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Abstract—This paper provides a new method for the 

classification of rainfall areas in convective and 

stratiform rain using MSG/SEVIRI (Spinning Enhanced 

Visible and Infrared) data. The proposed approach is 

based on spectral and temporal properties of clouds. The 

spectral parameters used are: brightness temperature (BT) 

and brightness temperature differences (BTDs), and the 

temporal parameter (RCT10.8) is the rate of change of (BT) 

in the 10.8µm channel over two consecutive images. The 

developed rain area classification technique (RACT-DN) 

is based on two multilayer perceptron neural networks 

(MLP-D for daytime and MLP-N for nighttime) which 

relies on the correlation of satellite data with convective 

and stratiform rain. The two algorithms (MLP-D and 

MLP-N) are trained using as reference data from ground 

meteorological radar over northern Algeria. The results 

show that RACT-DN classifier gives accurate 

discrimination between convective and stratiform areas 

during daytime and nighttime. 

 

Index Terms—Classification, Artificial neural network, 

Radar, MSG image. 

 

I.  INTRODUCTION 

The detection of rainfall by means of optical sensors 

aboard geostationary (GEO) weather satellites has a long 

tradition as they provide information about the spatio-

temporal distribution of this key parameter of the global 

water cycle in a high spatial and temporal resolution. 

Most retrieval techniques developed so far for GEO 

systems are based on the relationship between cloud top 

temperature in the infrared channel and rainfall 

probability. 

The high spectral resolution of the Spinning Enhanced 

Visible and Infrared Imager (SEVIRI) on board the 

Meteosat Second Generation (MSG) satellites, with 

eleven 3-km-resolution channels and one 1-km resolution 

visible channel, offers the possibility of extracting the 

microphysical and dynamic structure of precipitating 

clouds allowing for an enhanced discrimination between 

convective and stratiform rain areas, and thus 

contributing to the improvement of the satellite rainfall 

estimation [1]. 

In this context, several techniques have been developed 

for rainfall process separation as a part of a satellite-based 

rainfall retrieval scheme in the mid-latitudes using 

multispectral satellite data [2, 3]. In a more recent study, 

developed schemes classify convective and stratiform 

precipitation areas based on the high infrared spectral 

resolution of the MSG–SEVIRI [4, 5]. 

The spectral features due to their physical importance 

have proved effective and simple in cloud classification 

[6]. However, they also encounter some drawbacks due to 

the spectral similarities of certain cloud features. 

Moreover, the incorporation of the rate of change in 

brightness temperature T10.8 over time provides 

information on cloud stage development. 

The aim of this paper is to propose a new technique for 

rain area discrimination in the Mediterranean region on a 

15 min basis for MSG/SEVIRI daytime and nighttime 

data. The developed scheme is based on spectral and 

temporal parameters. It is calibrated by instantaneous 

meteorological radar data using multilayer perceptron 

neural networks (MLPs). Artificial neural networks are 

widely used in precipitation remote sensing [7, 8, 9], and 

comparing to other statistical classification methods, the 

MLP algorithm does not require any a priori knowledge 

of the statistical distribution of the data [10]. The MLP is 

the statistical tool chosen to define the correlations 

between satellite measurements and classes of ground 

precipitation as estimated by weather radars. 

In order to take into account the variation of the diurnal 

cycle of clouds, the dataset is divided into daytime and 

nighttime data. 

The overall organization of the paper is as follows. 

Section II presents the study region and data sets used for 

the training and validation of the developed technique. In 

section III, the methodology of the developed rain 

classification method is presented. In section IV, we 
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exhibit our experimental results with discussions. Finally, 

section V concludes the paper. 

 

II.  STUDY REGION AND DATA SETS 

A.  Study Region 

The training and validation of the developed technique 

are performed using SEVIRI/MSG and ground 

meteorological radar data for northern Algeria (Fig. 1).  

Algeria is located on the South shore of the 

Mediterranean region; it is bordered on the East by 

Tunisia and Libya, on the South by Niger and Mali, 

South-West by Mauritania and Western Sahara and West 

by Morocco. This region has a particular orographic 

structure and special characteristics of the sea-land coast. 

