
I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38
Published Online January 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2014.02.04

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

A Secure Symmetric Image Encryption Based on

Bit-wise Operation

Prabir Kr. Naskar

Department of Computer Science & Engineering, MCKV Institute of Engineering

Liluah, Howrah- 711204, West Bengal, India

E-mail: cse.prabir@gmail.com

Atal Chaudhuri

Department of Computer Science & Engineering, Jadavpur University

Kolkata-700032, West Bengal, India

E-mail: atalc23@gmail.com

Abstract — This paper shows a symmetric image

encryption based on bit-wise operation (XORing and

Shifting). The basic idea is block ciphering (size of each

block is 4 bytes) technique to cipher the secret bytes,

after that ciphered bytes are again shuffled among N

positions (N is the size of secret file). The scheme is

combination of substitution as well as transposition

techniques which provides additional protection of the

secret data. The substitution and transposition are done

using dynamic substitution box (SBOX) and

transposition box (TBOX) which are generated using the

secret key and made to vary for each block during

ciphering. The size of encrypted data is same as the size

of secret data and the proposed scheme has been tested

using different images. We have also presented the

security analysis such as key sensitivity analysis,

statistical analysis, and differential analysis to prove the

strength of our algorithm against crypto analysis.

Index Terms — Symmetric encryption, Block cipher,

Substitution, Transposition, Dynamic SBOX, Dynamic

TBOX, Number of pixel change rate.

I. INTRODUCTION

In modern scenario, protection of a secret image is an

important issue during transmission over internet. Due to

some intrinsic features of images, such as bulk data

capacity and high correlation among pixels, traditional

encryption algorithm such as DES [1], Triple-DES [2],

AES [3] and RSA [4] are not suitable to encrypt the

digital images. Images are different from texts in many

aspects such as high correlation among pixels and high

redundancy. Thus, a variety of new image encryption

schemes have been proposed by Wang K. et al. [5].

Although we may use the traditional encryption

algorithms to encrypt images directly, but it is not a good

idea for two reasons. The first is the image size is often

larger than text. Consequently, the traditional encryption

algorithms need longer time to directly encrypt the image

data, the second, is the decrypted text must be equal to

the original text, but this requirement is not necessary for

image data. Due to the characteristic of human perception,

a decrypted image containing small distortion is usually

acceptable [8], [14, 15, 16]. According to Shujun Li. et al.

[6] image encryption techniques try to convert an image

to another one that is hard to understand. On the other

side, image decryption retrieves the original image from

the encrypted one. There are various image encryption

schemes to encrypt and decrypt data, and there is no

single encryption algorithm satisfies the different image

types. In most of the natural images, the values of the

neighboring pixels are strongly correlated. This means

that the value of any given pixel can be reasonably

predicted from the values of its neighbors [9, 10, 11].

Most of these algorithms are designed for a specific

image format compressed or uncompressed, and some of

them are even format compliant. There are methods that

offer light encryption (degradation), while others offer

strong form of encryption. Some of the algorithms are

scalable and have different modes ranging from

degradation to strong encryption [17]. Shujun Li et al. [6]

have pointed out that all permutation only image ciphers

were insecure against known/chosen plaintext attacks. In

conclusion, they suggested that secret permutations have

to be combined with other encryption techniques to

design highly secured images. Mitra A et al.[7] have

proposed a random combinational image encryption

approach with bit, pixel and block permutations.

This paper shows a new secure encryption technique

based on bit-wise XORing and shifting operations.

Basically bit-wise operation is used for ciphering a block

of secret bytes (size of each block is 4 bytes), after that

each ciphered bytes are shuffled within N places (N is the

size of secret file). Therefore our scheme is based on

substitution as well as transposition, which provides

additional protection of the secret data. The substitution

and transposition are done using dynamic SBOX and

TBOX respectively, which are made to vary for each

block during ciphering. Also, the encrypted data is varied

for changing single bit/byte in key (Ky) and the size of

 A Secure Symmetric Image Encryption Based on Bit-wise Operation 31

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

the encrypted file is same as the original secret. That

shows the strong key sensitivity. The proposed image

encryption algorithm is described in detail along with its

security analysis such as key sensitivity analysis,

statistical analysis, and differential analysis. A

comparison in terms of correlation and number of pixels

change rate (between the secret and encrypted images)

are also done. Also the proposed scheme has been tested

using different images to prove that the encryption

method has a great potential and has a good ability to

achieve the high confidential security.

