
I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9
Published Online April 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2014.05.01

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

Block Texture Pattern Detection Based on

Smoothness and Complexity of Neighborhood

Pixels

Amir Farhad Nilizadeh

Department of Computer Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Email: amirfarhad.nilizadeh@gmail.com

Ahmad Reza Naghsh Nilchi

Department of Artificial Intelligence and Multimedia Engineering, University of Isfahan, Iran

Email: nilchi@eng.ui.ac.ir

Abstract—In this paper, a novel method for detecting

Block Texture Patterns (BTP), based on two measures:

smoothness and complexity of neighborhood pixels is

proposed. With these two measures, a new classification

for texture detection is defined. Texture detection with

these measures can be used in many image processing

and computer vision applications. As an example, the

applicability of BTP on data hiding algorithms is

discussed, and the advantages of this classification on

these algorithms are shown.

Index Terms—Image classification; Texture analysis;

Block texture pattern; Texture complexity; Data hiding;

LSB; PVD; Matrix pattern (MP).

I. INTRODUCTION

Texture modeling is an active area and has been

studied over the past three decades. In this subject,

depending on the size and the spatial arrangement of the

texture elements, texture images are grouped into macro,

micro, periodic, aperiodic, coarse, fine, regular, random,

weak, strong, stochastic, non-stochastic, deterministic and

non-deterministic textures [1]. Also, most of the texture

modeling techniques can be grouped into either statistical

or structural methods [2]. In this paper, our method is

based on statistical techniques. Some well-known

statistical methods includes spatial gray-level co-

occurrence matrices [3], Gaussian-Markov random field

[4], Fourier power spectrum, gray-level run-length, gray-

level difference matrices [5], texture energy measures [6],

fuzzy techniques [7, 8]. The other newest texture models

are stand wavelet, Gabor filter and fractal dimension

which are highly addressed in [9, 10, 11, 12 and 13].

The degree of smoothness and complexity in a block

texture pattern has a key role in image processing and

computer vision. Complexity of images is not only been

used in image recognizers [14], but also has been used by

content-based image retrieval (CBIR) [15], data hiding

algorithms [16], and detecting the different geographic

region such as old-growth forest ecosystem [17]. In

addition, detecting a region in images with different

measure of smoothness and roughness is important for

detecting and removing noises in images [18]. Also,

knowing the measure of smoothness in different region of

an image can improve the watermarking and

steganography algorithms which hide secret messages in

spatial domain of an image. For example, as it will be

illustrated in this paper, it can effectively improve the

performance of Pixel Value Differencing (PVD)

algorithm.

In this paper, firstly, the definition of smoothness and

complexity are discussed, and a new categorization of

texture is defined in Section 2. Then, in Section 3 we

develop a new statistical method for categorizing a block

texture based on smoothness and complexity measures.

This method is mainly based on calculating the difference

between neighborhood pixels and the variance of the

elements in a BxB block. In Section 4, results of proposed

algorithm are shown, which is implemented with

MATLAB. The results show that this method can

determine the texture blocks base on smoothness and

complexity of an image with high confidence. Next, the

effects of this texture classification are illustrated on three

different steganography algorithms in spatial domain

which are include Least Significant Bit (LSB) [19], Pixel

Value Differencing (PVD) [20] and a steganography

algorithm based on Matrix Pattern (MP) [21].

II. SMOOTHNESS AND COMPLEXITY

In this section we discuss about two measures of

smoothness and complexity in details.

In an image, a smooth region is defined as a uniform

area where the difference between two adjacent pixels is

small. Usually, an image has several uniform smooth

regions, which are separated from each other by some

edges. In other words, edges identify the boundaries

between areas in an image, which can help for

segmentation and object recognition [22].

