
I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22
Published Online January 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2014.02.02

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

Modified Streaming Format for Direct Access

Triangular Data Structures

Khaled Abid

Ibn khaldoun University,

Tiaret, Algeria

E-mail: k_abid@esi.dz

Abdelkrim Mebarki

Université des sciences et de technologie d’Oran – Mohamed Boudiaf,

Oran, Algeria

E-mail: amebarki@visiondz.info

Wahid Hidouci 3

Ecole nationale supérieure d’informatique,

Alger, Algeria

E-mail: w_hidouci@esi.dz

Abstract — We define in this paper an extended solution

to improve an Out-of-Core data structure which is the

streaming format, by adding new information allowing to

reduce file access cost, reducing the neighborhood access

delay to constant time.

The original streaming format is conceived to

manipulate huge triangular meshes. It assumes that the

whole mesh cannot be loaded entirely into the main

memory. That's why the authors did not include the

neighborhood in the file structure.

However, almost all of the applications need the

neighborhood information in the triangular structures.

Using the original streaming format does not allow us to

extract the neighborhood information easily. By adding

the neighbor indices to the file in the same way as the

original format, we can benefit from the streaming format,

and at the same time, guarantee a constant time access to

the neighborhood.

We have adapted our new structure so that it can allow

us to apply our direct access algorithm to different parts

of the structure without having to go through the entire

file.

Index Terms — Triangular data structure, Streaming

format, Direct access structure

I. INTRODUCTION

With the recent development in computer graphics and

3D vision, new methods were born for geometrical

modeling.

The common principle between these methods consists

in modeling an object as a set of geometrical primitives

such as points, positioned in Euclidean three-dimensional

space.

These structures -also known as geometrical structures-

are the object of our study. The size of the triangulations

handled in the various applications also do not cease

increasing, so that their processing in real-time starts to

really pose a problem with the standard machines, and

even the structures of data called in-core, do not allow the

processing of these volumes. In this article we propose a

modification of the streaming format conceived to this

end, including improvements which allow the access to

neighborhood, and direct access to different parts of the

file in real-time.

A. In-core Data Structures

Several data structures were developed for the storage

of geometrical information, provided with access and

update methods (creation, modification) [13]. The basic

idea is very simple: A triangulation or any other

arrangement is generally represented in memory using

two tables (often contiguous), one for the vertices, and the

other for the topological simplices (vertices, edges, and

faces).

Programmers aim often to conceive data structures

which are efficient and simple [17], moreover, it must

respect the requirements of the desired applications [2].

The 2D data structures in the literature use the three basic

simplices which are edges, triangles, and vertices. In the

edge-based data structures, we define several modes of

representations whose basic object is either the edge, or

the half-edge [1], [3], [2], [18], [10], [19], [14], [4], [24].

These structures can be used not only for the

representation of the triangulations, but also for any

polygonal model.

In the triangle-based data structures [6], [5], [16], the

basic element is the triangle. The basic structure uses two

tables:

 A table for vertices: to store geometric

coordinates.

 A table for triangles to store references of the

three vertices that define the triangle.

mailto:dsli@bjut.edu.cn

 Modified Streaming Format for Direct Access Triangular Data Structures 15

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

This minimal triangle-based structure requires 6n

references. However, access to neighbors cannot be done

in constant time. To improve the structure, and give

access in constant time to the neighbors, the references of

the three neighboring triangles can be added to the

structure of the triangle, which increases the cost of

storage to 12n references.

This representation scheme is the basis of our work.

The algorithm proposed by Isenburg to construct the

streaming file uses another data structure which is the

triangle soup. This is because this structure allows the

processing of the triangulation without charging the entire

file in the main memory but it does not allow the addition

of neighborhood information to the streaming file.

In the vertex-based data structures [12], the basic

element is the vertex. The triangulation is represented as a

graph of incidences between the vertices of the

triangulation. The data structure is a list of vertices where

each vertex keeps three references: its degree (the number

of incident vertices), the list of its neighbors, and a mark

indicating if this vertex is on the border or not.