II. PROPOSED SCHEME

A. Concept

Our proposed scheme is based on bit-wise operation

and selected secret data is bmp image and the bmp image

may be rgb or gray scale image. Here only bit-wise

operation is used for ciphering the secret bytes (at a time

4 secret bytes are consider as a single block) and shuffled

each ciphered bytes, keeping the encrypted file size same

as the original secret file. Our proposed scheme satisfies

block ciphering (size of block is 4) with transposition of

ciphered bytes that is additionally added. Consider, our

secret image (S
O
) file size is N. In a bmp image, number

of bytes in a single row should be multiple of 4 bytes (i.e.

4 bytes alignment). Therefore total data bytes length is

multiple of 4 bytes. So if we consider the size of each

block is multiple of 4 bytes i.e. 4, 8, 16 etc., then no need

to add extra padding bytes to make the actual size (S
O
)

multiple of 4. Now consider the size of each block is 4

bytes and selected key (Ky) is user given variable length

key (the key size is greater than or equal to 16 bytes).

After that the Ky becomes fixed length digest string

using hash function. For an effective hash functions, an

attacker cannot find two messages that produce the same

hash. The MD4[18] is a long-used hash function which is

now broken; MD5[19] a strengthened variant of

MD4[18], is also widely used. The U.S. National

Security Agency developed the secure hash algorithm

series of MD5 like hash functions: SHA-0, SHA-1 [8] etc.

Although here we use MD5[19] hash function, but one

can use SHA-0, 1, or 2 [20]. Now using MD5[19], the Ky

becomes fixed length 16 bytes digest string (D) . So, the

D is nothing but a set of 16 one byte values.

},,,...,,{ 151413210150 ddddddD toi

If one uses another hash function then only the digest

string length will be varied (i.e. 20 bytes, 32 bytes etc).

Now from the 16 bytes digest string, a 32 bytes

encryption key (EKy) is generated using Ky and D

(II.B.3.a. function-1). This EKy is used to generate initial

dynamic substitution box (SBOX) and transposition box

(TBOX) using II.B.3.b.function-2 and II.B.3.c.function-3

respectively. The SBOX and TBOX are varied for each

block during ciphering. Therefore, it provides an

additional protection of the secret image, because only

proper decryption key generates appropriate SBOX and

TBOX (same as encryption phase), which are allowed to

reconstruct actual secret image. The SBOX is used to

cipher a block of secret bytes and TBOX is used to

shuffle each ciphered bytes within N positions (N is size

of the secret file). The transposition indexes are collision

free using the concept of linear probing.

If the decryption key (Ky‟) is different from encryption

key (Ky) i.e. Ky ≠ Ky‟, then secret reconstruction is not

possible and it generates a completely noisy image which

is impossible to guess the secret image. In this paper, our

proposed scheme is used for image, although our scheme

is equally applicable for any digital file (e.g. text, audio

etc.).

B. Algorithm

The step wise encryption and decryption algorithms

are discussed in following section. In the algorithms,

some functions are used, which are defined in section

II.B.3 and each functions are defined in form of pseudo

code.

1) Encryption:

Input: Secret Image (SO) of size N and encryption key (Ky)

Output: Encrypted Image (SE) of size N

Step-1: Enter a variable length key (Ky). This key may

be any crypto generated key, but here we use user given

variable length key. Consider the length of key is L1, L1

≥ 16.

Step-2: A 16 bytes digest string (D) is generated using

Ky. Here we use MD5 hash function to generate 16 bytes

digest string, but one can use any hash function or any

random number generator.

Step-3: Now 32 bytes encryption key (EKy) is generated

depending upon the Ky and D using function-1.

Step-4: Consider LT = 4. Now Substitution BOX (SBOX)

is generated using function-2 and the size of the SBOX is

LT×LT.

Step-5: Transposition BOX (TBOX) is generated using

function-3 and the size of the TBOX is LT×LT.

Step-6: Now, calculate total number of bytes (N1) exist

in secret data. Here the size of the secret file should be

multiple of LT. Therefore, we have to adjust secret file

size by adding some padding bytes (P, where 1 ≤ P ≤

LT-1), if N1%4 != 0. Now adjusted total number of

bytes is (N) = N1 + P. Here a bmp image is considered

as secret file (S
O
) and the bmp file size is multiple of 4

bytes for its 4 bytes alignment of each row. So, for bmp

images no need to add extra padding bytes.