The efficiency and performance of many image

processing and computer vision algorithms and methods

2 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

can be improved if the degree of smoothness in the

texture can be accurately and efficiently identified. For

example, PVD [20], a well-known steganography

algorithm, hides less data in smooth areas in than edge

regions, and it has been shown that finding the areas with

the smaller smoothness degrees enhances the

performance of the algorithm.

Complexity of binary blocks has been defined by

Kawaguchi et al. [23] as the number of changes between

black and white pixels in vertical and horizontal

directions. As an illustration, in an 8x8 block, the

maximum possible changes are 112 in a chessboard

pattern. This measure has been used in their

steganography algorithm for hiding the data in the

complex blocks. In this paper, complexity degree is

applied similarly, but on the gray-level of images.

In this section, we classify block texture patterns to

four major groups based on their smoothness and

complexity values:

 Edge (low smoothness) with no complexity: A

block is in this class if the total number of

difference between neighborhood pixels of the

block is not high, i.e. the complexity is low; but

an edge drastically changes the neighborhoods

in a part of block, i.e. low smoothness. Figure 1

shows a sample of black and white block with

low smoothness and no complexity.

Figure 1. Block with low complexity and low

smoothness

 Edge (low smoothness) with high complexity:
This class includes blocks that their

neighborhood pixels are highly different. In

other words, both edge and complexity measures

are high. A block of this kind, in the best case

would be a fine texture that has been described

by Arivazhagan et al. [1]. Figure 2 illustrates a

binary block with this kind of texture.

Figure 2. Block with high complexity and low

smoothness

 Smoothness with no complexity: In this class

of blocks, the texture is plain and neighborhood

pixels are similar to each other, i.e. the block has

high smoothness. Also, the values of most of

neighborhood pixels are the same; thus, the

block has no complexity. A complete black or

white block is an example of smoothness with

no complexity.

 Smoothness with high complexity: This class

of blocks may be seen in gray-scale images. In

this class of blocks, the difference between

neighborhood pixels is not high, i.e. the texture

is smooth; on the other hand, the values of

neighborhood pixels are not the same, i.e. the

complexity of the block is high. Note that in

smooth areas, it is possible that neighborhood

pixels do not be the same. This mild difference

between every neighborhood pixel makes the

texture both complex and smooth. In our

classification, we name the forth group as the

perfect case of “fine texture in smooth region”.

“Fine texture” has been defined by Arivazhagan et al.

[1] as a texture that its primitives are small (number of

pixels which are use for a main shape of texture are less)

while the tonal difference between neighborhood

primitives is large. In contrast, in a coarse texture block,

the primitives are larger and consist of several pixels [1,

24]. Figure 3 [1] shows the difference between fine and

coarse textures.

a

b

Figure 3. a) Fine texture b) Coarse texture

As you may notice, it seems that there is a conflict

between definition of fine texture and smooth region. In a

fine texture, neighborhood pixels are highly different,

while in a smooth area the pixels are similar to each other.

Finding such area would be a challenge. To determine

fine textures in a smooth region, we extract some blocks

in the smooth region of image that its primary

neighborhood pixels (by primary neighborhood pixels,

we mean 8 neighbors pixels) be different enough. In other

words, comparing to the uniformity of region, the

 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels 3

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

deference between primary neighborhood pixels should

be high and do not be the same as each other.

III. METHOD

For grouping blocks in an image, at first, RGB layers

of image are separated, then, the brightness of the whole

image is computed by (1) [25, 26].

 (1)

Then, the image is divided to the BxB blocks with fix

sizes. The degrees of smoothness and complexity of

blocks texture are calculated by applying the following

steps:

At first, for identifying the smoothness degree of

blocks, the variance of gray-level of image brightness is

computed. Equations (2) and (3) show the formula for

calculating the variance of BxB block.

 ∑
 ⁄ (2)

In (2), the two-dimensional block is transformed to a

one-dimensional block named “P”.

∑ ()

 (3)

Having more variance in each BxB block shows that

the block is less smooth and vice versa.

