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Abstract—We introduce a new generation functionally 

distinct redundant free Modified Dual Tree Complex 

Wavelet structure with improved orthogonality and 

symmetry properties. Traditional Dual Tree Complex 

Wavelets Transform (DTCWT), which incorporates two 

operationally similar, procedurally different Discrete 

Wavelet Transform (DWT) trees, is inherently redundant 

and computationally complex. In this paper, we propose 

Symmetrically Modified DTCWT (SMDTCWT) to 

explore the close relationships between the wavelet 

coefficients from the real and imaginary tree of the dual-

tree CWT with an advent of a Quadrature Filter. This 

exploitation can reduce the level of redundancy that 

currently exists in a dual-tree wavelet system and 

decrease the computational complexity .Some of the 

primary constraints include that the designed algorithm 

should be satisfying the Hilbert transform pair condition 

and should have high coding gain, good directional 

sensitivity, and sufficient degree of regularity. 

 

Index Terms—DWT, DTCWT, MDTCWT, Hilbert 

transform, Quadrature filter, computational complexity. 

 

I.  INTRODUCTION 

A clear introduction of the DTCWT was made in [1] 

[2], and showed which has desirable properties of 

approximate shift insensitive and good directionality. 

These properties will play a key role  for many 

applications in image analysis and synthesis, like 

denoising, deblurring , super-resolution, watermarking[3], 

segmentation[4]  and pattern classification[5].Traditional 

DWT can only exhibits the shift independence in its 

undecimated form, which is computationally inefficient, 

particularly in multiple dimensions. The directional 

selectivity of the DWT is poor because the separability 

cannot distinguish between the edge and ridge features on 

opposing diagonals. With conventional approach, to get 

optimal shift independence, mid-way location of the 

scaling basis functions of imaginary tree between those  

for real tree at each level of the transform is must and it 

was proposed achieving this by a delay of one sample 

between the same level filters in each tree, and then, for 

subsequent levels, by employing alternate odd and even 

length linear-phase filters. In [6], Nick Kingsbury 

proposed a new approach to achieve optimal shift 

invariance [7] with only even length linear phase filters 

by highlighting the major limitations of the alternate even 

and odd length filter approach. The limitations of the 

alternate odd and even length filter approach are 1) The 

sub-sampling structure is not very symmetrical 2) The 

two trees have a slightly different frequency responses 

and 3) The filter sets must be bi-orthogonal. To 

overcome all of the above limitations, Kings bury 

proposed a Q-shift dual tree, in which the filters beyond 

the level 1 are even length, but they are no longer strictly 

linear phase and offers a group delay of quarter sample. 

But there are certain drawbacks are inherent in the above 

approach proposed by the Kingsbury .The most 

important of those are a) Even though with an 

employment of even length filter from second level 

onwards there will be a process non homogeneity 

between the first and the other subsequent levels due to 

filter mismatch b) Irrespective of the length type of the 

filter, equal number of separate filters employed for both 

real and imaginary trees.  c) Filter count increases to 

twice as that of DWT d)  Due to increased filter count the 

process load and computational complexity increases 

Considerably. 

In order to reduce the process complexity and to 

considerably speed up the process, we proposed a 

modified version of the DTCWT which reduces the filter 

count to half to that of the conventional DTCWT 

(CDTCWT).The Modified DTCWT (MDTCWT)  

processes the signal in only one tree  and obtains the 

equivalent other tree with an advent of Quadrature filter. 

All the filters used here are the same even length filters 

which accordingly avoids the process in homogeneity in 

sub sequent levels. As the filter count and designing 

complexity decreases, the computational complexity of 

the MDTCWT reduces considerabl. 
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II.  DESIGN METHOD 

The CDTCWT generally deploys two separate 

decomposition trees among which one tree is considered 

to be as real tree and other is considered to be as 

imaginary tree.(fig.1).The real decomposition tree 

employs a low pass filter        and a high pass filter 

       , in a similar manner the imaginary tree also 

consists of a low pass filter        and a high pass filter 

       .The filter pair in real tree differs with that in an 

imaginary tree by half sample delay, there by satisfying 

the Hilbert transform condition[8]. 