Consider:

1. IndexArray[N] = {0} // An array of N location

and each location is initialized by zero.

2. SrtB[LT] = {0} // An array of LT location and

each location is initialized by zero.

Step-7: Now, LT numbers of words (W) are generated

from SBOX by applying column wise XOR operation

using function-4.

Example

32 A Secure Symmetric Image Encryption Based on Bit-wise Operation

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

A1 A2 A3 A4

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

W1 W2 W3 W4

Step-8: Select first LT number of secret bytes (S) from

S
O
 and apply following steps to generate LT number of

encrypted bytes (E) using intermediate operation such as

XORing and shifting.

1. For I = 0 To < LT-1

2. For J = 0 To < LT

3. E[J] = W[J] XOR S[J]

4. End For

5. For J = 0 To < LT

6. If (EvenParity(E[J]) =TRUE) Then

7. Rotate_Right (J, SBOX) //Jth row of SBOX rotate

right.

8. Else

9. Rotate_Left (J, SBOX) // Jth row of SBOX rotate

left.

10. End If

11. SBOX[2][J] = SBOX[2][J] XOR SrtB[J]

12. End For

13. Transpose (SBOX) i.e. SBOX[I][J] = SBOX[J][I].

14. Rotate_Right (E).

15. End For

 0 1 2 3

 0 1 2 3

0 A1 A2 A3 A4 Apply
line

no.11

for
row-2

0 A1 A2 A3 A4

1 B1 B2 B3 B4 1 B1 B2 B3 B4

2 C1 C2 C3 C4 2 C’1 C’2 C’3 C’4

3 D1 D2 D3 D4 3 D1 D2 D3 D4

 SBOX Updated SBOX

Step-9: Apply transposition of each encrypted bytes (E)

using TBOX. The step wise transposition among N

places is show below.

1. For I = 0 To < LT

2. TIndex = Transposition_Index_Generation// using

function-5

3. While (IndexArray[TIndex%N] != 0)

4. TIndex = TIndex + 1

5. End While

6. TIndex = TIndex%N

7. Write E[I] in the Encrypted file (SE) in the position

of TIndex.

8. IndexeArray[TIndex] = 1 // 1 for not available

9. SrtB[I] = S[I] // Read Secret byte will be put in SrtB

array

10. End For

11. Swap (TBOX, SBOX) // Swap two array TBOX,

SBOX

Step-10: Repeats Step-7 to Step-9 remaining (N/LT)-1

times to generate a complete encrypted file (S
E
).

2) Decryption:

Input: Encrypted Image (SE) of size N and decryption key

(Ky)

Output: Reconstructed Secret Image (SR) of size N

Step-1: Enter the key (Ky) that is same as to the

encryption key. Consider the length of key is L1.

Step-2: Generate 16 bytes digest string (D) using MD5

hash function.

Step-3: Now, Encryption Key (EKy) is generated using

function-1. Also, SBOX and TBOX are generated using

function-2 and function-3 respectively.

Step-4: Calculate total number of bytes (N) present in

encrypted data (S
E
).

Consider:

1. IndexArray[N] = {0} // An array of N location

and each location is initialized by zero.

2. SrtB[LT] = {0} // An array of LT location and

each location is initialized by zero.

Step-5: Now, LT numbers of words (W) are generated

from SBOX by applying column wise XOR operation

using function-4.

Step-6: Select each shuffled encrypted byte (E) from S
E
,

using function-5. A step wise algorithm for selecting of

shuffled bytes is shown below.

1. For I = 0 To <LT

2. TIndex = Transposition_Index_Generation // using

function-5

3. While (IndexArray[TIndex%N] != 0)

4. TIndex = TIndex + 1

5. End While

6. TIndex = TIndex%N

7. Goto at TIndex position of encrypted file (SE) and

Read E[I]

8. IndexArray[TIndex]=1 //0 for available and 1 for

not available

9. End For

Step-7: From step-6, LT numbers of encrypted bytes (E)

are selected and the following steps are used to generate

LT number of secret bytes (S).

