWT basic 

operations required to perform L2  multiplications and 

L  additions. In this paper some algorithmic tricks that 

reduce the number of multiplications in the 

implementation of the FDWT/IDWT basic operations are 

demonstrated.  

Minimizing the number of multiplications is especially 

important in the design of specialized VLSI mathematical 

or DSP processors because reducing the number of 

multipliers also reduces the power dissipation and lowers 

the cost implementation of the entire system being 

implemented. Moreover, a hardware multiplier is more 

complicated unit than an adder and occupies much more 

chip area than the adder. Even if the chip already contains 

embedded multipliers, their number is always limited. 

This means that if the implemented algorithm has a large 

number of multiplications, the projected processor may 

not always fit into the chip and the problem of 

minimizing the number of multiplications remains 

relevant.  

In this paper two approaches to the synthesis of 

rationalized algorithms for implementation of 

FDWT/IDWT basic operations are considered. In the first 

approach, the reduction of the number of multipliers in 

the implementation of the FDWT/IDWT basic operations 

is achieved by applying the Winograd’s inner product 

formula. Another approach uses effective schemes of 

matrix factorization described in [13]. It should also be 

noted that during the construction of algorithms the 

extensive use of the principles of parallelization and 

vectorization of data processing will be made. Therefore, 

it is assumed that the synthesized procedures will be 

implemented on the hardware platforms with parallel 

processing.  

 

II.  RATIONALIZED ALGORITHMS FOR FDWT/IDWT BASIC 

OPERATIONS INPLEMENTATION USING WINOGRAD’S 

INNER PRODUCT FORMULA  

A.  Background 

Let 

  ],...,,[ 1101 NN xxxX and 

  ],...,,[ 1101 MM yyyY - 

be N -point and M -point one dimensional data vectors 

respectively, and 1,0  Mm , 1,0  Nn .  

The calculation of product poses a problem  

 

11   NNMM XAY . 

 

According to Winograd’s formula for the inner product 

calculation each element of vector 1MY  can be 

calculated as follows [14]: 

 






 

1
2

0
212,122, )()])([(

N

k
mkkmkkmm Mxaxay   

 

Where 

 








1
2

0
12,2,

N

k
kmkmm aa  and 






1
2

0
122)(

N

k
kk xxM  

 

if N  is even. 

It should be emphasized that if matrix 
M NA  is a 

constant coefficient matrix, m  can be calculated in 

advance. The calculation of ( )M  requires the 2N  

multiplications to be performed. By exploiting some 

rationalization solutions based on application of the 

Winograd’s inner product formula, the number of 

multipliers, necessary for fully-parallel implementation 

multipliers could be decreased. 

B.  Rationalized algorithm for FDWT basic operation 

implementation using Winograd’s inner product formula 

In the beginning, when using the elements of the 

matrix L2F , a column vector will be formed: 

 


  ],,[ 11113 LLLL C0CF


 
 

where  


  ],...,,[ 1101 LL cccC


 - is a column vector containing 

the impulse response coefficients of the low pass filter, 


  ],...,,[ 0211 ccc LLLC


 - is a column vector containing 

the impulse response coefficients of the high pass filter, 

and 1L0  - is a column vector or matrix of size defined by 

low subscript and consisting of all zeros. 

Next, we introduce some auxiliary matrices: 

 

- matrix of data duplication LLL I1P   133 , 

where 
  ]1,1,1[131  here and further in this 

paper, is a matrix of size defined by a low 

subscript and consisting of all 1s,   - is a 

Kronecker product sign [15]; 

- permutation matrix 
3 3 2

2

L L

 
  
 

P I J , where 

I  - here and further in this article, is an identity 

matrix of size defined by low subscript, J  - is an 

exchange matrix of size defined by low subscript,  



 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation 3 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

where the 1 elements reside on the counter 

diagonal and all other elements are zero; 

 

- partial products summation matrix 

 

2
1

3

2

3
3

LL


 1IA ; 

 

- vector 

  ],,[12Θ ,  

1
2

0

122






L

i

ii cc ; 

 

- matrices  

 

21

2

3
3

2

3 


 1IR L
L

L  and 













110

011
32K  

 

Taking into account the introduced vector-matrix 

constructions, the FDWT basic operation computational 

procedure with a reduced number of multiplications (or 

multipliers in case of hardware implementation) can be 

represented as follows: 

 


L

LL
3

2

3

2

3
3

321212 [


  RAKΘY  

)]( 13133   LLLLL XPFP                        (3) 

 