Considering that the average degree of a vertex in a

triangulation of n points is 6, the global cost of such a

structure is 7n references.

B. Out-Of-Core Data Structures

The fast development of storage capacities led to a

strong increase in the data volumes, in particular the

geometrical data, where the meshes generated from

digitalization by laser or modeling of complex scenes, can

reach several gigabytes. This is not the case for external

memory where the curve of growth is not accompanied by

a proportional improvement in access time and capacity

of central memory.

Unfortunately, traditional methods and algorithms (In-

Core) require the entire mesh to be loaded in main

memory. With huge size meshes (order of billion of

triangles), indexing vertices is very costly or even

impossible when it exceeds the addressable range of the

computer main memory. The Out-of-Core algorithms and

structures allow us to process 2D or 3D objects of any

size on standard workstations.

The main idea of these algorithms is to arrange

operations in such way to execute them on only a portion

of the file. This file can be seen as a set of blocks, each

one of them has a size that matches the main memory size.

In other words, only the needed information for the

current treatment is loaded into memory.

1. Triangle soup:

The basic principle is to include directly the

coordinates of the vertices in the faces without

enumeration. This allows us to treat the faces of a mesh

independently, and avoid the step of indirection. But the

updating of vertices and the access to its neighborhood is

not as easy as in the indexed format. In this format each

triangle is defined by its three vertices, each vertex by

these coordinates. Although this format stores each vertex

of the mesh several times (in average six times), it is still

preferred in many applications such as rapid prototyping

because no global indexing is required [14], [15], [24].

2. The hierarchical data structures (multi-resolution):

These structures represent triangulations according to

spatial or topological subdivisions. These structures are

also used to adjust the level of details [8] and for

interactive visualizations. The basic common structures

are trees (including B-trees [22] and its derivatives [23]).

Cignoni et al.[7] proposed an adapted a version of the

octree [20], [21] devoted to the generic Out-of-Core

algorithms for meshes that they called Octree Based

External Memory Mesh. This structure is based on a

decomposition of the cube including the triangulation

recursively until the desired size of the elementary cubes

(in number of vertices per cube, which are indexed locally

in the cube) is reached. These elementary cubes are the

leaves of the tree, and are stored on the external drive and

loaded into memory on demand. A variant of the octree

representation has been adapted to the multi-resolution

meshes [9], in which the internal nodes of the tree keep

representatives scattered of the lower level vertices to

allow construction at this coarse level. In these structures,

the permanent memory occupancy is limited to the tree of

search blocks, whereas the actual data are loaded as

needed.

II. STREAMING MESH

Isenburg et al. [11] proposed a new data structure they

called‖ Streaming Mesh‖. This structure is ordered and

designed to encode and describe incrementally the

triangulations in order to minimize memory requirements,

which allows the user to manage models of very large

dimensions. The principle is that the streaming format

explicitly indicates the first and the last time that a vertex

is used by a triangle. Vertices and faces are so interlaced

in the file; a vertex is inserted only when it is used for the

first time; when a triangle refers a vertex for the last time,

the vertex is finalized (e.g. via special symbol). Thus, the

number of vertices to be kept in memory at any given

time is reduced.

Generating Streaming Meshes

Our method is based on an indexed structure in input,

which is the triangle-based data structure with two tables

(Tables I and II):

TABLE I. VERTEX TABLE

16 Modified Streaming Format for Direct Access Triangular Data Structures

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

TABLE II. INPUT TRIANGULATION TABLE: THE

NUMBER MAX-INT IS THE MAXIMAL NATURAL

INTERGER

To construct a Streaming file we must follow some

steps in which we need three kinds of information: the

vertex layout, the triangle layout, and the finalization

information.