1. For I = 0 To <LT-1

2. For J = 0 To LT

3. S[J] = W[J] XOR E[J]

4. End For

5. For J = 0 To <LT

6. If (EvenParity(E[J]) =TRUE) Then

7. Rotate_Right (J, SBOX) // Jth row of SBOX rotate

right.

Else

8. Rotate_Left (J, SBOX) // Jth row of SBOX rotate

left.

9. End If

10. SBOX[2][J] = SBOX[2][J] XOR SrtB[J]

11. End For

12. Rotate_Right (S)

13. Transpose (SBOX) i.e. SBOX[I][J] = SBOX[J][I].

 A Secure Symmetric Image Encryption Based on Bit-wise Operation 33

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

14. End For

15. For I = 0 To <LT

16. Write S[I] in decrypted file SR.

17. SrtB[I] = S[I] //put decrypted secret byte in SrtB

array

18. End For

19. Swap (TBOX, SBOX)

Step-8: Repeats Step-5 to Step-7 remaining (N/LT)-1

times to reconstruct the secret S
R
.

3) Control function:

In this section, we discuss some control functions,

which are used in our algorithm. The control functions

are shown in the form of pseudo code.

a) Function-1: This function is used to expand the

user given key (Ky). The expanded encryption key (EKy)

is generated using Ky and digest string (D). The size of

EKy is 32 bytes.

 Encryption_Key_Generation (EKy, Ky, D) {

1. P1 = 0, P2=0, P3=0

2. For In = 0 To <32

3. If (In%2=0) Then

4. EKy[In] = D[P1++]

5. Else

6. EKy[In] = (D[P2] XOR D[++P2]) XOR

Ky[(P3++)%L1]

7. End If

8. End For

}

b) Function-2: This function is used to generate

LT×LT substitution box (SBOX) using EKy. Among 32

bytes of EKy, the first 16 bytes is used to generate SBOX.

But one can use any 16 bytes value of EKy to generate

SBOX.

 SBOX_Generation (SBOX, EKy) {

1. P = 0;

2. For I = 0 To <LT

3. For J = 0 To <LT

4. SBOX[I][J] = EKy[P]

5. P = P + 1

6. End For

7. End For

}

c) Function-3: The following pseudo code is used to

generate LTxLT transposition box (TBOX). Here we use

remaining 16 bytes (another 16 bytes is used to generate

SBOX) of EKy to generate TBOX.

 TBOX_Generation (TBOX, EKy) {

1. P = 16;

2. For I = 0 To <LT

3. For J = 0 To <LT

4. TBOX[I][J] = EKy[P]

5. P = P + 1

6. End For

7. End For

}

d) Function-4: This function is used to generate word

by applying column wise xoring of SBOX.

 WORD_Generation (SBOX, W) {

1. For I = 0 To <LT

2. For J = 0 To <LT

3. W[I] = W[I] XOR SBOX[I][J]

4. End For

5. End For

}

e) Function-5: The following pseudo code is used to

transposition each ciphered bytes among N places (N is

the size of secret file) using TBOX.

 Transpostion_Index_Generation (TBOX, J) {

1. TIndex = 0

2. For I= 0 To <LT

3. TIndex = TIndex ShiftLeft I

4. TIndex = TIndex OR TBOX[J][I]

5. End For

6. Return TIndex

}

III. RESULTS & DISCUSSIONS

Due to bulk data capacity, high correlation among

pixels, digital image encryption is different from that of

texts. But following experimental result shows strong

effect of our scheme for digital images.

A. Experimental result for rgb image

A 24 bit (453×395) bmp image is shown in Fig. 1.a as

secret image. This image is encrypted using the key

“hydrophobophobia” and the encrypted image is shown

in the Fig.1.b. Also the following figure shows the

lossless reconstructed secret image (Fig.1.c) using proper

decryption key (“hydrophobophobia”) and failure of

secret image reconstruction using wrong key

“Hydrophobophobia” (Fig.1.d). Underline character

indicates the differing character between two keys, which

is only one byte difference between two keys.

Figure 1. a.

TestImg1.bmp

(453×395)

Figure 1. b. EncData.bmp

(453×395), encrypt using

Key: “hydrophobophobia”

34 A Secure Symmetric Image Encryption Based on Bit-wise Operation

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

Figure 1. c. Decdata.bmp

(453×395), decrypt using

Key: “hydrophobophobia”

Figure 1. d. Decdata.bmp

(453×395), decrypt using

wrong Key:

“Hydrophobophobia”.