The operator “  ” named “vectorized Hadamard 

product” [12, 13] has been introduced for the 

convenience of the description of the simultaneous 

selected vector elements multiplication procedure – it will 

transform certain data column vector 1NX into the output 

column vector 1MY  in a following way: 

 

11   NNMM XBY  , 

 

where nmNM b ,B , 1,0  Mm , 1,0  Nn  - is a 

binary mask-matrix, and the elements my  are determined 

by the following rule [12, 13]: 

 





















 
















 1,0

1for,

1for ,

1

0

1

0

,,

1

0

,

1

0

,

Mi

bxb

bxb

y
N

n

N

n

nmnnm

N

n

nm

N

n

nnm

i , 

 

Let us consider a concrete example. Suppose 8L . 

Then  

 













01234567

76543210

82
cccccccc

cccccccc
F , 

 

 

 

 

and 

 


  ],...,,,0,...,0,0,,...,,,[ 067710124 ccccccF . 

 

Whereas the computational procedure for this example 

takes the following form: 

 

)([ 18824124242412123321212   XPFPRAKΘY      (4) 

 

where 76543210 cccccccc  , 

 

,

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

813824

















































































  I1P

 

 

 )()( 2482424 JI0JIP  





































2222

2222

2222

2222

88

888

88

2222

2222

2222

2222

J000

0J00

00J0

000J

00

000

00

J000

0J00

00J0

000J

, 

 

 

 

 



4 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation  

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 































11

11

11

11

212121

212121

212121

212121

32412

000

000

000

000

IR
, 

 



















1111

1111

1111

123A  

 

Fig. 1 shows a data flow diagram, which describes the 

rationalized algorithm for the implementation of FDWT 

basic operation for case 8L . In this paper, the data 

flow diagrams are oriented from left to right. The squares 

here and further in this paper denote additions with 

constant values inscribed in the field. The circles in all 

figures show the operation of the multiplication of two 

variables or multiplication by a constant inscribed inside 

a circle. Straight lines in the figures denote the operations 

of data transfer. Points where lines converge denote 

summation. The dashed lines indicate the subtraction 

operation. We deliberately use the usual lines without 

arrows on purpose, so as not to clutter the picture.  

C.  Rationalized algorithm for IDWT basic operation 

implementation using Winograd’s inner product formula  

For the synthesis of rationalized calculation procedure 

for IDWT basic operation implementation the following 

matrix constructions are introduced: 

 

- partial products summation matrix 

 

)()( 2212212 LLLL I1I1A   , 

 

where  1121 1  and   - is direct sum sign [15], 

 

- first permutation matrix 

 

21)1(2)1(2 I1P   LL , 

 

- second permutation matrix 

 

2
1

22
)1(

2

3 LLL
LL

I1IP 


, 

 

- third permutation matrix  

 

L
LL

I1P  


12

2

3
2

, 

 

- fourth permutation matrix 

 

22

2 LLLL IJIP 

, 

 

- column vector 

 

1)1(22

2

22

2

1)1(2 )]()[(   LLLL ΦJI0JIC

, 

 

where 

 





  ],,,,,0,0,,,,,[ 01
1

222
1

2

101)1(2 cccccccc LLLLLLL Φ

, 

 

- column vector 

 

1
2

1
2

1
2

1
2

3


 LLLL 0γ0Ψ








, 

 

Where 

 






 )](,),(),[(

2
1

2

2110
1

2

LLLLL cccccc γ

. 

 

 

Fig 1: Data flow diagram for FDWT basic operation ralization 
according to the procedure (4). 

When using introduced vector-matrix constructions, 

the IDWT basic operation computational procedure with 

reduced number of multiplications (or multipliers in case 

of hardware implementation) can be written in the 

following form: 

0y

1y

0x

1х

2х

3х

4х

5х

6x

7x














Ξ

Ξ

0с

3c

2с

4c
5c

6c
7c

1с

2c

3c

0c

1с

6c

7c

4c

5c



 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation 5 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

][{
~

)1(2)1(
)1(

2

3

2

3
2

221
1

2

3 


 


LL
LLLL

LLLL
L

BPΨPPAX  

)]}( 122)1(21)1(2   YPC LL                                      (5) 

 

Let us consider the next example for same 8L . 