Several algorithms have been proposed for

obtaining the complexity of a binary block. For example,

Kawaguchi et al. [23] determined the complexity by

calculating the number of changes between black and

white in vertical and horizontal dimensions. In this paper,

we have improved their algorithm. Note that, we are

trying to identify the complexity of gray blocks and not

binary (black and white) blocks. For that, we propose an

algorithm that modifies the gray-level image to a binary

one by averaging each block using (2). Then, each pixel

in the block is compared with the average, if it is equal to

or higher than the average, it is modified to one (white),

and if it is lowers than the average, it is set to zero (black).

Finally, the numbers of changes in the block from black

to white and vice versa is counted. Figure 4 shows the

counting step for an 8x8 block in both vertical and

horizontal orders as well as in diametrical (from upper

left corner and upper right corner) order.

a

b

c

d

Figure 4. a) Vertical counting b) Horizontal counting c)

Diametrical counting from upper left d) Diametrical counting

from upper right

For estimating the complexity of each BxB block, as

mentioned before, first the block is transforms to a binary

block, then, the number of changes from a pixel to

another one is calculated in both vertical and horizontal

as well diametrical orders. Being divided by the

maximum possible changes for that order normalizes the

obtained numbers.

Equations (4) and (5) are used for calculating the

complexity in vertical and horizontal orders. As shown by

Kawaguchi et al. [23], the maximum possible changes in

a square block in any of vertical and horizontal is equal to

B*(B-1).

 ⁄ (4)

 ⁄ (5)

In (4) “V” is the number of changes in vertical order

and in (5) “H” shows the number of changes in

horizontal order.

Here, we show the maximum changes that is possible

to occur in the diametrical order for a BxB block:

To calculate the maximum number of changes when the

pixels in the block are traversed in diametrical order, we

4 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

need to find the maximum number of changes in all the

diameters. A BxB block has (2*B)-1 diameters with

lengths of B, B-1, …, 2. The main diameter in a BxB

block has B consecutive pixels and the maximum

possible pixel change between them is (B-1). The next

two longest diameters include (B-1) pixels with

maximum (B-2) possible changes. As it has been

illustrated in Figure 5, an 8x8 block, the main diameter

has 8 pixels with maximum 7 possible changes, and the

next two longest diameters in green have 7 pixels with 6

possible changes. And obviously, the two shortest

diameters pixels, in red, maximum can have only one

possible change from one pixel to another.

Figure 5. A sample 8x8 block by different diameter size

Thus, the formula for calculating the maximum

possible changes in diametrical order is:

 ∑
 (6)

Equation (7) is always true [27]:

∑

 (7)

By using (7) in (6), we get (8).

 (8)

By simplifying (8), equation (9) is achieved.

 (9)

The maximum number of possible changes for the

other set of diameters, the ones started from upper right

corner, is equal to (B-1)
2
 as well.

Thus, the complexity for diametrical orders can be

computed by (10) and (11):

 ⁄
 (10)

 ⁄
 (11)

For computing the complexity of the whole block, the

value of all of the measures: “Ver”, “Hor”, “Dia1” and

“Dia2” are sum upped. Then, the result is normalized by

being divided by the maximum possible change in the

entire block. For calculating the maximum possible

changes in a block, we cannot simply sum up all of the

maximum possible changes in the vertical, horizontal and

two diametrical orders. Because these measures are not

independent, and it is impossible to have a pattern which

has the maximum changes of all four measures at the

same time. Kawaguchi et al. [23] have shown that the

chessboard pattern has the maximum possible changes in

vertical and horizontal ways. Figure 6 shows an 8x8

block with chessboard pattern.

Figure 6. A chessboard pattern

You can see although chessboard pattern shows the

maximum possible changes in vertical and horizontal

orders, there is no pixel change in any of the diametrical

orders. In other words, the maximum possible change in

this kind of pattern can be calculated with (12).