 

 

Fig 1. Kingsbury‘s dual-tree CWT. 

In General the filtering operation is essentially a 

convolution of filters impulse response h (n) and input 

signal x(n).A convolution is a sequence of 

multiplications, additions and shifting operations. 

Although the time required for one addition and one 

shifting operations is less, the time needed for one 

multiplication operation is considerably high(according 

to booths multiplication algorithm).This process time is 

very large compared to that required for a single addition 

and shift operation. If suppose for an input signal X of 

length ‗m’, a total of m convolution (L*m-1 addition, 

L*m multiplication and shift) operations are required. 

Hence, a filtering operation has to perform the 

convolution operations in a large number. Such an 

implementation demands both large number of 

computations and large storage features that are not 

desirable for either high speed or low power applications. 

In order to reduce the process complexity and amount of 

hardware, instead of implementing the imaginary 

decomposition tree with a dedicated low pass and high 

pass filter pair, we propose to derive the imaginary tree 

from the real tree using Quadrature Filter (QF). It can 

be implemented with a few shifting and Fourier 

conjugation operations (which will consume a negligibly 

very less process time) leads toget rid of the separate 

filter pair for analysis and synthesis of the imaginary tree 

and hence the decomposition in an imaginary tree is 

removed. This will not only leads to the reduction of the 

computational complexity and power consumption, but 

also it greatly reduces the computation time and power 

consumption. 

Thus, a CDTCWT is suitably modified to yield a 

computationally efficient faster decomposition process, 

with the same protocol structure. The MDTCWT also 

employs an approximately shift invariant, directional 

selective dyadic decomposition tree features as that of the 

CDTCWT, but with single tree processing. Thus, the 

MDTCWT offers dual tree benefits with single tree 

processing. As the output of the QF is equivalent to that 

would be obtained with separate decomposition with 

Hilbert filter pair, the imaginary tree obtained with 

quadtrature filter will also form a Hilbert transform pair 

with real tree coefficients which are given as an input to 

the QF.This fact is true, both for theoretical and practical 

analysis. In CDTCWT, the Hilbert relation between the 

in-phase (real) and quadrature (imaginary)trees are, 

 

                            ,      
 

 
             

 

                          ,      
 

 
             

 

Where     and    are low pass and high pass filters in 

imaginary tree,    and    are filter pair in real tree. 

The above equations reveals the fact that, the low pass 

and high pass filters in  imaginary tree are related to 

those in real tree through Hilbert relations .The same will 

also be perfectly hold by the Modified DTCWT as 

follows. 

 

                                ,           (3) 

 

                                 ,      
 

 
          

 

III.  ALGORITHM STRUCTURE 

The following list summarizes the steps in the 

proposed QF Algorithm 

1. Let    be the real tree coefficient matrix of the 

input signal X(m,n) and shift the    

Dimensionally by N(where N value is based  on 

the size of the input X) and leading singleton 

dimensions are removed. 

2. Compute N-point FFT of the result produced in 

step 1. 

3. From an appended zero matrix h of size N 

proportional to the non-empty input signal matrix 

X, if N is non zero  integer and twice the fixed 

value of half of N, then make h [1  
 

 
] =1and h[2: 

 

 
]=2, 

4. Now take the proper product of the dimensionally 

shifted input    and zero appended matrix h and 

compute the inverse FFT of the result. 

5. shift the result produced in step.4 dimensionally 

in reverse approach to that in Step.1 to include the 

removed leading singletons. 

6. The result is the quadratic ally shifted version 

(analytic signal) of the input. To prove the filter‘s 

functionality practically, let as shown in table (1). 

Now discrete wavelet decomposition will be 

performed on. 

 



46 A New Algorithm for Computationally Efficient Modified Dual Tree Complex Wavelet Transform  

Copyright © 2014 MECS                                                        I.J. Image, Graphics and Signal Processing, 2014, 7, 44-52 

Table 1.The stepwise operational results of the QF algorithm. 