The computational procedure (10) for this example 

takes the following form: 

 

][{
~

18991212161616818 112  


BPΨPPAX  

 

)]}( 12218118   YPC                                             (6) 

 

where 

 

  )()( 421421168 I1I1A  









































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

168A , 

 



















































1

1

1

1

1

1

1

1

1

1

1

1

144

44

414

4144912

00

00

00

I1IP
, 

 

   119219189 I1IB  

,

11

11

11

11

11

11

11

11

11

212121

212121

212121

212121

2484

8424

212121

212121

212121

212121

























































000

000

000

000

00

00

000

000

000

000

 

 

 

 



























































 

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

219218 I1P

, 

 

1)1(218118   LΦCC , 

 


  ],...,,,0,0,,...,,[ 743307118 ccccccC , 

 


  ],,,,,0,0,,,,,[ 07344370118 cccccccc Φ , 

 

 )()( 2422418 JI0JIC  











































2222

2222

2222

2222

288

82282

828

2222

2222

2222

2222

J000

0J00

00J0

000J

00

000

00

J000

0J00

00J0

000J

. 

 


  ],,[ 141414112 0γ0Ψ , 

 





















43

52

61

70

14

cc

cc

cc

cc

γ , 













































 



0

0

0

0

0

0

0

0

],,[

43

52

61

70

141414112

cc

cc

cc

cc

0γ0Ψ , 

 

 

 



6 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation  

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

 44816 IJIP  

























































1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

4

4

8

8

4

4

16

0

0

0

0

0

0

P , 

 

























































 

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

8121216 I1P
. 

 

Fig. 2 shows a data flow diagram, which describes the 

rationalized algorithm for the implementation of IDWT 

basic operation for case 8L .  

The proposed algorithms allow the total number of 

multiplications to be reduced, relative to the direct 

method. The number of multiplications in the algorithm 

for the implementation of FDWT/IDWT basic operations 

represented by the procedure (3) is L5,1 . On the other 

hand, the algorithm for the implementation of FDWT 

basic operation, represented by the procedure (3) requires 

only )15,3( L  additions, instead of )1(2 L  in the direct 

algorithm. The number of multiplications in the algorithm 

for the implementation of IDWT basic operations 

represented by the procedure (5) is 1L . In turn, the 

algorithm for the implementation of IDWT basic 

operation, represented by the procedure (5) requires L5,3  

additions. 

 

Fig 2: Data flow diagram for IDWT basic operation ralization 
according to the procedure (6). 

 

III.  RATIONALIZED ALGORITHM FOR FDWT/IDWT BASIC 

OPERATIONS EXECUTION USING  GAUSS’ TRICK FOR 2×2 

MATRIX FACTORIZATION 

A.  Short background   

Let us rearrange the columns of the matrix L2F  so that 

a new matrix takes the following form: 

 

LLL PFF   22

~
 

 

where 

ijL pΡ  is a permutation matrix whose elements are 

defined as follows: 

 




















1
2

,0,1

  ,1
2

,0,1

2),1(2

12,12

L
ip

L
ip

iLi

ii

. 

 

The computation process for the multiplication of 

matrix 
L2

~
F  by vector 

1LX  can be implemented as 

2L independent vector-matrix products with 22  

matrices. The results of these calculations should be later 

added. We will notice that all sub blocks of the new 

matrix L2

~
F  possess specific block structures. This 

specificity, as we show below, allows the reduction of the 

number of multiplications in the implementation of the 

partial vector-matrix products. The mentioned possibility 

of rationalization uses the following decomposition [13]: 

1с

0с

3c

2с

2c

3c

0c

1с

0y

1y

4c

5c

6c

7c

6c

7c

4c

5c

70cc

52cc

43cc

61cc











0
~x

1
~x

2
~x

3
~x

4
~x

5
~x

6
~x

7
~x



 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation 7 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 























































11

10

01

00

00

00

101

110

a

ab

ac

ac

ba
. 

 

As can be seen, each of such vector-matrix 

multiplications requires only three multiplications and 

five additions. The use of singularities can offer a more 

cost-effective way to obtain a set of partial vector-matrix 

products. Below the application of this trick is considered 

in detail. 

B.  Rationalized algorithm for FDWT basic operation 

implementation using Gauss’s matrix factorization trick   

At first we extract elements from L2F  matrix to create 

a new diagonal matrix: 

 

)(

3

1
2

0
2

3

i

L

i
L DD




 , 

 

where submatrices 

 

]),(),[( 222)1(22)1(

)(

3 iiiLiiL

i hhhhhdiag  D  are 33  

diagonal matrix. 

Next we introduce three types of summation matrices: 

 

)( 23

22

3 


 ΤIA L
L

L - matrix of pre-additions, 

)( 32

22

3 


 ΤIA LL
L

- matrix of post-additions, 

)( 3

2
1

2

3
3

I1A 


LL - partial results summation matrix, 

 

matrix                       









11

11
32Τ   

and  

 





















11

1

1

23Τ . 