We add to each vertex V:

a. An ordered key Kv based on its incident

triangles. The key Kv takes the smallest incident

triangle index:

 ttvvKv),min(,

This key is based on the indices of vertices and

triangles in the two input arrays.

b. A degree d: the degree d is equal to the number

of triangles incident to the vertex V:

tVtd :

c. A Boolean value that indicates whether the

vertex exists in the streaming file. This value is

initially equal to False. Each vertex will be

represented using (Kv, V, d, X, Y,), Where Kv

is the vertex key, V is the index, d is its degree

and both X and I coordinates. Each triangle has

as information (V1, V2, V3, T1, T2, T3,),

where: V1, V2, V3 are the three vertices of the

triangle; T1, T2, T3 are the neighbors, is a

Boolean value indicating whether the triangle is

in the file streaming or not.

Vertex finalization

When a vertex is closed and referenced for the last

time, it will be removed immediately from the memory

and thus allows other vertices to use not only the

memory but also the index of the closed vertex. We

maintain for each active vertex a degree counter which is

equal to its degree d, and each time a vertex is referenced

by a triangle, the degree counter is decremented by one,

and so on until it is equal to zero, in this case the vertex

is closed (referenced for the last time) and removed from

the main memory.

Sequence of the algorithm

1. Reading the triangulation: We use a procedure that

reads the input file and fills two tables of vertices and

triangles while adding to each table, the additional

information mentioned above: For each vertex V :

(The vertex coordinates X and Y , The vertex degree d,

The key Kv, a Boolean value). For each triangle t:

(the three indices of its vertices V1, V2, V3, the three

indices of its neighbors T1, T2, T3 (if a vertex has no

opposite triangle, it will be replaced by Max-integer),

a Boolean value that indicates whether the triangle

is inserted in the file streaming).

Note: The key Kv and the degree d are computed on-the-

fly.

TABLE III. VERTEX TABLE AFTER READING

TABLE IV. TRIANGLE TABLE AFTER READING, THE

NUMBER MAX-INT IS THEMAXIMAL NATURAL

INTERGER =4294967295

2. Spatial sorting: The easiest way to build a streaming

file is to sort the elements along a spatial direction as

the X and Y axis. We sort the vertices in lexicographic

order, and then each vertex is re-indexed according to

his order. In the case of our algorithm and after

reading the input file, a lexicographic sorting is

applied to the array elements of the vertices, from the

smallest to the largest vertex according to their X and

Y coordinates.

3. Updating triangle table: After sorting vertices and

changing their indices, we update the vertices of the

triangles in the tables V and VI. After sorting the

vertex table in the previous example, the ordering of

the vertices will be as follows: (2.6.1.3.7.5.4).

TABLE V. VERTEX TABLE AFTER SPATIAL SORTING

TABLE VI. TRIANGLE TABLE AFTER SPATIAL

SORTING

 Modified Streaming Format for Direct Access Triangular Data Structures 17

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

4. Complete streaming file: To build the streaming file,

we take each time a vertex from the vertex table

according to their orders and we apply the following

operations:

Selection and verification

If the vertex does not exist in the streaming mesh:

1) We go to the smaller triangle that refers it using

the key Kv.

2) We turn around the vertex by completing a list of

incidents triangles on the vertex (only triangles

that are not already inserted will be added to the

list).

3) We sort the elements of the list from the smallest

one to the largest one. If the vertex already exists:

we move to the next vertex and resume the steps

from the beginning.

Interleaving vertices and triangles:

For each triangle of the list:

1) We interleave vertices one by one starting with

the smallest, if they are not interspersed. After

each new vertex inserted in the streaming file,

we must immediately interleave all the triangles

that include the current vertex and the previous

vertices.

2) Finally, we interleave the current triangle.

Note:

A vertex or a triangle must not be interleaved twice in

the streaming mesh, here is a small example: While

travelling through a streaming file, at a given moment, all

active triangles and vertices can be seen as a triangle-

based data structure with minimal representation.