Due to these geographical properties, its climate has a 

very complex spatio-temporal feature [11]. Indeed, it is 

influenced by both the subtropical climate and the climate 

of mid-latitude systems [12, 13]. The spatial distribution 

of precipitation is characterized by a very marked North-

South gradient and a very low East-West gradient. The 

rainy season extends from October to March, with 

maximum rainfall occurring during November-December. 

In the north, the climate is Mediterranean transit, marked 

by seasonal oscillations.   

The average annual rainfall is estimated at about 600 

mm. The minimum rainfall is recorded in the southern 

regions. It is about 50 mm while the maximum is 

observed in the Djurdjura massif located in Kabylia and 

the massif of Edough located a little farther East, where it 

exceeds 1500 mm. The study area in this work is located 

in the north of Algeria, on domain with a radius of 250 

km (Fig. 1). In Fig. 1, the red circle shows the domain of 

radar which coincides with the study area. 

 

 

Fig 1: The study area and the position of the weather radar of Setif. The 

red circle shows the radar domain with a radius of 250 km. 

For this study, MSG/SEVIRI data together with 

corresponding ground-based radar data are required.  

B.  SEVIRI and Radar Data 

The dataset used in this work provided by the SEVIRI 

radiometer of Meteosat-8 in different frequency bands, 

the dataset are collected from November 2006 to March 

2007 and November 2009 to March 2010. The MSG is a 

spinning stabilized satellite that is positioned at an 

altitude of about 36,000 km above the equator at 3.4°W. 

The SEVIRI radiometer gives every 15 minutes 12 

images in the 12 available channels. We selected the 

channels sensitive to optical and microphysical properties 

of clouds (optical thickness, droplet size, cloud phase) as 

well as to the temperature of cloud tops, and those located 

in the spectral absorption bands mainly affected by the 

water vapor. These channels correspond to bands: visible 

(VIS0.6), near infrared (NIR1.6), water vapor (WV6.2, 

WV7.3) and infrared (IR3.9, IR8.7, IR10.8 and IR12.0). 

The raw image (Level 1.5) has a size of 3712 × 3712 

pixels in each channel [14]. This corresponds to a spatial 

resolution at the image center of about 3 km. Each pixel 

is coded on 10 bits. All pixels are geolocalized on a 

common grid in geostationary projection. The sub-

satellite point corresponds to the pixel position (1856, 

1856) on the image. For our case, we have predefined an 

area in the image of the Earth's surface; it corresponds to 

our study region (Fig. 1). 

The radar data are provided by the ground-based C 

band radar network of The National Office of 

Meteorology (ONM).  The Setif radar is installed near to 

the town of Setif, at 36 ° 11 'N, 5 ° 25' E and 1700 m of 

altitude, is one of seven Algerian meteorological radars. 

This is a Radar AWSR 81C in C-band, its operational 

frequency is 5.6 GHz. The displacement in azimuth is 

between 0 to 360 degrees in continuous and the 

movement in inclination is of -1° to 90°. Its polarization 

is linear and horizontal. The effective domain of radar is a 

radius of 250km. 

Meteorological radar data are collected at a temporal 

resolution of fifteen minutes and a spatial resolution of 

1km in a format of 512x512 pixels. Each pixel is coded 

on four bits. Thus, it consist of 15 classes representing 

different reflectivity intensities which are all together 

considered as raining in the comparison with collocated 

satellite pixels and one class representing no raining.   

The physical parameter of the radar is the reflectivity 

factor, referred to as Z and expressed in (mm6m-3). The 

conversion of reflectivity factor Z into rainfall intensity 

R(mm/h) is obtained using the equation(1) adapted to our 

Radar and can also be converted into dBZ: 

 
5.1.300 RZ                                     (1) 

 

The scan interval for both data sets is 15 minutes. For 

the spatial comparison the radar data with an original 

spatial resolution of 1 by 1 km were projected to the 

viewing geometry of SEVIRI with a spatial resolution of 

4 by 5 km in the study area. 