 

Taking into account introduced vector-matrix 

constructions, the FDWT basic operation computational 

procedure with a reduced number of multiplications can 

be represented as follows: 

 
)(

1

2

3

2

3

2

3
3

32

)(

12

l

LL
L

LLL

l




  XPADATY                    (7) 

 

We consider against an example for 8L .  

Then 

 
)(

18881212123

)3(

32

)(

12

ll

  XPADATY                    (8) 

 

Thus the previously introduced vector-matrix 

structures will have the following form: 

 



































1

1

1

1

1

1

1

1

8P , 

 























































11

1

1

11

1

1

11

1

1

11

1

1

812A
, 

 

)(

3

3

0
12

i

i
DD


 , 

 

]),(),[( 2227227

)(

3 iiiii

i cccccdiag  D , 

 

),,,,,,,,,,,( 1110987654321012 ssssssssssssdiagD , 

 

070 ccs  , 071 ccs  , 02 cs  , 253 ccs  , 

254 ccs  , 25 cs  , 436 ccs  , 437 ccs  , 48 cs  , 

619 ccs  , 6110 ccs  , 611 cs  , 

 



















1111

1111

1111

123A . 

 

C.  Rationalized algorithm for IDWT basic operation 

implementation using Gauss’matrix factorization trick   

The basic operation computational procedure takes the 

following form:  

 
)(

1223
3

2

3

2

3

2

3

)(

1

~ l

LLL
L

L

l

L 


  YTPDAPX                  (9) 

 

Where 

 

32

22

3 


 TIA LL
L

, 




2

3
33

2

3 LL AP .



8 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation  

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

For our example the matrices
8P , 

12D , 

  123312 AP , 

23T , and 
32T  have been defined above, just as the matrix 

2

3L
L

A  is defined as follows: 

 



































11

11

11

11

11

11

11

11

128A
. 

 

Then, for this example, the IDWT basic operation 

computational procedure takes the following form: 

 
)(

1223312121288

)(

18

~ ll

  YTPDAPX                   (10) 

 

The data flow diagrams for the execution of FDWT 

and IDWT basic operations in accordance with the 

procedures (8) and (10), are shown in Figures (3) and (4), 

respectively.  

 

 

Fig 3: Data flow diagram for FDWT basic operation ralization 

according to the procedure (8). 

 

Fig 4: Data flow diagram for IDWT basic operation ralization according 
to the procedure (10). 

The number of multiplications in the algorithm for the 

implementation of FDWT/IDWT basic operations, 

represented by the procedure (7), is L5,1 . On the other 

hand, the algorithm for the implementation of FDWT 

basic operation, represented by the procedure (7), 

requires only )12( L  additions, instead of )1(2 L  in 

the direct algorithm. The number of multiplications in the 

algorithm for the implementation of IDWT basic 

operations represented by the procedure (9), is L5,1 . In 

turn, the algorithm for the implementation of IDWT basic 

operation, represented by the procedure (9), requires 

1L  additions. 

 

IV.  CONCLUSION 

We see that the solutions proposed in this article allow 

to reduce the total number of multiplications in the 

implementation of FDWT/IDWT basic operations 

compared to the naive methods of computing. Indeed, in 

the general case a fully parallel implementation of 

FDWT/IDWT basic procedures requires L2  

multiplications. The number of multiplications for each 

of proposed here algorithms is 25% less than that of the 

direct execution of computations. 

It is noteworthy that, because all elements in L2F  

matrix are constants, we can (but not must) use one-input 

units (encoders), instead of traditional multipliers. In such 

case, it is apparently advisable to use the second approach 

for the implementation of the FDWT/IDWT basic 

operations. This solution greatly simplifies 

implementation, reduces the power dissipation and lowers 

the price of the device. On the other hand, when we are 

dealing with FPGA chips that already contain a number 

of embedded multipliers, the construction and usage of 

additional encoders instead of multipliers is irrational. In 

this case, it would be unreasonable to refuse the 

possibility of using embedded multipliers. In this case, 

any algorithms derived from the application of both 

approaches can be used with approximately equal effect.