The set of vertices of this structure is called the front Fi

(the width front or simply the width = maxi |Fi| of the

front, i.e. the maximum number of active vertices at the

same time). However, to access the neighbors of a given

triangle we must traverse all active triangles, which will

take a long time to process the active part of our

streaming mesh, especially if the width front is very large,

and therefore the file processing time will be too long. To

solve this problem we add neighborhood information to

make access to neighbors in constant time. We have two

ways to add the notion of neighborhood to the new

structure:

1. Starting from the same principle of the triangle-based

structure, using the notion of the neighbor triangle:

with each triangle interleaved in the streaming file we

add beside three fields, each field represents the

neighbor triangle opposite to the vertex located in the

same order. Otherwise (in border triangles), we put a

special index e.g. max-integer (Figure2). For each

triangle, we refer only to those neighbor triangles that

are inserted before it in the streaming file. The

disadvantage of this method is that:

 The streaming file is larger.

 There is useless information, such as special

indices that tell us what a vertex has no opposite

triangle is unnecessary and slows the course of the

streaming file.

2. A second method consists of inserting after each

triangle of the streaming file, its neighborhood

information with the previous triangles (If a triangle

has two neighbors that are already inserted in the file,

we inserted neighborhood information for each

incident triangle sequentially. otherwise we move to

the next item that is a vertex or a triangle). So, to build

our streaming file we interleave vertices, triangles, and

neighborhood information in a single file (Figure2).

This will allow us, at a given moment, to know if a

triangle has neighbors or not, we go directly to the

neighborhood information that comes after. This

second method not only enables us to reduce the size

of the file by eliminating useless information, but also

to facilitate the reading of the file on the one hand and

to accelerate the course of another share.

Triangles finalization

The problem with both methods is still the indexing of

triangles which may exceed the addressable range in the

main memory when browsing the streaming file. To solve

this problem we use the finalization to allow multiple

triangles to use the same index. A triangle is finalized and

referenced for the last time if all its neighboring triangles

were interleaved.

To finalize a triangle t we use its degree which is equal

to |t’|: t’ neighbor of t.

A triangle can have at most three incident triangles.

This degree will be used as a degree counter that is

decremented each time the triangle is referenced by the

neighborhood information. The streaming file will be as

follows.Figure2:

III. DIRECT ACESS ON A STREAM FILE

The use of neighborhood information reduces on a

remarkable way the time required to traverse the

neighborhood in the streaming file. However, to access

the elements located in the middle of a triangulation we

must always start with the first point of streaming and

pass through all the elements of the triangulation,

according to the sequential order of the file to the target.

This is in large part due to the sequential structure on one

hand, and because of the occupation of the same index by

several vertices and faces in the other hand. We have

reduced access time to the elements (vertices, faces or

parts of the triangulation) to any position in the

triangulation. The proposed method defines the elements

involved in the reading part of the triangulation using

zigzag1 readings (see figure 3), to collect the missing

components (vertices, faces, and neighborhood

information).

To do this, we add an indirection stage at the streaming

file, which directly allows to determine the indices of

vertices and faces without going through the elements that

dereference its. The index values are the same used to

reference the elements (faces, vertices) when these

elements pass into the current stream of memory.

1 do (readings) trips / Returns to search for intercalated vertices and

faces involved in the definition of the concerned part.

18 Modified Streaming Format for Direct Access Triangular Data Structures

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

We envisaged three possible methods to access directly

to a particular subdivision of a triangulation:

1. We designate Si, the vertex with the coordinates (xi;

yi): we look for the vertex in question, and then we

made trips/returns to find the indices of vertices which

make up the faces located after the vertex Si.

2. A second method is to directly load the span (the

maximum number of active vertices at the same time)

witch precede the vertex Si, it allows us to avoid to

trips/returns like as the previous method.

3. The third alternative is to change the streaming format

by inserting with each vertex and each face, the

corresponding index in the streaming file. So we have

the index directly without having to read the file from

the beginning.

Note: The first two methods suffer from two drawbacks:

the time of traversing, especially in the first method with

several trips/return, and the memory space required will

go up to the double span space.