 (12)

A pattern includes the maximum pixel changes in the

diametric orders, if it has a black and white row or

column in decussate. Figure 7 indicates two examples of

8x8 patterns that have the maximum possible changes in

the diametric orders. In addition, these patterns show the

most possible changes in vertical or horizontal ways.

Figure 7. Decussate patterns with high changes in diametrical

ways

Equation (13) computes the number of pixel change in

patterns shown in Figure 7.

 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels 5

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

 (13)

Equation (14) shows the subtraction of (13) from (12).

If this value becomes positive for any block, it means the

maximum possible change in decussate pattern is more

than the chessboard pattern and vice a verse. It is obvious

that the least block size is 2x2.

 (14)

As (14) shows, the value of “A” for each block size is

positive or zero; thus the possible changes in decussate

pattern is more than chessboard pattern, and in worse

case they are equal.

Notice that patterns without equal number of black and

white pixels have less number of pixel changes, and

random patterns with equal black and white pixels cannot

have more changes than decussate patterns. Thus, for

normalizing the complexity of a block, the sum of

vertical, horizontal and both diametrical measures are

divided by the maximum possible changes calculated by

(13).

If the number of changes in one of the vertical,

horizontal or any of the two diametrical is zero (or near

zero), but the amount of changes in the whole block is

high, it means that the block has a consistent pattern. As

Figure 8 shows, the chessboard pattern in left does not

have any changes in diametrical ways and block in right

does not have any changes in vertical order. Patterns in

Figure 6 and Figure 7 have this trait as well.

Figure 8. Two blocks with high change with consistent pattern

Our method for detecting the complexity of binary

blocks is more efficient than the method used in BPCS

algorithm [23], because for calculating the new

complexity measure, the changes between black and

white pixels in diametrical orders are considered as well.

IV. IMPLEMENTATION

We applied MATLAB to implement and evaluate our

proposed algorithm. The inputs to the algorithm are: an

image, size of BxB blocks, the threshold values for

changing parameters in vertical, horizontal, and

diametrical measures, and the threshold values for total

changes between primary neighborhood pixels. The

results indicate that this method can successfully detect

the type of texture of any of the blocks.

Figure 9.a shows an image that includes blocks with

edge (low smoothness) and low complexity. The size of

each block in this image is 64x64, 4096 pixels in each

block. The selected blocks are those in yellow squares.

Figure 9.a. Blocks with edge and no complexity

One of the chosen blocks is illustrated in RGB, gray

and binary scales in Figure 9.b. Notice that the binary

image is created by comparing each pixel with the

average of pixels in gray-scale format.

Figure 9.b. Block with edge and low complexity

In Figure 10.a, the blocks with edge and high

complexity are shown in yellow squares.

Figure 10.a. Blocks by edge and high complexity

One of the selected blocks is shown in Figure 10.b.

Figure 10.b. A block with edge and high complexity

6 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

Figure 11.a indicates some blocks with high

smoothness and low complexity measures in yellow

squares.

Figure 11.a. Blocks by high smoothness and low complexity

Figure 11.b shows a chosen block in RGB, the gray-

scale and the binary format.

Figure 11.b. A block with high smoothness and low complexity

The studied image does not have appropriate blocks

with high smoothness and high complexity. Figure 12.a

shows another image and some selected 64x64 blocks

with the high smoothness and complexity.

Figure 12.a. Blocks by high smoothness and high complexity

Figure 12.b. illustrates the RGB, the gray-scale level

and the binary layout of a selected block.

Figure 12.b. A sample of high smoothness and high complexity

The enlarged gray-level images of blocks show the

degree of smoothness, and the binary images of them

show the complexity of blocks’ texture patterns. The

selected block in Figure 9.b has edge shown in gray-level

block with no complexity between its neighborhoods’

pixels which is indicated in binary block. Also, Figure

10.b has high edge and high complexity. The expanded

block in Figure 11.b has high smoothness and uniformity

in the gray-level block, and low complexity shown in

black and white. Finally, the enlarged block in Figure

12.b, an example of fine texture in smooth area, has high

smoothness while its pixels in gray-level format are

similar, but not the same.