0
~x

1
~x

2
~x

3
~x

4
~x

5
~x

6
~x

7
~x

0y

1y
6s

7s

5s
4s
3s
2s
1s
0s

8s

9s

11s
10s

0y

1y

0x

1х

2х

3х

4х

5х

6x

7x

6s

7s

5s
4s
3s
2s
1s
0s

8s

9s

11s
10s



 Algorithmic Tricks for Reducing the Complexity of FDWT/IDWT Basic Operations Implementation 9 

Copyright © 2014 MECS                                                          I.J. Image, Graphics and Signal Processing, 2014, 10, 1-9 

The algorithms proposed in this article allow the 

number of multiplications to be reduced at the cost of 

more additions, or more complex memory access. Such 

solutions make no sense in some modern high-speed 

architectures, where pipelined fixed-point or floating-

point addition and multiplication take just one clock cycle. 

Therefore, the solutions presented here are intended 

solely for the hardware implementation of FDWT/IDWT 

basic operations.  

REFERENCES 

[1] Mallat S. G., A theory for multiresolution signal 

decomposition: The wavelet representation, IEEE Trans. 

Patt. Anal. Mach. Intell., vol. 11, pp. 674-693, July 1989. 

[2] Daubechies I., Ten lectures on Wavelets, SIAM, 

Philadelphia, PA, 1992. 

[3] Chui C. K., Montefusco L., Puccio L. Wavelets: Theory, 

Algorithms and Applications, Academic Press, New York, 

1994. 

[4] Vetterli M., Kovačević J. Wavelets and Subband Coding, 

Prentice Hall PTR, Englewood Cliffs, 1995.  

[5] Stollnitz E. J., DeRose A. D., Salesin D. H. Wavelets for 

Computer Graphics, Morgan Kaufmann, 1996. 

[6] Burrus C. S., Gopinath R. A. Intoduction to Wavelets and 

Wawelets Transforms: A Primer, Prentice Hall, New 

Jersey, 1998. 

[7] Goswami J. C., Chan A. K. Fundamentals of Wavelet: 

Theory, Algorithms and Applications. Wiley-Interscience, 

New York, 1999. 

[8] Debnath L. Wavelet Transforms and Their Applications, 

Birkhauser, 2001. 

[9] Frazier M. W., An Introduction to Wavelets through Linear 

Algebra, Springer-Verlag, New York, 2001. 

[10] Cohen A. Numerical Analysis of Wavelet Methods. 

Studies in Mathematics and Its Applications, Elsevier 

Science B.V. Printed in the Netherlands, 2003. 

[11] Weeks M., Bayoumi M. Discrete Wavelet Transforms: 

Architectures, Design and Performance Issues, Journal of 

VLSI Signal Processing, 2003, no. 35, pp. 155-178. 

[12] Ţariov A., Ţariova G., Majorkowska-Mech D. Algorithms 

for multilevel decomposition and reconstruction of Digital 

signals, Commission of Informatics, Polish Academia of 

Science (Gdansk branch) Press, 2012. (in Polish). 

[13] Ţariov A. Algorithmic aspects of computing rationalization 

in digital signal processing”. West Pomeranian University 

of Technology Press, (2011), 232 p. (in Polish). 

[14] Winograd S. A new algorithm for inner product. IEEE 

Trans. Computers,  vol. C-17, pp. 693-694, 1968. 

[15] Regalia Ph. A. and Mitra S. K. Kronecker Products, 

Unitary Matrices and Signal Processing Applications, 

SIAM Review, vol. 31, no. 4, pp. 586-613, 1989. 

 

 

 

Aleksandr Cariow, received the Candidate of Sciences and 

Doctor of Sciences degrees (Habilitation) in Computer Sciences 

from LITMO of St. Petersburg, Russia in 1984 and 2001. In 

September 1999, he joined the Faculty of Computer Sciences 

and Information Technology, at the West Pomeranian 

University of Technology, Szczecin, Poland, where he is 

currently a Professor and Chair of the Department of Computer 

Architectures and Telecommunications. His research interests 

include digital signal and image processing and transmission, 

fast computational algorithms, DSP VLSI architectures, and 

data processing parallelization. 

 

 

Galina Cariowa, received the MSc degrees in mathematics 

from Moldavian State University, Chişinău in 1976 and PhD 

degree in computer science from West Pomeranian University 

of Technology, Szczecin, Poland in 2007. She is currently 

working as an assistant professor in the Department of 

Multimedia Systems. Her research interests include numerical 

mathematics, digital signal and image processing, fast 

computational algorithms for multimedia applications. 

 

 

 

 

 

How to cite this paper: Aleksandr Cariow, Galina Cariowa,"Algorithmic Tricks for Reducing the Complexity of 

FDWT/IDWT Basic Operations Implementation", IJIGSP, vol.6, no.10, pp.1-9, 2014.DOI: 10.5815/ijigsp.2014.10.01 