Because of discrepancies between the SEVIRI data and 

radar data, due to differences in observation time, 

parallax errors and collocation errors [15], the 

comparison of these types of data may be hampered. To 

reduce the imbalances mentioned above and find a better 

correlation, we performed a repositioning to SEVIRI data 

to coincide spatially with radar data. We also applied a 

resampling to radar data in order to have the same 



30 Image Segmentation Method for Identifying Convective and Stratiform Rain using MSG SEVIRI Data  

Copyright © 2014 MECS                                                        I.J. Image, Graphics and Signal Processing, 2014, 7, 28-35 

resolution as resolution of satellite data. The resolution is 

4x5km in the study region and is assumed constant due to 

low overlapped area observed by both sensors. Therefore, 

each SEVIRI pixel is collocated with 4×5 radar pixels.  

The time lag between the radar and the satellite is about 3 

min. This small time difference does not require 

synchronization between the two data types.  

 

III.  METHODOLOGY 

The developed rain classification method is based on 

spectral and temporal parameters. These parameters are 

given as follows: 

A.  Spectral Parameters 

Brightness temperature ΤIR10.8 is an indication of the 

vertical extent of the cloud because, in general, brightness 

temperature of the system depends on the cloud-top 

height [2, 16, 17, 18, 19, 20]. 

The brightness temperature difference TIR10.8-

TIR12.1 being a good indicator of the cloud optical 

thickness, is very effective in discriminating optically 

thick cumuliform clouds from optically thin cirrus clouds 

[16, 21, 22]. Optically thick cumulus type cloud shows 

the smaller TIR10.8-TIR12.1 due to their black-body 

characteristics, while optically thin cirrus cloud shows the 

larger TIR10.8-TIR12.1 due to the differential absorption 

characteristics of ice crystals between the two 

channels[23]. It is expected that optically thick and deep 

convective clouds are associated with rain [24]. Even 

though the split window technique is very effective in 

detecting and removing optically thin cirrus clouds with 

no precipitation, it sometimes incorrectly assigns 

optically thick clouds like cumulonimbus in place of 

optically thin clouds [25].   

The temperature difference TWV6.2-TIR10.8 is 

effective in distinguishing between high-level and low-

level/mid-level clouds [26]. The 6.2-μm channel is 

dominated by atmospheric water vapor absorption. Low-

level clouds produce temperatures at the 6.2-μm channel 

lower than their actual cloud top temperatures due to the 

absorption from water vapor above them. In contrast, 

their cloud-top temperatures at the 10.8-μm window 

channel are representative of actual cloud-top 

temperature since the atmosphere is transparent to this 

wavelength. As a result, TWV6.2-TIR10.8 tends to be 

very negative in sign for low-level clouds. In contrast, 

upper level thick clouds (being above most of this vapor 

and having absorption similar for both wavelengths due 

to ice crystals) produce temperatures at the 6.2-μm 

channel close to their actual cloud-top temperatures. In 

this case, TWV6.2-TIR10.8 usually takes very small 

negative values. Semitransparent ice clouds, such as 

cirrus, constitute an exception to this rule since their 

differential transmission cause larger negative differences. 

Positive differences may occur when water vapor is 

present in the stratosphere above the cloud top, which is a 

sign of convective cloud tops [27, 28] as opposed to mere 

cirrus clouds. 

The brightness temperature difference TIR8.7-TIR10.8 

can be utilized to gain information about the cloud phase 

[2, 20, 29, 30]. The imaginary (absorption) component of 

the index of refraction, which is a direct indicator of 

absorption/emission strength, differs for ice and water at 

these two wavelengths [31, 32]. More specifically, the 

difference in water particle absorption is small between 

the two wavelengths, but very large for ice particles [26, 

33]. Radiative transfer simulations show that for ice 

clouds, TIR8.7-TIR10.8 tends to be positive in sign, 

whereas for low-level water clouds TIR8.7-TIR10.8 tends 

to be small negative [32]. This simple parameter is 

adequate for classifying the cloud phase as either ―ice‖ or 

―water‖. We can expect ice cloud phase to be more 

associated with rain. 

The effective droplet radius (re) and the optical 

thickness (τ) of clouds are directly related to rainfall 

probability of a cloud; it is function to. The effective 

particle radius (re) defined by the ratio between the third 

to the second power of the droplet spectrum is taken in 

place of the actual droplet spectrum. The cloud optical 

thickness (τ) defined by the integration of the extinction 

coefficient integrated over the cloud geometrical 

thickness is considered representatively for the cloud 

geometrical thickness.  