C. Indexing structure

We modify our structure to be semi-indexed 1 . We

added an indirection to vertices and faces of our file,

which will enable us to know directly the indices of the

vertices (faces) without making trips/returns to the faces

(neighborhood information).

To apply this indirection to the file structure, we will

further modify the construction scheme. For this we must:

 add before the coordinates of each new vertex

intercalated in the streaming file, the index to which it

is referenced by the first face that follows;

 add before the vertices of each new face intercalated

in the streaming file, the index to which it is

referenced by the first neighborhood information that

follows.

D. Direct access to the triangulation

To build a window with size Size_front 2 in the

streaming file we chose to position the reading head at a

line L witch represents the center line of the window.

Then we decode the ‖L-Size_front‖ and ‖L+Size_front‖

(see Figure 3) to construct the two tables of vertices and

faces containing the explicit representation of this part of

the triangulation.

Size_front = |FL|
3.

Position the reading head

The reading head can be pointed at three different lines,

which leads us to treat each of these three cases:

1 This refers to the structure in streaming format, but with the index of

vertices and faces in moments of their passage in the active flow, which

means a provisional indexing when passing in RAM.
2 Size_front depends on the location where we want to open the window

on the file
3 FL is the front which corresponds to the center line L

Figure 3. Position of the reding head on line streaming file: the

length of Size_front depends on the forehead of the streaming

file (i.e. loaded into memory part) in this point.

1. The reading head is on a vertex line of the form:

V i x y, where:

 V means that the line is a vertex;

 i is the index of the vertex in the streaming file;

 x and y are the coordinates of the vertex i.

2. The reading head is positioned on a face line of the

form:

f i V0 V1 V2, where:

 f means that this line is a face;

 i is the index of this face in the streaming file;

 V0, V1 and V2: are the indices of the vertices that

make up the face i.

3. The reading head is positioned on a line of the form:

N F1 F2, where:

 N: Indicates that this line represents a neighborhood

information;

 F1 and F2: represent the indices of the two

neighboring faces.

E. Search of the elements of the triangulation

Each line requires special processing to extract the

relevant information that can be a vertex, a face or a

neighborhood between two faces:

1. First case: This case corresponds to the introduction

of a new vertex on the current flow, and is of the

form: V i x y. All we needs to do in this case is to

extract the coordinates x and y, and assign its

directly to the vertex Vi in the vertex table.

2. Second case: In this case, the line is a declaration of

a new face of the form fi V0 V1 V2. This means that

the face fi is constructed by three vertices V0, V1 and

V2. Given the sequential nature of the streaming

format, the three vertices are by default inserted

before the face fi.

To dereference the three vertices of the face fi:

a. We check for each vertex in the vertex table. If

some vertices are not yet included, we pass to

the next step.

b. If a vertex is not yet declared in the vertex table,

it may be that there is a previously closed vertex

on the streaming file (referenced for the last

time) with the same index.

i. We read the file in reverse order from

the L.

 Modified Streaming Format for Direct Access Triangular Data Structures 19

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

ii. We support only lines that begin with

the letter ‖V‖ by comparing the index

found i with the three vertices V0, V1

and V2.

iii. Since we retrieve a vertex, we add its

coordinates to the vertex table and did

the same search for other vertices, until

the three vertices are reported in the

vertex table.

c. Then the face fi is filled in the table of faces by

its three vertices V0, V1 and V2 (by updating the

vertices indices following the vertex table and

not the streaming file).

3. Third case: This is the case of a line declaring a

neighborhood between two faces of the form:N F1 F2.

This means that the face F2 is adjacent to the face F1.

This third event brings both previous cases together

because the neighborhood is called to two adjacent faces

and therefore: the four vertices that compose them. The

search of the vertices of both faces, if they have not yet

been introduced into the vertex table follows the same

detail scheme in the first two cases. The only

improvement that can be made is due to the fact that the

neighboring face is reconstructed by two vertices

belonging to the first face, it remains to find only a single

vertex (see Figure 4).