Operational 
Step Operational Results 

Input(X)      [ 55   127     68    178  ;    196   202   245   213  ;    223   252   117   123   ;  156   197   193    143] 

   

   208.2500                   235.4702                 336.2500                -107.8202              -101.6420            -61.0548 
   326.0654                   343.2117                 374.2947                 082.8729               065.7227            -60.0700 
   364.5000                   397.2104                 294.0000                -055.4256               -039.1429            29.4449 
  -048.0644                  -057.4772                 064.5189                 -024.7500              -058.8503            53.2500 
  -025.0992                  -019.0724                 020.9264                  003.7997              -051.4306            13.5364 
  -032.9090                   013.1679                -031.1769                 -004.5000               045.8755           -21.0000 

Step 1 

   Xrs = 
   208.2500                   235.4702                 336.2500                 -107.8202              -101.6420           -61.0548 
   326.0654                   343.2117                 374.2947                  082.8729               065.7227           -60.0700 
   364.5000                   397.2104                 294.0000                 -055.4256              -039.1429            29.4449 
  -048.0644                  -057.4772                 064.5189                 -024.7500              -058.8503            53.2500 
  -025.0992                  -019.0724                 020.9264                  003.7997              -051.4306            13.5364 
  -032.9090                   013.1679                -031.1769                 -004.5000               045.8755           -21.0000 

 

Step 2 

   N-point FFT(Xnpoint) of  Xrs is  

   792.7                         912.5                       1058.8                    -105.8                    -139.5                 -045.9 

   233.2 – 648.3i           282.1 -646.3i           0285.8 – 587.6i      -018.1 – 24.4i         058.3 – 27.8i     -176.3 +20.1i 

  -156.1 + 26.5i               -189.3 + 74.7i               0071.7 – 114.7i          -145.9 -127.0i           -171. - 6.5i             011.2 + 47.6i 

   302.6                         314.7                       0243.5                    -213.1                    -245                      009.7   

  -156.1 - 26.5i                -189.3 -74.7i                 0071.7 + 114.7i         -145.9 +127i              -171 + 6.5i             011.2 – 47.6i 

    233.2 + 648.3i              282.1 + 646.3i             0285.8 + 587.6i         -018.1 + 24.4i             058.3 + 27.8i      -176.3 – 20.1i 

Step 3 h=[0 0 0 0 0 0],                   h=[1 2 2 1 0 0];else                                  h=[1  2 2 0 0 0]; 

Step 4 

    Xinpoint= 

    208.25  – 207.25i         235.47  – 190.55i         336.25  – 234.10i      -107.82  – 50.44i      -101.64 – 11.46i      -61.05 + 22.56i 

    326.07  – 90.21i           343.21  – 93.38i           374.29  + 24.39i         082.87  – 30.25i        065.72  -36.08i      -60.07 – 52.25i 

    364.50 +  216.00i        397.21  +  231.34i        294.00  + 178.85i      -055.43  + 62.14i      -039.14 + 71.92i       29.44 -65.43i 

   -048.06 + 224.94i     -057.48 + 240.34i      064.52 +157.66i     -024.75 - 34.19i    -058.85 +7.09i       53.25 +9.18i 

   -025.10  _ 8.75i          - 019.07  – 40.79i           020.93 + 55.25i           003.80  - 11.69i      -051.43  -  60.46i      13.54 + 42.87i 

   -032.91  – 134.72i        013.17  –  146.96i      -031.18  – 182.05i        -004.50 + 64.44i       045.88  +  28.99i     21.00 + 43.07i 

Step 5 

   Xirs= 

    208.25 – 207.25i         235.47 – 190.55i          336.25 – 234.10i        -107.82 –  50.44       -101.64 –11.46i       -61.05 + 22.56i 

    326.07 – 90.21i           343.21 – 93.38i            374.29 + 24.39i            082.87 – 30.25i        065.72 - 36.08i      -60.07 – 52.25i 

    364.50 + 216.00i        397.21 + 231.34i          294.00 + 178.85i         -055.43 + 62.14i      -039.14 +71.92i        29.44 -65.43i 