During day-time, the values of re and τ considered for 

a rainfall intensity differentiation can be retrieved on a 

pixel basis using a combination of two solar channels, 

namely the VIS0.6 and NIR1.6 channel of MSG [4, 20, 

34]. High values of reflectance RVIS0.6 correspond to 

high optical depth of cloud and low values of reflectance 

RNIR1.6 indicate large particles in the cloud. This means 

that a large re and τ is obtained when high values of 

RVIS0.6 coincide with low values of RNIR1.6. It should 

be noted that the retrievals are limited to satellite and 

solar viewing zenith angles smaller than 72°. 

During night-time, combinations of brightness 

temperature differences TIR3.9-TIR10.8 and TIR3.9-

TIR7.3  are used to infer implicit information about of (re) 

and (τ) [2, 4, 34]. Indeed, for thin clouds with small or 

large particles, respectively (small or medium re and τ), 

brightness temperature differences reach the highest 

values. Thick clouds with small particles (medium re and 

τ) lead to small values of brightness temperature 

differences. In contrast, large particles together with a 

high optical thickness (high re and τ) results medium 

values of brightness temperature differences. Therefore, a 

raining cloud indicates mean values of brightness 

temperature differences. 

B.  Temporal Parameter 

The temporal parameter is the rate of change of 

brightness temperature in the 10.8µm channel over two 

consecutive images (RCT10.8), this parameter provides 

information on cloud stage development [35] and is 

defined as: 

 

t

tTtT
tRCT IRIR






)1()(
)( 8.108.10

8.10
                  (2) 
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Where Δt is the time difference between two 

consecutive images (i.e., 15 min for MSG).  

C.  Developed Scheme 

The technique used to delineate rain areas in the MSG 

image is an artificial neural network multilayer 

perceptron (MLP).  

1)  Multilayer perceptron algorithm  

A multilayer perceptron is a feed forward artificial 

neural network model that maps sets of input data onto a 

set of appropriate outputs. An (MPL) consists of three or 

more layers (an input and an output layer with one or 

more hidden layers) of nonlinearly-activating nodes. Each 

node in one layer connects with a certain weight (wi) to 

every node in the following layer. Generally, the 

activation function used is the sigmoid (Fig. 2). 

 

 

Fig 2: Sigmoïde unit 

MLP utilizes a supervised learning technique called 

back propagation algorithm. For each training example (d) 

in (D) the error between the target value (td) and the 

value produced by the perceptron (Od) is given by the 

following relation: 

 

  2)(
2

1
ddd OtwE 


                                (3) 

 

Then, the weights of the nodes are corrected by using 

the following equation: 

 

][wEww d
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Where η is the learning rate, this parameter typically 

ranges from 0.2 to 0.8. 

2)  Back-propagation algorithm  

Xd= input; td= target output;  Od= observed unit output 

1. Initialize all weights to small random numbers. 

Until satisfied, do: 

 For each training example, do 

2. Input the training example to the network and 

compute the network output 

3. For each output unit ( k) :  
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4. For each hidden unit (h) : 
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5. Update each network weight ( wi,j) 
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Where 
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3)  Application of MLP for rain areas delineation  

Two MLPs are created for the classification of the rain 

areas in the MSG/SEVIRI data. The first one (MLP-D) is 

used during the daytime and the second one (MLP-N) is 

applied during the nighttime. 

The daytime MLP-D scheme uses as input spectral 

data (TIR10.8, TIR10.8-TIR12.1, TIR8.7-TIR10.8, TWV6.2-TIR10.8, 

RVIS0.6, and RNIR1.6 ), and  the rate of change in TIR10.8 over 

time (RCT10.8) as temporal parameter. 

 The nighttime MLP-N algorithm uses as input spectral 

data (TIR10.8, TIR10.8-TIR12.1, TIR8.7-TIR10.8, TWV6.2-TIR10.8, 

TIR3.9-TIR10.8, and TIR3.9-TWV7.3), and (RCT10.8) as temporal 

parameter. 