Figure 4. Opening a window in a streaming file: (1) Only the

face F1 contains the neighborhood information to face F2 (2)

research elements of the face F1 is limited to the search for

vertex 4.

Note: The neighborhood between two faces in a

streaming file takes always one direction (Figure4).

(If a face F1 is neighborhood of F2) → (F2 is interlaced

before F1).

F. Accessing multiple sliding windows

In addition to its advantage of access to the elements of

the triangulation, our method provides another

opportunity for the users and applications. It can open

multiple windows simultaneously (see Figure 5) on the

surface of the triangulation.

The gain provided by the use of the direct access

method in terms of time is considerable:

 The direct access algorithm reduces the cost to go to

a point in the streaming file to Zero (instead of

traversing the file from the beginning to the specific

point).

 The multiplication of sliding windows divides the

travel time of the entire file according to the number

of windows:

Traversing time = Traversing time _ Number windows.

With these advantages, we gain a more flexible

structure (easy to navigate), more rich representation

(with more information) on one hand. We obtain also a

faster scheme to traverse the data by supplying the

original structure on other hand.

Figure 5. Opening of three slippery windows on the surface of a

streaming file at the same time.

IV. RESULTS

In this section we evaluate the efficiency of our

approach with several triangulations. However, most of

the geometric models are not available. For that purpose,

we made our evaluation tests on Delaunay triangulations

generated randomly.

Indeed, the problem we deal with regard to the

handling of triangulations whose size exceeds the

capacity of the main memory of standard computers, that

is to say, we are interested in information exchange5

between main memory and external memory, and not the

use of information exchanged. In other words, when the

user wants to load a part, it receives the response (if it

exists) regardless of what he will do with afterwards.

Given these considerations, we have adopted a method

of achieving consists of representing each triangulation in

two tables (vertex table and faces face), as long as the

other functions (visualization, simplification, compression,

etc) didn’t interest us in the context of this study. As for

new streaming files structures, they are checked through

inverse algorithms6.

Our results are obtained on a 64 bit machine, Processor

Pentium (R) Dual-Core T4500@2.30 GHz with 6 GB of

RAM. The table VII represents the different results

obtained by traversing two types of streaming files of

different sizes.

5 In the form of vertices and faces.
6 algorithms that generate the indexed triangular data structures from

streaming files.

20 Modified Streaming Format for Direct Access Triangular Data Structures

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

The tests are applied to triangulations (from 100,000 to

700,000 points). For all streaming files, we can see that

there’s not a big difference for simple reading between

both structures: our structure is about 60% by late

contributions to the reading of the original structure. On

the other hand, if we take into consideration the traversing

in neighboring of the parts charged in memory for the

original streaming format, we see that the time required

for this operation through the entire file is very large

compared to our structure. And even the representation

(under a graphical format or through a table) of the gain

provided by our method cannot be exact because of the

exponential explosion of the time of the traversing

neighborhood in the original structure.

Figure 6. Graphical representation of reading time of the both

streaming file structures. Blue bars represent the reading time of

the original structure. Green bars represent the reading time of

the basic structure including the neighborhood traversing. The

red rectangles represent the reading time of our new structure

including neighborhood information.

As far as the occupied memory space by our structure,

the flowchart 7 shows that the size of the structure is

equal to twice the size of the original structure for each

triangulation. Since the streaming format is a data

structure designed for the handling of triangulations

outside the main memory, then the file size is not a

problem in itself, since it is supposed to load only the

front of the structure in main memory.

For our second contribution which is the direct access

to the streaming file, the original structure does not allow

this issue. Table VIII represents the different results

obtained by opening a windows of different sizes (100,

1,000 and 10,000 points) at the center of three streaming

file with: 100,000, 200,000 and 300,000 points.

TABLE VII. NECESSARY TIME FOR TRAVERSING

STREAMING FILES. THE COORDINATES ARE IN THE

FLOAT FORM AND REPRESENTED IN 4 BYTES EACH.