  -048.06 +224.94i      -  057.48 +240.34i        064.52 +157.66       -024.75 - 34.19i    -058.85+7.09i        53.25 +9.18i 

  -025.10 -  8.75i           - 019.07 – 40.79i           020.93 + 55.25i             003.80  -  11.69i     -051.43 - 60.46i        13.54 + 42.87i 

  -032.91 – 134.72i         013.17 –  146.96i       -031.18 – 182.05i         -004.50+  64.44i        045.88 + 28.99i      -21.00 + 43.07i 

Step 6 

 The analytic signal for the given input signal  is= 

   208.25 – 207.25i         235.47 – 190.55i          336.25 – 234.10i        -107.82 – 50.44i       -101.64 – 11.46i       -61.05 + 22.56i 

   326.07 – 90.21i           343.21 – 93.38i            374.29 + 24.39i           082.87 – 30.25i         065.72 -36.08i        -60.07 – 52.25i 

   364.50 + 216.00i         397.21 + 231.34i         294.00 + 178.85i        -055.43 +62.14i        -039.14 +71.92i         29.44 -65.43i   

 -048.06 + 224.94i        -057.48 + 240.34i      064.52 + 157.66i    -024.75 -34.19i      -058.85 +7.09i       53.25 +9.18i 

 -025.10 -   8.75i           -019.07 – 40.79i            020.93 + 55.25i           003.80 -11.69i         -051.43 -60.46i         13.54 + 42.87i 

 -032.91 –   134.72i       013.17 – 146.96i         -031.18 – 182.05i        -004.50 + 64.44i         045.88 + 28.99i     -21.00 + 43.07i 

 

The realizable approach of the Modified DTCWT does 

not contain the filters      and   ,rather it implements the 

functionality of     as QF(    and   as QF(   .All the 

conditions imposed in CDTCWT by the Hilbert relations 

cited above are greatly abide by the Modified 

DTCWT ,with the completely excluded filter pair    and 

  .The resultant coefficients of wavelet decomposition in  

 

 

 

 

 

 

imaginary tree if it could have been performed with 

filters    and   ,can easily be obtained in the Modified 

DTCWT with a simple quadrature filter ,which is 

faster,flexible, in operation and has compact hard ware, 

instead of performing the decomposition with the filter 

pair    and   .The process inside the Modified DTCWT 

is illustrated in fig(2). 
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In poly phase notation [9], the transfer functions of the 

filters used for real tree decomposition can be written in 

terms of their even and odd phases according to the 

following relations. The filter pair used here is 

represented in poly phase notation as follows. 

 
For analysis 
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for synthesis 

 

            
            

              (7) 
 

            
            

              (8) 
 

                                     
 

                                  
 

And the high pass filters are alternate time reversals of 

the low pass filters. 

 

                             (11) 

 

                             (12) 

 

Where L is length of the filters. 

The impulse response of the low pass and high pass 

filter pair used for analysis and synthesis of real tree are 

plotted in figure (3). 

 

 

Fig (3):Impulse responses of the analysis and synthesis filter pairs of 

the real tree with a selected wavelet type of ‗bior6.8‘. 

The filter coefficients for both analysis and Synthesis 

real tree filters are listed in table(2). 