Figure 1. 24 bit bmp image file encryption and

decryption

The following graph (graph-1) shows the steep

fluctuation in the indexing (transposition of ciphered

bytes) caused by linear probing for two keys (single byte

difference).

Graph-1. Transposition index of 52 bytes data for two keys (one

byte difference).

B. Experimental result for gray scale image

A (562×431) gray scale image TestImg2.bmp (Fig.2.a)

is selected as secret image. This image is encrypted using

the key “anti-federalists” (Fig.2.b). Fig.2.c shows the

lossless reconstruction of secret image using proper

decryption key and Fig.2.d shows the secret image

reconstruction failure for wrong decryption key (“anti-

federalistt”).

Figure 2. a.

TestImg2.bmp

(562×431)

Figure 2. b. EncData.bmp

(562×431), encrypt using

Key: ”anti-federalists”

Figure 2. c.

Decdata.bmp

(562×431), decrypt

using Key: ”anti-

federalists”

Figure 2. d. Decdata.bmp

(562×431), decrypt using

wrong key: ”anti-federalistt”

Figure 2. 8-bit bmp image file encryption and

decryption

The Fig.2.c shows reconstructed secret image using the

key “anti-federalists” and Fig.2.d shows reconstructed

noisy image using the wrong key “anti_federalistt”. That

has single bit difference from the original encryption key

which is represented by underline (ASCII value of „s‟, „t‟

are 115 and 116 respectively).

Following figure shows some other experimental

results for different gray scale images.

Original Image Encrypted Image

Figure 3.1 (a). Img-

1.bmp

Figure 3.1 (b). EImg-1.bmp,

Key: “1234567890987654”

Figure 3.2 (a). Img-

2.bmp

Figure 3.2 (b). EImg-2.bmp,

Key: “abcdefghijklmnop”

Figure 3.3 (a). Img-

3.bmp

Figure 3.3 (b). EImg-3.bmp,

Key: :”a1b2c3d4e5f6g7h8”

Figure 3. Different original images and encrypted images

IV. STRENGTH & SECURITY ANALYSIS

A secure encryption algorithm should be robust against

all types of attacks such as cryptanalytic, statistical and

brute-force attacks. Here we discuss the security analysis

 A Secure Symmetric Image Encryption Based on Bit-wise Operation 35

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

of the proposed algorithm by addressing key space and

key sensitivity analysis, statistical analysis, and

differential analysis. The resistance against different

types of attack is useful measure of the performance of a

cryptosystem. Therefore some security analysis results

are incorporated in the following section to prove the

validity of our proposed scheme.

A. Key Space and Key Sensitivity analysis

A good cryptosystem should have sufficiently large

key space to make the brute-force attack infeasible. Key

spaces imply the total number of different keys which

can be used for the purpose of encryption and decryption.

The algorithm proposed in the paper uses a 16 characters,

i.e. 16×8=128 bits key, so that the key space is 2
128

,

which is large to avoid brute-force. Also we expand the

16 bytes key to 32 bytes key, i.e. 32×8 = 256, so the key

space is 2
256

, which is large enough to avoid brute-force

attack according to the present computational speed. On

the other hand the encryption and decryption algorithm is

highly sensitive to the secret key. This scheme generates

a completely different encrypted/decrypted image only

for single bit/byte difference in key.

The Fig.1 and Fig.2 show that the decryption is

possible only with proper key. A single bit difference key

produces a completely noisy image in decryption phase.

Because different key produces different SBOX and

TBOX, therefore it produces different transposition index

(graph-1). Following figure shows different encrypted

images with single bit difference key for same secret

image.

Encrypted Image

Figure 4.2. Enc1.bmp

Original Image

Figure 4.1. Img-4.bmp

Key:

“manganotantalite”

Figure 4.3. Enc2.bmp

Key: “nanganotantalite”

Figure 4. Key Sensitivity

The secret image Fig.4.1 is encrypted using two keys

and generates Fig.4.2 and Fig.4.3 as encrypted images.

The keys have single bit difference and underline

character shows the difference between two keys.

 Correlation between Fig.4.1 & Fig.4.2 is [0.0016].

 Correlation between Fig.4.1 & Fig.4.3 is [0.0021].

 Correlation between two encrypted images (Fig.4.2

& Fig.4.3) is [0.0019].