THE GAIN IN THE TABLE IS REPRESENTED COMPARED

TO THE COST (TIME IN MS) OF READING STREAMING

FILES.

Number

of points

100K 200K 300K 400K 500K 600K 700K

Original

Streaming

9658 19878 26472 38668 54697 74478 95261

Our

structure

15896 32644 43457 75707 91453 121784 144700

Figure 7. The memory space required to represent the two

streaming file structures.

TABLE VIII. REPRESENTATION OF NECESSARY COSTS

TO OPEN WINDOWS OF VARIOUS SIZES ON

STREAMING FILES OF SEVERAL SIZES. THE TESTS

CONSIST OF OPENING WINDOWS AT THE CENTER OF

TRIANGULATIONS.

V. CONCLUSION

We have proposed in this paper a new Out-of-Core

solution improving a processing method which is the

streaming format; this format allows us to treat the

triangulation sequentially from the beginning with a

capacity equal to the maximum length of active vertices.

We have changed the streaming format by adding new

information used to browse the part loaded into memory

more quickly and make access to the neighborhood in

constant time. Another contribution is the direct access,

our format allows it by proposing a direct localization on

the steam with a retrieving of the entire needed

information.

Figure 8. Graphical representation of necessary costs to open

windows in the middle of streaming files. The blue rectangles

represent the costs (time in milliseconds) for opening windows

in streaming files with 100k points. The same case (for red and

green rectangles) applies to files 200k and 300k points.

 Modified Streaming Format for Direct Access Triangular Data Structures 21

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

REFERENCES

[1] Bruce G. Baumgart. Winged edge polyhedron

representation. Technical report, Stanford University,

Stanford, CA, USA, 1972.

[2] Bruce G. Baumgart. Winged-edge polyhedron

representation for computer vision. In National

Computer Conference, May 1975.

[3] Bruce Guenther Baumgart. Geometric Modeling for

Computer Vision. PhD thesis, Stanford University,

USA, August 1974.

[4] Swen Campagna, Leif Kobbelt, and Hans-Peter

Seidel. Directed edges a scalable representation for

triangle meshes. Journal of Graphic Tools, 3(4):1–11,

1998.

[5] Luca Castelli Aleardi. Repr ésentations Compactes

de Structures de Donn ées G éom étriques. PhD

thesis, Ecole Polytechnique, Palaiseau, France,

December 2006.

[6] Cgal: Computational geometry algorithms library.

www.cgal.org.

[7] Paolo Cignoni, Claudio Montani, Claudio Rocchini,

and Roberto Scopigno. External memory

management and simplification of huge meshes.

IEEE Transactions on Visualization and Computer

Graphics, 9(4):525–537, 2003.

[8] Leila De Floriani, Leif Kobbelt, and Enrico Puppo.

A survey on data structures for level-of-detail

models. In N. A. Dodgson, M. S. Floater, and M. A.

Sabin, editors, Advances in Multiresolution for

Geometric Modelling, Mathematics and

Visualization, pages 49–74. Springer, Berlin,

Heidelberg, 2005.

[9] Michael Garland. A multiresolution representation

for massive meshes. IEEE Transactions on

Visualization and Computer Graphics, 11(2):139–

148, 2005. Student Member-Eric Shaffer.

[10] Leo J. Guibas and Jorge Stolfi. Primitives for the

manipulation of general subdivisions and the

computation of voronoi diagrams. In STOC ’83:

Proceedings of the fifteenth annual ACM

symposium on Theory of computing, pages 221–234,

New York, NY, USA, 1983. ACM Press.

[11] Martin Isenburg and Peter Lindstrom. Streaming

meshes. In Proceedings of the 16th IEEE

Visualization Conference (VIS 2005), 23-28 October

2005, Minneapolis, MN, USA, page 30. IEEE

Computer Society, 2005.