V. APPLICATIONS

Detecting the smoothness and complexity of images

could be vital for image processing applications including

data hiding. In data hiding algorithm, which images are

used as covers for secret messages, these parameters have

a key roles for detecting the best region for hiding secrets.

A well-known algorithm, PVD, is more efficient when it

can hide data in an area within edges [20, 28]. In addition,

the new matrix pattern based steganography system

presented earlier by the authors can produce matrix

patterns faster in the blocks of image with high

complexity, and it can be used for assigning more parts of

the blocks of image for inserting secret message [21].

Moreover, the algorithm presented in that article

calculates the difference between the neighborhoods’

pixels to produce a “matrix pattern” and distribute it

through the whole block. Thus, in the presented algorithm

[21], the best block texture patterns for data hiding may

be those having both high smoothness and complexity, as

well as fine texture in smooth area. On the other hand,

LSB, the most well-known data hiding algorithm in

spatial domain, can be used in different texture patterns

and gets good results. To increase the hiding capacity,

steganography based LSB methods can select smooth

region while other spatial domain algorithms such as

PVD can use the remaining region of the image [29, 30

and 31].

 For comparing the results of different BTPs, the effect

of four block texture patterns which were discussed in

pervious sections, are implemented and shown in three

steganography algorithms, namely LSB, PVD and matrix

pattern (MP). For this purpose, 2000 blocks of 64x64

sizes are selected for each type of the BTPs introduced

earlier. Then, the maximum possible data are hidden in

the total of 8000 blocks with all three different

steganography algorithms.

Next, both capacity and transparency are compared

with each other. Transparency is calculated using peak

signal to noise ratio (PSNR) of cover as well as stego-

blocks.

In order to calculate PSNR, firstly, we should derive

the brightness with equation (1). Then, we compute mean

square error (MSE) of the brightness of cover image and

stego-image using the following equation.

 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels 7

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

∑ ∑ ()

 () (15)

In this equation “n” and “m” are the column size and

row size of the images, respectively. Note that, “I” refers

to the cover image and “S” refers to the stego-image [21].

Finally, PSNR is calculated with (16).

 (

√
)

(16)

As mentioned earlier, PSNR measures transparency in

an image. If PSNR value becomes more than 30, it shows

that the changes in the image could not be identified by

human eye easily [28, 32]; and thus it has a “good”

transparency.

Results of the each steganography algorithm base on

each BTP classification are illustrated in Table I. In this

table “E_S”, “E_C”, “S_C” and “S_S” refer to different

BTPs including “edge and simple”, “edge and complex”,

“smooth and complex”, and “smooth and simple”. In

addition, the values in capacity rows show the number of

characters that can be hidden with these algorithms.

Specifically, Table I shows the effect of each BTP

classification on LSB, PVD and MP algorithms.

TABLE I. RESULTS OF LSB, PVD AND MATRIX PATTERN ON

DIFFERENT BTPS

Metho

d

Measure

Parameter

s

E_S E_C S_C S_S

LSB

[19]

Capacity 102400
0

102400
0

102400
0

102400
0

PSNR 43.6074 40.72 44.9516 51.1609

PVD

[20]

Capacity 149996

3

184376

1

153830

4

107138

7

PSNR 40.2568 35.0492 42.0444 44.6373

MP

[21]

Capacity 874514 972982 100914

6

223133

PSNR 47.6337 39.7529 52.9201 59.737

Table I indicates that for LSB method, not only

capacity in different BTPs is the same, but also they have

higher PSNR than PSNR=30. It is obvious that the

capacity has no relationship with different BTPs. This is

not true for transparency. Although transparencies of all

of the BTPs in this steganography method are more than

30, “S_S” has the best transparency result.