Above correlation values show that the algorithm of

the cryptosystem is highly sensitive to the secrete key

and it guarantees the security against known plain-text

attack. Also small changes in the key should cause a

drastic change in the encrypted data. Therefore, here

exists avalanche effect that is a desirable property of

cryptographic algorithm.

The following graph (graph-2) shows the transposition

indexes for the key “manganotantalite” and

“nanganotantalite” of 52 bytes data.

Graph-2. Transposition index of 52 bytes data for two keys (one

bit difference).

B. Statistical Analysis

Statistical analysis is crucial importance for a

cryptosystem. An ideal cryptosystem should be resistive

against any statistical attack. To prove the robustness of

the proposed algorithm, we have performed the following

statistical test such as histogram analysis, correlation

analysis, etc.

1) Histogram analysis: The histogram analysis

clarifies how pixels in an image are distributed by

plotting the number of pixels at each intensity level.

Histogram analyses on rgb and gray scale secret images

with respect to encrypted images are shown in following

Fig.5, 6. The histogram of encrypted image has uniform

distribution which is significantly different from original

image and has no statistical similarity in appearance.

Original Image

Figure 1. a

Encrypted Image

Figure 1. b

Red component Red component

36 A Secure Symmetric Image Encryption Based on Bit-wise Operation

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

Green component

Green component

Blue component Blue component

Figure 5. Histogram of rgb secret image and encrypted image

Fig-5 shows histogram of original rgb image (Fig.1.a)

and encrypted image (Fig.1.b). Histogram of ciphered

image is fairly uniform for red, green and blue

component and is significantly different from that of the

original image.

Original Image

Figure 2. a

Encrypted Image

Figure 2. b

Figure 6. Histogram of gray scale secret image and

encrypted image

Fig.6 shows histogram of original gray image (Fig.2.a)

and encrypted image (Fig.2.b). This figure shows that the

histogram of the ciphered image is fairly uniform and is

significantly different from that of the original image.

2) Correlation value: A secure encryption scheme

must generate an encrypted image independent of the

original secret image. Therefore, they must have a very

low correlation coefficient which is very closer to zero.

Here, we calculate the correlation between original and

encrypted image using equation 1.

2 2

()()

(() (()

mn mn

m n

mn mn

m n m n

A A B B

r
A A B B

 (1)

Where A and B are mean of A and B respectively. A

low value of correlation coefficient shows that there is no

straight relation between the original and encrypted

images. Table-I shows the correlation values between

different gray scale secret and encrypted images for

different keys. Also, table-I shows the correlation

between original secret image and reconstructed image.

TABLE I. CORRELATION BETWEEN ORIGINAL IMAGE

& ENCRYPTED IMAGE

Input Images
Correlation Value

Original image Vs. Encrypted image

Fig. 2.a & Fig. 2.b 0.00082

Fig. 3.1(a) & Fig. 3.1(b) -0.0013

Fig. 3.2(a) & Fig. 3.2(b) 0.0028

Fig. 3.3(a) & Fig. 3.3(b) 0.00086

Original image Vs. Decrypted image

Fig. 2.a & Fig. 2.c 1.0000

The correlation coefficients are used to measure the

similarities between the two images. The large

correlation value implies the best match between the two

images. Above result shows that a low correlation value

exists between original and encrypted images. Therefore

encrypted image is completely different from original

image. Also we get the correlation value 1 between

original image and decrypted image. That is the lossless

reconstruction of secret image.

3) Differential Attack: The major requirement of all

the encryption techniques is the encrypted image should

be greatly different from its original form. The Number

of Pixel Change Rate (NPCR) is used to measure the

number of pixels in difference of gray level in two

images. Let C(i, j) and C‟(i, j) be the ith row and jth

column pixel of two images C and C‟, respectively, the

NPCR can be defined as

,
(,)

100
i j

D i j
NPCR

N

 (2)

Where N is the total number of pixels in the image and

D(i, j) is defined as

),('),(

),('),(

1

0
),(

jiCjiC

jiCjiC
jiD

The NPCR calculates for various images using

equation-2. The test results for NPCR are shown in

Table-II. The high value of NPCR means the pixel values

are dramatically randomized. This result indicates that

the plain-image and the encrypted image are significantly

different from one another, so the proposed algorithm is

highly resistive against differential attack.