The number of the hidden layer neurons was selected 

using the network growing method [36] for the training 

phase. Therefore, the number of 15 neurons for both 

MLP-D and MLP-N minimized the network’s error 

functions (RMSE) after 800 iterations. Therefore, each 

MLP contains 7 neurons in input layer, 15 neurons in the 

hidden layer and 3 output neurons representing the three 

classes for convective rain, stratiform rain and no-rain 

(Fig. 3). 

In this study, MLP-D and MLP-N were trained using 

SEVIRI data set over north Algeria for 2109 precipitation 

scenes from November 2006 to March 2007.  

 

 

X7= RCT10.8 

a) MLP-D: Daytime: (X1, X2, X3, X4, X5, X6) = (TIR10.8, TIR10.8-TIR12.1, 

TIR8.7-TIR10.8, TWV6.2-TIR10.8, RVIS0.6, RNIR1.6) 

b) MLP-N: Nighttime: (X1, X2, X3, X4, X5, X6) = (TIR10.8,  TIR10.8-

TIR12.1, TIR8.7-TIR10.8, TWV6.2-TIR10.8, TIR3.9-TIR10.8, TIR3.9-TWV7.3) 

Fig 3: Structure of MLPs convective/ stratiform rain classification 

algorithms: a) MLP-D; b) MLP-N 

 

IV.  RESULTS AND EVALUATION OF THE NEW SCHEME 
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Models are validated against independent rainy days 

during November 2010 to March 2011, not used for 

training the rain area delineation algorithms. The 

evaluation was performed by comparison with 

instantaneous ground-based radar data collocated with 

SEVIRI data. The observation scenes made by the radar 

and satellite at a rhythm of 15 minutes are 14580, most of 

which are non-raining situations.  

To evaluate the potential improvement by the 

developed Rain Area Classification Technique during 

Daytime and Nighttime (RACT-DN), the validation 

scenes were also classified by the Enhanced Convective 

Stratiform Technique (ECST)[37] which is similar to the 

Convective Stratiform Technique(CST)[38] but 

additionally includes the water vapor channel temperature 

for a more reliable deep convective/cirrus clouds 

discrimination[39].  

Standard verification scores such as, Probability Of 

Detection (POD), Probability Of False Detection (POFD), 

False Alarm Ratio FAR, Frequency BIAS index (Bias), 

Critical Success Index (CSI), equitable threat score (ETS) 

are used to evaluate the developed scheme. 

The verification scores calculated from Table I 

correspond to the results of discriminating raining from 

non-raining clouds, and the scores computed from Table 

II correspond to the results of the convective/stratiform 

rain area classification. 

TABLE I: CONTINGENCY TABLE FOR RAINING/NON-RAINING AREA 

DISCRIMINATION, (SY=SC+SS) AND SN : NUMBER OF ESTIMATED RAINING 

AND NON-RAINING PIXELS, RESPECTIVELY .  RY AND RN : NUMBER OF 

OBSERVED RAINING AND NON-RAINING PIXELS BY RADAR, 

RESPECTIVELY. 

 

Radar 

 

Satellite 

Raining Non-Raining Total 

Raining SY RY SN RY RY 

Non-Raining SY RN SN RN RN 

Total SY SN TSR 

TABLE II: CONTINGENCY TABLE FOR CONVECTIVE/STRATIFORM RAIN 

CLASSIFICATION, SC AND SS: NUMBER OF ESTIMATED CONVECTIVE AND 

STRATIFORM PIXELS, RESPECTIVELY. RC AND RS: NUMBER OF OBSERVED 

CONVECTIVE AND STRATIFORM PIXELS BY RADAR, RESPECTIVELY. 