The other two steganography algorithms of PVD and

MP do not follow the same results. Table I illustrates that

for PVD algorithm, the capacity for different BTP types

are different where the “E_C” provides the best capacity.

Although the results show that the block with “S_S”

block texture pattern has the least capacity. At the same

time, the PSNR values for all types are more than the

threshold value of 30.

Furthermore, this table shows how different BTPs

affect MP Steganography method. Notice that MP

algorithm uses 3
rd

 to 6
th

 bits of each pixel for producing

“matrix pattern” and hiding the secret message. This

method could provide compatible amount of capacity

with sound transparencies for three out of four types of

BTPs. As it illustrates, among these types, “S_C” has the

finest result on both capacity and PSNR. Significance

about MP method is that “S_C” provides best capacity

and PSNR together, in contrast with other methods;

where a type of BTP provides better capacity at the cost

of lower PSNR. On the other hand, MP in “S_S” block

texture pattern does not increase the capacity largely and

so it is not very useful. This is because the same

neighborhood pixels in “S_S” do not allow MP method

to form different “matrix patterns” for each character [21].

In addition, “S_C” of MP method provide the best

PSNR among all methods and all types of BTPs, except

“S_S” of MP which cannot hide a large number of

characters. The reason behind this is that the block in MP

method has the smooth region and the values of “matrix

pattern” pixels are close to each other.

Hence, the knowledge about the texture patterns in an

area of an image provides more capacity and better

transparency for hiding messages in the image. Note that

BTP classification is not limited to data hiding

applications. In fact, it can also be used in other areas of

image processing including image noise detection.

VI. CONCLUSION

In this paper, a new classification for block texture

pattern, which is based on smoothness and complexity of

neighborhood pixels in BxB blocks, is presented. We also

introduced a new texture named “fine texture in smooth

region”. Next, an algorithm is developed that can

automatically detect texture block pattern of an image

with high confidence. The proposed algorithm gives the

user the ability to choose the size of the square blocks,

quantity and degree of smoothly and the complexity of

the texture block according to the application. The results

of our experiments show that this algorithm has a high

performance and precision in detecting block texture

patterns. To show the significance of BTP, it was applied

to three different steganography algorithms include LSB,

PVD and MP. The results show BTP operation could

improve the capacity as well as transparency of all of the

selected spatial based steganography algorithms.

ACKNOWLEDGMENT

We sincerely thank Mrs. Shirin Nilizadeh for her help

in editing our paper, and Mr. Seyed Ali Shahshahani for

initiating the idea for our research.

REFERENCES

[1] S. Arivazhagan, S. S. Nidhyanandhan and R. N.

Shebiah, “Texture categorization using statistical and

spectral features”, International Conference on

Computing, Communication and Networking, pp. 1-

9, 2008.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4783155
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4783155

8 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

[2] A. Fathi and A. R. Naghsh Nilchi, “Noise tolerant

local binary pattern operator for efficient texture

analysis”, Pattern Recognition Letters, 33.9, pp.

1093-1100, 2012.

[3] R. M. Haralick, K. Shunmugam and I. Dinstein,

“Textural Features for Image Classification”, IEEE

Transactions on Systems, Man and Cybernetics, 3.6,

pp. 610-621, 1973.

[4] B. V. Reddy, M. R. Mani and K. V. Subbaiah,

“Texture classification method using Wavelet

transforms based on Gaussian Markov Random

Field”, International Journal of Signal and Image

Processing, 1.1, pp. 35-39, 2010.

[5] R. Khelifi, M. Adel and S. Bourennane, “Texture

classification for multi-spectral images using spatial

and spectral gray level differences”, IEEE 2nd

International Conference on Image Processing

Theory Tools and Applications (IPTA), pp. 330-333,

2010.

[6] K. I. Laws, “Textured Image Segmentation”, No.

USCIPI-940, University of Southern California Los

Angeles Image Processing INST, 1980.