 A Secure Symmetric Image Encryption Based on Bit-wise Operation 37

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

TABLE II. NPCR VALUE BETWEEN ORIGINAL IMAGE &

ENCRYPTED IMAGE

Input Images Number of Pixel
Change Rate

(NPCR) Original image Vs. Encrypted image

Fig. 2.a & Fig. 2.b 99.687

Fig. 3.1(a) & Fig. 3.1(b) 99.618

Fig. 3.2(a) & Fig. 3.2(b) 99.599

Fig. 3.3(a) & Fig. 3.3(b) 99.607

Original image Vs. Decrypted image

Fig. 2.a & Fig. 2.c 0.000

The following graph-3 shows percentage of each gray

scale value of figure-3.3(a) as original and figure-3.3(b)

as encrypted image.

Graph-3. Percentage of each gray scale value of original image

(fig.3.3(a)) & encrypted image (fig.3.3(b))

4) MSE & PSNR measure: The Mean Square Error

(MSE) and Peak Signal to Noise Ratio (PSNR) for the

proposed technique have been computed for different

images. The high value of MSE and low value of PSNR

causes the resulting encrypted image more randomness.

MSE is calculated using the formula

2

1 1

1
(,) '(,)

N M

i j
MSE C i j C i j

MN
 (3)

Where, c(I, j) and c‟(I, j) be the ith row and jth column

pixel of two images C and C‟, respectively. M and N are

number of rows and columns of original image.

PSNR can be computed by

2

1010 log
R

PSNR
MSE

 (4)

Where R is 255 as gray image has been used in this

experiment. Calculated results of MSE and PSNR are

tabulated in the following table.

TABLE III. MSE & PSNR VALUE BETWEEN ORIGINAL

IMAGE & ENCRYPTED IMAGE

Input Images
MSE PSNR

Original image Vs. Encrypted image

Fig. 2.a & Fig. 2.b 129.631 25.253

Fig. 3.1(a) & Fig. 3.1(b) 105.629 27.893

Fig. 3.2(a) & Fig. 3.2(b) 200.496 25.109

Fig. 3.3(a) & Fig. 3.3(b) 166.815 29.882

Original image Vs. Decrypted image

Fig. 2.a & Fig. 2.c 0.0000 100.000

High value MSE and low value PSNR indicates that

two images are completely different. On the other hand,

high value of PSNR is indicates the high quality image.

5) Encryption/decryption speed: For real-time

application, it is very important issue to consider running

speed of encryption and decryption processes. Following

table shows the results of encryption/decryption speeds

on 8-bit gray-scale images of different sizes. Here test is

performed under the configuration of Core-i3 with 2 GB

ram.

TABLE IV. ENCRYPTION & DECRYPTION SPEED

Dimension
(bmp/bit depth=8)

Size
Encryption
(In Sec.)

Decryption
(In Sec.)

215×210 45.3 KB 1 1

562×431 238 KB 3 2

803×554 436 KB 5 3

1500×1500 2.14 MB 13 12

V. CONCLUSION

This is a secured encryption technique for digital

image; it is equally applicable for any digital file (e.g.

text, image and audio etc.). The bit-wise XORing and

shifting operation are used to cipher a block of secret

bytes and then each ciphered bytes are shuffled within N

places (N is the size of secret). This is the combination of

substitution and transposition technique performed using

dynamic SBOX and TBOX. The key for the proposed

cryptosystem is very large which provides better security

against brute-force attack. Moreover, key sensitivity

analysis, statistical analysis and differential attack

analysis prove the high acceptability of the proposed

algorithm.

ACKNOWLEDGMENT

We are thankful to the Department of Computer Science

and Engineering of MCKV Institute of Engineering,

West Bengal, India and Jadavpur University, West

Bengal, India for giving us the platform for planning and

developing this work in the departmental laboratories.

38 A Secure Symmetric Image Encryption Based on Bit-wise Operation

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 2, 30-38

REFERENCES

[1] National Bureau of Standards, “Data Encryption

Standard,” FIPS Publication 46, 1977.

[2] NIST, Recommendation for the Triple Data

Encryption Algorithm (TDEA) Block Cipher,

Special Publication 800-67.

[3] Daemen, J., and Rijmen, V. "Rijndael: The

Advanced Encryption Standard." Dr. Dobb's Journal,

March 2001.