 

Radar 

Satellite 

Convective Stratiform Total 

Convective SC RC SS RC RC 

Stratiform SC RS SS RS RS 

Total SC SS TSR 

 

A.  Statistical Analysis 

The verification scores [(Bias)Y, (POD)Y, (POFD)Y, 

(FAR)Y, (ETS)Y, (CSI)Y] for discriminating raining from 

non-raining clouds are given as follows : 

 The Bias (Bias)Y describe the ratio between the 

estimated and the observed rain events : 
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 The Probability  Of  Detection (POD)Y gives the 

fraction of pixels that have been correctly 

identified as raining  by the satellite technique 

according to the radar product: 
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 The Probability Of False Detection (POFD)Y 

indicates the fraction of the pixels incorrectly 

identified as raining by the satellite algorithm : 
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 The False Alarm Ratio ( FAR)Y describe the 

fraction of the satellite pixels that have been 

wrongly classified as raining pixels : 
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 The Equitable Threat Score( ETS)Y indicate how 

well the classified pixels by the satellite technique 

correspond to chance SYRY random : 
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 The Critical Success Index (CSI)Y which enclose 

all pixels that have been identified as raining by 

either the radar or the satellite technique : 
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The verification scores [(Bias)C, (POD)C, (POFD)C, 

(FAR)C, (ETS)C, (CSI)C] corresponding to the 

convective/stratiform rain area classification are 

computed  from the similar equations described above by 

replacing SY with SC, RY  with RC, SN with SS and RN  with 

RS. It should be noted that the number of the estimated 

and observed raining pixels are given by SY=SC+SS and 

RY=RC+RS, respectively. 

B.  Results and Discussions 

The verification scores computed for the 1936 daytime 

and nighttime validation scenes are summarized in 2 

tables: (Table III) for discriminating raining from non-

raining clouds, and (Table IV) for the classification of the 

precipitation areas into convective and stratiform regions. 
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1)  Discriminating raining from non-raining clouds 

results 

The scores of discriminating raining from non-raining 

areas are represented in Table III, the daytime bias of 

96% and nighttime bias of 94% indicate that the RACT-

DN slightly underestimates the rain areas detected by the 

radar compared to the ECST bias (daytime: 83%; 

nighttime: 83%). Moreover, 79% of the radar observed 

raining pixels are identified by RACT-DN during 

daytime and 75% during nighttime which indicates a best 

performance compared to the POD (daytime: 65%; 

nighttime: 62%) for ECST. The improvement in POFD 

and FAR during daytime and nighttime is more notable.  

Indeed, the POFD indicates that a lower fraction of the 

observed non rain events were misclassified as rain 

events by RACT-DN (daytime: 3%; nighttime: 4%) than 

by ECST (daytime: 6%; nighttime: 7%). Furthermore, the 

FAR denotes that a lower fraction of the pixels were 

wrongly classified as rain by RACT-DN (daytime: 20% 

nighttime: 24%) than by the ECST (daytime: 29%; 

nighttime: 31%). 

The overall good performance of RACT-DN during 

daytime and nigttime indicated by the good range of the 

verification scores is further supported by the 

CSI(daytime:71% ; nighttime:69%) and the 

ETS(daytime:24% ;  nighttime: 22% ) which outperform 

the result of the ECST ( CSI daytime:58%, CSI nighttime: 

56%, ETS daytime: 15%, and ETS nighttime : 12%).  

TABLE III: STANDARD VERIFICATION SCORES COMPUTED FOR 

RAINING/NON-RAINING AREA DISCRIMINATION TECHNIQUES 

Test RACT-DN ECST 

Daytime Nighttime Daytime Nighttime 

(BIAS)Y 0.96 0.94 0.83 0.83 

(POD)Y 0.79 0.75 0.65 0.62 

(POFD)Y 0.03 0.04 0.06 0.07 

(FAR)Y 0.20 0.24 0.29 0.31 

(CSI)Y 0.71 0.69 0.58 0.56 

(ETS)Y 0.24 0.22 0.15 0.12 

 

2)  Convective/stratiform rain area classification results 

By analysing the validations scores of the classification 

of the rainy areas into convective and stratiform regions 

represented in Table IV, the developed scheme (RACT-

DN) performs better than  ECST  by exhibiting during 

daytime and nighttime higher POD, ETS, and CSI values 

as well as  lower false alarms scores( FAR and POFD) . 