Table (2): Coefficients for analysis and synthesis filter pairs 

H0 H1 F0 F1 

      0 

    0.0019 

   -0.0019 

   -0.0170 

    0.0119 

    0.0497 

   -0.0773 

   -0.0941 

    0.4208 

    0.8259 

    0.4208 

   -0.0941 

   -0.0773 

    0.0497 

    0.0119 

   -0.0170 

   -0.0019 

    0.0019 

         0 

         0 

         0 

    0.0144 

   -0.0145 

   -0.0787 

    0.0404 

    0.4178 

   -0.7589 

    0.4178 

    0.0404 

   -0.0787 

   -0.0145 

    0.0144 

         0 

         0 

         0 

         0 

  0 

  0 

  0 

  0.0144 

  0.0145 

 -0.0787 

 -0.0404 

  0.4178   

  0.7589  

  0.4178 

 -0.0404 

 -0.0787 

  0.0145    

  0.0144 

  0 

  0 

  0 

  0 

  0             

-0.0019     

-0.0019                            

0.0170    

0.0119     

-0.0497 

-0.0773    

0.0941    

0.4208     

-0.8259    

0.4208    

0.0941      

-0.0773    

-0.0497    

0.0119    

0.0170     

-0.0019    

-0.0019 

 
The decomposition process in the traditional DTCWT 

and Modified DTWCT are absolutely similar in all 

aspects. The signal decomposition in first level with the 

MDTCWT and the CDTCWT are practically verified and 

summarized in table (3). 
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Table (3): Simulation results of an example signal(x(m,n))wavelet decomposition using the CDTCWT and MDTCWT with a Daubechies second 

wavelet ‗db2‘. 

v Level 1  real tree operation with CDTCWT Level 1 imaginary tree operation with CDTCWT 

Original 

input 

(X(m,n) 

   55        127       68        178   

   196      202       245      213  

   223      252       117      123 

   156      197       193      143 

Original 

input 

(X(m,n) 

  55           127            68                178 

   196        202            245              213 

   223        252            117              123  

  156        197            193               143 

Ca1 

   208.2500     235.4702    336.2500 

   326.0654     343.2117    374.2947 

   364.5000     397.2104    294.0000 
Ca2 

208.25 – 207.25i     235.47 – 190.55i     336.25 – 234.10i     326.07 

– 90.21i       343.21 – 93.38i       374.29 + 24.39i  

364.50 + 216.00i     397.21 + 231.34i     294.00 + 178.85i    

Ch1 

 -107.8202    -101.6420   -061.0548 

 082.8729     065.7227   -060.0700   

 -055.4256   - 039. 1429    029.4449 
Ch2 

-107.82 – 50.44i      -101.64 – 11.46i      -61.05 + 22.56i 

  082.87– 30.25i        065.72 - 36.08i      -60.07 – 52.25i 

-055.43 + 62.14i      -039.14 + 71.92i       29.44 - 65.43i 

Cv1 

 -048.0644   - 057.4772     064.5189 

 -025.0992   - 019.0724     020.9264 

 -032.9090     013.1679   - 0311769  Cv2 

-48.06 + 224.94i      -57.48 + 240.34i       64.52 + 157.66i       

-25.10 -  8.75i          -19.07 – 40.79i         20.93 + 55.25i            

 -32.91 – 134.72i       13.17 – 146.96i     -31.18 – 182.05i         

 

Cd1 

 -024.750     -58.8503        53.2500 

  003.799     -51.4306        13.5364 

 -004.500      45.8755      -21.0000 Cd2 

-24.7500 - 4.7918i   -58.8503+56.1797i   53.2500-19.9396i 

  03.7997-11.6913i  -51.4306-60.4635i    13.5364 +42.8683i          -

04.5000+16.4832i   45.8755+ 4.2838i   -21.0000 -22.9287i 

Level 1  real tree operation with MDTCWT Level 1 imaginary tree operation with MDTCWT 