[4] Rivest, R.; A. Shamir; L. Adleman (1978). "A

Method for Obtaining Digital Signatures and

Public-Key Cryptosystems". Communications of the

ACM 21 (2): 120–126.

[5] K. Wang , Pei , Z. Liuhua ,S. Aiguo Song, H.

Zhenya, "On the security of 3D Cat map based

symmetric image encryption scheme," Elsevier,

Physics Letters A, Vol. 343, Issue 6, 2005, pp. 432–

439.

[6] Li. Shujun, X. Zheng "Cryptanalysis of a chaotic

image encryption method," Inst. of Image Process.

Xi'an Jiaotong Univ., Shaanxi, This paper appears in:

Circuits and Systems, ISCAS 2002. IEEE

International Symposium on Publication Date: 2002,

Vol. 2, 2002, pp. 708,711.

[7] A. Mitra, Y V. Subba Rao, and S. R. M. Prasnna, "A

new image encryption approach using

combinational permutation techniques," Journal of

computer Science, vol. 1, no. 1, 2006, p.127.

[8] R. m. Syed, "Anew encryption algorithm for high

throughput multimedia," IN: Interactive Multimedia

Systems, 2002, p. 269.

[9] S. P. Nana'Vati and K. P. Prasanta, "Wavelets:

Applications to Image Compression-I," Joined of

the Scientific and Engineering Computing. Vol. 9,

No.3: 2004, PP. 4-10.

[10] C. Ratael, gonzales, e. Richard, and woods, "Digital

image processing," 2nd ed, Prentice hall, 2002.

[11] AL. Vitali, A. Borneo, M. Fumagalli and R. Rinaldo,

"Video over IP using standard-compatible multiple

description coding," Journal of Zhejiang University-

Science A, vol. 7, no. 5 ,2006, pp. 668- 676.

[12] C. Harris, "ITN584 Access Control & Smart Cards,"

research paper, 2001.

[13] G. C. Kessler, "An Overview of Cryptography,"

published by Auerbach, 1998' (22 Desember 2007).

[14] S. Han, and S. Yang, "An Asymmetric Image

Encryption Based on Matrix Transformation," ecti

transactions on computer and information

technology vol. 1, no. 2, 2005.

[15] D. Salomon, "Data compression, Image

compression," Fourth addition, Springer London,

2005, pp. 263-530.

[16] I. Ozturk, and I.Sogukpinar, "Analysis and

comparison of image encryption algorithm,"

International Journal of Information Technology,

Vol. 1, no. 2, pp. 64-67.

[17] S.S. Maniccam, N.G. Bourbakis, "Image and video

encryption using SCAN patterns," Journal of Pattern

Recognition Society, vol. 37, no. 4, pp.725–737,

2004.

[18] "The MD4 Message Digest Algorithm"- Network

Working Group. 1990-10. Retrieved 2011-04-29.

[19] R. Rivest -'The MD5 Message-Digest Algorithm‟

1991, RFC: 1321.

[20] FIPS 180-2: Secure Hash Standard (SHS) (PDF,

236 kB) – Current version of the Secure Hash

Standard (SHA-1, SHA-224, SHA-256, SHA-384,

and SHA-512), 1 August 2002, amended 25

February 2004.

Prabir Kr. Naskar, B.Tech from Govt.

College of Engineering & L.T. (WBUT),

West Bengal, India and M.Tech from

Jadavpur University, West Bengal,

India, is presently working as Assistant

Professor in the Department of

Computer Science & Engineering,

MCKV Institute of Engineering, West Bengal, India.

Currently he is doing his research work at Jadavpur

University, West Bengal, India. His current research

interests include: cryptography, information sharing,

steganography, watermarking and image processing.

Prof. Atal Chaudhuri, B.E., M.E. &

PhD from Jadavpur University, West

Bengal, India, is working in the

Department of Computer Science &

Engineering, Jadavpur University, West

Bengal, India for last 29 years. His

current research interests include:

embedded system, cryptography, information sharing,

steganography, watermarking and data mining.

How to cite this paper: Prabir Kr. Naskar,Atal Chaudhuri,"A Secure Symmetric Image Encryption Based on Bit-wise

Operation", IJIGSP, vol.6, no.2, pp.30-38, 2014.DOI: 10.5815/ijigsp.2014.02.04