More detailed, 79% (daytime POD) and 76% 

(nighttime POD) of the convective rain occurrences are 

identified by RACT-DN, while 32 % (daytime FAR) and 

33% (nighttime FAR) of the estimated events are 

wrongly classified as convective. Moreover, 19 % 

(daytime POFD) and 21% (nighttime POFD) of the 

observed stratiform events are misclassified as convective 

rain cases. ECST indicates lower value of POD (daytime: 

62%, nighttime: 61%), and higher scores of FAR and 

POFD (daytime: FAR= 46%, POFD= 24%, and nighttime: 

FAR=46%, POFD=25%) than RACT-DN. The 

outperformance of RACT-DN to classify the rainy areas 

into convective and stratiform regions during daytime and 

nighttime is supported by the good range of CSI and ETS 

values compared to the ECST scores.  

TABLE IV: STANDARD VERIFICATION SCORES COMPUTED FOR 

CONVECTIVE/STRATIFORM AREA CLASSIFICATION TECHNIQUES 

Test RACT-DN ECST 

Daytime Nighttime Daytime Nighttime 

(BIAS)C 1.12 1.14 0.83 0.83 

(POD)C 0.79 0.76 0.62 0.61 

(POFD)C 0.19 0.21 0.24 0.25 

(FAR)C 0.32 0.33 0.46 0.46 

(CSI)C 0.58 0.56 0.53 0.53 

(ETS)C 0.23 0.22 0.18 0.15 

 

To gain a visual impression of the performance of the 

proposed scheme, we presented in Fig. 4 the results of the 

classification of stratiform and convective clouds. The 

classification is performed for a scene of 06 January 2011 

(11:45 UTC). Fig. 4(a) shows the brightness temperature 

in the channel IR10.8. Fig. 4(b) shows areas classified 

together by RADAR and RACT-DN and Fig. 4(c) shows 

the regions identified simultaneously by RADAR and 

ECST. 

The number of misclassified pixels is more important 

for the ECST technique compared to RACT-DN 

technique. This visual results support the statistics results 

obtained previously. 

 

 

Fig 4: Delineated rain area for the scene from 06 January 2011 (11:45 

UTC):  (a) BT10.8 image, (b) rain area delineated by RADAR and 

RACT-DN, (c) rain area detected by RADAR and ECST. 

 

V.  CONCLUSIONS 

The potential of the MSG–SEVIRI high infrared 

spectral resolution for discriminating between convective, 

advective/stratiform and non-precipitating clouds was 

analyzed. The proposed technique (RACT-DN) considers 

as spectral information 6 parameters: 2 parameters 

characterizing the optical and microphysical cloud 

properties (VIS0.6 and, NIR1.6 channels for daytime or 

both channel differences T3.9-T10.8 and T3.9-T7.3 during 

nighttime), and 4 other parameters give information about 

the cloud phase (T10.8, T8-7-T10.8, T10.8-T12.1, and TWV6.2-

TIR10.8). Moreover, the temporal feature gives the rate of 
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change of brightness temperature over two consecutives 

images. The parameters are merged and incorporate into 

the developed rain classification algorithm by using two 

daytime and nighttime multilayer perceptron MLP-D and 

MLP-N, respectively. 

MLP-D and MLP-N were trained using SEVIRI data 

set over north Algeria for 2109 precipitation scenes from 

November 2006 to March 2007 and the models are 

validated against 1936 independent precipitation scenes  

during November 2009 to March 2010 which are  not 

used for training the rain area delineation algorithms. The 

results of the developed scheme were compared with both 

corresponding ground based radar and ECST algorithm. 

The validation scores have shown the performance of 

the developed method during the daytime and nighttime 

for the discriminating of the raining from non-raining 

clouds, as well for the classification of the rainy areas 

into convective and stratiform regions. 

One of the main advantages of the developed method is 

the best performance of the rain area classification 

algorithms (MLP-D and MLP-N) during daytime and 

nighttime. Indeed, during night time the visible channel 

information (VIS0.6) and the near-infrared channel 

(NIR1.6) are replaced by the infrared parameters to gain 

the optical and microphysical cloud properties. 

In general, the results of this study showed that the 

combined use of spectral and temporal features in the 

MSG-SEVIRI can be beneficial for the classification of 

convective and stratiform precipitating clouds. A 

potential application of a new rainfall retrieval technique 

based on MSG/SEVIRI data is the improved rainfall 

detection in a high spatial and temporal resolution during 

daytime and nighttime. 
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