[7] A. Sengur, “Wavelet transform and adaptive neuro-

fuzzy inference system for color texture

classification”, Expert Systems with

Applications, 34.3, pp. 2120-2128, 2008.

[8] Y. Venkateswarlu, B. Sujatha, J. V. R. Murthy, “A

New Approach for Texture Classification Based on

Average Fuzzy Left Right Texture Unit Approach”,

International Journal Image, Graphics and Signal

Processing (IJIGSP), 4.12, pp. 57-64, 2012.

[9] T. Celik and T. Tjahjadi, “Multiscale texture

classification using dual-tree complex wavelet

transform”, Pattern Recognition Letters, 30.3, pp.

331-339, 2009.

[10] D. Choudhary, A. K. Singh, S. Tiwari and V. P.

Shukla, “Performance Analysis of Texture Image

Classification Using Wavelet Feature”, International

Journal Image, Graphics and Signal Processing

(IJIGSP), 5.1, pp. 58-63, 2013.

[11] S. Arivazhagan, L. Ganesan and S. P. Priyal,

“Texture classification using Gabor wavelets based

rotation invariant features”, Pattern Recognition

Letters, 27.16, pp. 1976-1982, 2006.

[12] T. Randen and J. H.Husoy, “Filtering for Texture

Classification: A Comparative Study”, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 21.4, pp. 291-310, 1999.

[13] M. Varma and R. Garg, “Locally invariant fractal

features for statistical texture classification”, IEEE

11th International Conference on Computer Vision,

pp. 1-8, 2007.

[14] R. A. Peters and R. N. Strickland, “Image

complexity metrics for automatic target

recognizers”, Automatic Target Recognizer System

and Technology Conference, pp. 1-17, 1990.

[15] J. Perkiö and A. Hyvärinen, “Modelling image

complexity by independent component analysis, with

application to content-based image retrieval”, In

Artificial Neural Networks–ICANN, Springer Berlin

Heidelberg, pp. 704-714, 2009.

[16] N. F. Johnson and S. Jajodia, “Exploring

steganography: Seeing the unseen”, IEEE on

computer, 31.2, pp. 26-34, 1998.

[17] R. Proulx and L. Parrott, “Measures of structural

complexity in digital images for monitoring the

ecological signature of an old-growth forest

ecosystem”, Ecological Indicators, 8.3, pp. 270-284,

2008.

[18] C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick and W.

T. Freeman, “Automatic estimation and removal of

noise from a single image”, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 30.2,

pp. 299-314, 2008.

[19] R. Chandramouli and N. Memon, “Analysis of LSB

based image steganography techniques”, IEEE

International Conference on Image Processing, Vol.

3, pp. 1019-1022, 2001.

[20] X. Zhang and S. Wang, “Vulnerability of pixel-value

differencing steganography to histogram analysis and

modification for enhanced security”, Pattern

Recognition Letters, 25.3, pp. 331-339, 2004.

[21] A. F. Nilizadeh and A. R. Naghsh Nilchi,

“Steganography on RGB Images Based on a "Matrix

Pattern" using Random Blocks”, International

Journal of Modern Education and Computer Science

(IJMECS), 5.4, pp. 8-18, 2013.

[22] S. Sahu, S. k. Nanda and T. Mohapatra, “Digital

Image Texture Classification and Detection Using

Radon Transform”, International Journal Image,

Graphics and Signal Processing (IJIGSP), 5.12, pp.

38-48, 2013.

[23] E. Kawaguchi and R. O. Eason, “Principles and

applications of BPCS steganography”, In Photonics

East (ISAM, VVDC, IEMB), International Society

for Optics and Photonics, pp. 464-473, 1999.

[24] G. N. Srinivasan and G. Shobha, “Statistical texture

analysis”, proceedings of world academy of science:

Engineering & Technology, 48, 2008.