[12] Marcelo Kallmann and Daniel Thalmann. Star

vertices: A compact representation for planar meshes

with adjacency information. Journal of Graphics

Tools, 6(1):7–18, 2001.

[13] Michael J. Laszlo. Computational Geometry and

Computer Graphics in C++. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1995.

[14] P. Lienhardt. Subdivisions of n-dimensional spaces

and n dimensional generalized maps. In SCG ’89:

Proceedings of the Fifth Annual Symposium on

Computational geometry, pages 228–236, New York,

NY, USA, 1989. ACM Press.

[15] Peter Lindstrom. Out-of-core simplification of large

polygonal models. In SIGGRAPH ’00: Proceedings

of the 27th annual conference on Computer graphics

and interactive techniques, pages 259–262, New

York, NY, USA, 2000. ACM Press/Addison-Wesley

Publishing Co.

[16] Abdelkrim Mebarki. Implantation de structures de

donn ées compactes pour les triangulations. PhD

thesis, Universit é de Nice-Sophia Antipolis, France,

April 2008.

[17] Dinesh P. Mehta and Sartaj Sahni. Handbook Of

Data Structures And Applications. Chapman &

Hall/Crc Computer and Information Science.

Chapman & Hall/CRC, 2004.

[18] David E. Muller and Franco P. Preparata. Finding

the intersection of two convex polyhedra. Theor.

Comput. Sci., 7:217–236, 1978.

[19] Franco P. Preparata and Michael I. Shamos.

Computational geometry: an introduction. Springer-

Verlag New York, Inc., New York, NY, USA, 1985.

[20] Hanan Samet. Applications of Spatial Data

Structures: Computer Graphics, Image processing,

and GIS. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1990.

[21] Hanan Samet. The Design and Analysis of Spatial

Data Structures. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1990.

[22] Robert Sedgewick. Algorithms. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA,

1984.

[23] C. Silva, Y. Chiang, J. El-Sana, and P. Lindstrom.

Out-of-core algorithms for scientific visualization

and computer graphics. In IEEE Visualization

conference’02. Boston, Massachusets. Course Notes,

October, 2002.

[24] Jianhua Wu and Leif Kobbelt. A stream algorithm

for the decimation of massive meshes. In Graphics

Interface, pages 185–192. CIPS, Canadian Human-

Computer Commnication Society, A K Peters, June

2003. ISBN 1-56881-207-8, ISSN 0713-5424.

Khaled Abid was born in Oran, Algeria. He is now a

PhD student at ―Tiaret, Ibn khaldoun University‖. He has

a degree of ―Ingénieur d’Etat‖ from ―Université d’Oran‖,

Algeria.

K. Abid is now preparing his PhD thesis, on External

Memory Triangular Data Structures.

Abdelkrim Mebarki was born in Oran, Algeria. He is

now an assistant professor at "Université des sciences et

de la technologie d’Oran – Mohamed Boudiaf". A.

Mebarki has his PhD degree from the University of Nice-

Sophia Antiplis, France, in 2008. He has a Master degree

from the same university, and the degree of ―Ingénieur

d’Etat‖ from "Université des sciences et de la technologie

d’Oran – Mohamed Boudiaf".

A. Mebarki is now assistant researcher, in SIMPA

laboratory, working in ―Image-Vision‖ team. His research

22 Modified Streaming Format for Direct Access Triangular Data Structures

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 14-22

works include Scientific Visualization, NPR image

processing, and Triangular Data Structures.

Walid Hidouci is a professor at " Ecole nationale

supérieure d’informatique", Algeria. K. Hidouci is the

author of many publications and communications dealing

databases and networks.

He has a PhD and a master degree from " Ecole

nationale supérieure d’informatique", the degree of

"Ingenieur d'Etat" from "USTHB, Algiers".

Figure 1. The construction steps of the streaming file

Figure 2. The final result of both method:

1) The first method: Neighborhood information inserted with triangles

2) The second method: Neighborhood information inserted After triangles.