[25] O. Holub and S. T. Ferreira, “Quantitative histogram

analysis of images”, Computer physics

communications, 175.9, pp. 620-623, 2006.

[26] T. S. Sazzad, M. Z. Hasan and F. Mohammed,

“Gamma encoding on image processing considering

human visualization, analysis and

comparison”, International Journal on Computer

Science & Engineering, 4.12, 2012.

[27] Proving that 1+2+3+...+n is n(n+1)/2, Retrieved Oct

2013, from http://www.maths.surrey.ac.uk/hosted-

sites/R.Knott/runsums/triNbProof.html.

[28] C. M. Wang, N. I. Wu, C. S. Tsai and M. S. Hwang,

“A high quality steganographic method with pixel-

value differencing and modulus function”, Journal of

Systems and Software, 81.1, pp. 150-158, 2008.

[29] K. J. Kim, K. H. Jung and K. Y. Yoo, “A high

capacity data hiding method using PVD and LSB”,

IEEE Computer Society In Proceedings of the

International Conference on Computer Science and

 Block Texture Pattern Detection Based on Smoothness and Complexity of Neighborhood Pixels 9

Copyright © 2014 MECS I.J. Image, Graphics and Signal Processing, 2014, 5, 1-9

Software Engineering, Volume 03, pp. 876-879,

2008.

[30] M. Gadiparthi, K. Sagar, D. Sahukari and R.

Chowdary, “A High Capacity Steganographic

Technique based on LSB and PVD Modulus

Methods”, International Journal of Computer

Applications, 22.5, pp. 8-11, 2011.

[31] H. C. Wu, N. I. Wu, C. S. Tsai and M. S. Hwang,

“Image steganographic scheme based on pixel-value

differencing and LSB replacement methods”, IEE

Proceedings-Vision, Image and Signal Processing

152.5, pp. 611-615, 2005.

[32] J. Y. Hsiao, K. F. Chan and J. Morris Chang, “Block-

based reversible data embedding”, Signal

Processing, 89.4, pp. 556-569, 2009.

Mr. Amir Farhad Nilizadeh
received his B.Sc. degree in

Computer Hardware Engineering

from Islamic Azad University,

Najafabad Branch in 2009 and his

M.Sc. degree in Computer System

Architecture Engineering from

Islamic Azad University, Arak

Branch in 2013. Now he is a lecturer

in Islamic Azad University of Najafabad and Islamic

Azad University of Sama at Khorasgan. His area of

research includes data hiding, image processing, HDL

languages (VHDL and Verilog) and FPGA.

Ahmad R. Naghsh Nilchi, PhD,

received his B.S. and M.S., and

PhD degrees from Electrical and

Computer Engineering

Department in 1988, 1989, and

1996, respectively, all from the

University of Utah, Salt Lake City,

Utah, USA. He is an Associate

Professor of Artificial Intelligence

and Multimedia Engineering with the University of

Isfahan, Iran, and was the Chairman of the Computer

Engineering department for three terms and now is the

Chairman of the Artificial Intelligence and Multimedia

Engineering at the same institution. He has been awarded

several research grants from distinguished research

institutions and has completed a number of research

projects for Iranian industries. He is the author and co-

author of several journal articles and conference papers.

In addition, he has collaborated with internationally

known institutions and peers, and was a Research Scholar

with the National University of Ireland, Mynooth, Ireland,

in 2011, and with the University of California, Irvine, in

2012. He also is the chief editor of the Journal of

Computing and Security. His research interests include

medical image and signal processing, data hiding, as well

as intensive computing. He was listed in Who’s Who in

the World in 2011.

How to cite this paper: Amir Farhad Nilizadeh, Ahmad Reza Naghsh Nilchi,"Block Texture Pattern Detection Based

on Smoothness and Complexity of Neighborhood Pixels", IJIGSP, vol.6, no.5, pp.1-9, 2014.DOI:

10.5815/ijigsp.2014.05.01