Ca1 

208.2500     235.4702     336.2500                      

326.0654     343.2117     374.2947 

  364.5000    397.2104     294.0000 
Ca3 

  208.25 – 207.25i     235.47 – 190.55i      336.25 – 234.10i   

  326.07 – 90.21i       343.21 – 93.38i        374.29 + 24.39i  

  364.50 + 216.00i     397.21 + 231.34i     294.00 + 178.85i 

Ch1 

-107.8202   -101.6420    -61.0548 

  082.8729    065.7227    -60.0700 

-055.4256   -039.1429      29.4449 
Ch3 

  208.25 – 207.25i     235.47 – 190.55i     336.25 – 234.10i   

  326.07 – 90.21i       343.21 – 93.38i        374.29 + 24.39i  

  364.50 + 216.00i     397.21 + 231.34i     294.00 + 178.85i 

Cv1 

-48.0644     -57.47720      64.5189 

-25.0992    -19.07240       20.9264 

-32.9090      13.16790    -31.1769 
Cv3 

-48.06 + 224.94i      -57.48 + 240.34i       64.52 + 157.66i       

-25.10 - 8.75i           -19.07 – 40.79i         20.93 + 55.25i             

-32.91 – 134.72i       13.17 – 146.96i      -31.18 – 182.05i        

Cd1 

-24.7500     -58.8503        53.2500 

  03.7997    -51.4306        13.5364 

-04.5000      45.8755      -21.0000 
Cd3 

-24.7500 - 4.7918i  -58.8503+56.1797i    53.2500-9.9396i 

  03.7997-11.6913i -51.4306-60.4635i 1  03.5364 42.8683i 

-04.5000+16.4832i  45.8755+ 4.2838i    -21.0000 -22.9287i 

 

The shift sensitive characteristics of the MDTCWT are 

similar to that of the CDTCWT and still even flat step 

response is possible with the MDTCWT. The shift 

sensitive characteristics of the MDTCWT are psycho–

visually similar to those can be obtained with the 

CDTCWT. In the MDTCWT as the levels of 

decomposition increases, the step wavelet response will 

get even flat and smoother. For example a composite 

signal of 16 shifted step functions are applied as an input 

to both modified MDTCWT and standard DWT 

simultaneously to observe the variation in shift 

insensitivity offered by them at levels from 1 to 4 as 

shown in figure (4) and has been observed that the 

characteristics are alike in all aspects to those can be 

obtained with CDTCWT but relatively very less shift 

effects. There is almost no change in shape of the step 

response and the shifted wavelet response will remains as 

same as that of the un-shifted step response. Hence as the 

levels of decomposition increases, the deviation between 

the shifted and the non-shifted waveforms vanishes 

proportionally with the MDTCWT as shown in figure (4). 

 

 

Figure(4):Shift -invariance characteristics of the MDTCWT. 

The Multi scale analysis is an important feature offered 

by the Conventional DTCWT, according to which as the 

scale or level of decomposition increases the 

regularization in time and frequency domains will get 

improved. Signal decomposition at lower scales or 

levels ,it is only poor fair timefrequency resolution is 

possible, but as we progress the decomposition process to 

the higher scales or higher levels it is possible to obtain 
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better, desirable resolution in time and frequency 

domains. But when the levels or scales of decomposition 

are increased beyond certain value the quality of 

reconstructed signal will decreases in the Conventional 

DTCWT. Hence the quality of the reconstructed signal 

will limit the levels of decomposition in the Conventional 

DTCWT. But the MDTCWT is completely impervious to 

this problem, and can allow the decomposition at any 

higher level without a significant information loss. 

Multilevel wavelet decomposition structure is illustrated 

in figure(5) The scale by scale wavelet coefficients of an 

example signal(x(m,n)) decomposition in real and 

imaginary trees  are summarized in table(4) and table(5) 

respectively. 

 

         

    

 
 

    
        

        

        

Fig(5):Multi-scale decomposition structure of the Modified DTCWT 

Since in CDTCWT, the decomposition process occurs 

in two separate trees, the significant amount of 

information loss occurs during the process of retaining 

the higher coefficient values and removes the lower 

coefficient values. The same process will continue as the 

decomposition progresses to the higher levels .To explain 

how the CDTCWT generates oriented wavelets ,let us 

now consider the 2-D wavelet                 

associated with the row column implementation of the 

wavelet transform ,where       is a 

complex(approximately analytic)wavelet given by 

                 .We obtain for        the 

expression 

 

       [            ][            ]  

                                    

                   (13) 
 

Note that the first term in above equation            

is HH wavelet of a real tree wavelet decomposition.The 

second term            is also a HH wavelet associated 

with the imaginary tree wavelet decomposition. For 

instance, to obtain a real 2-D wavelet oriented at     , 

consider now the complex 2-D wavelet         
        ̅̅ ̅̅ ̅̅ ̅ ,where     ̅̅ ̅̅ ̅̅ ̅ represents the complex conjugate 

of       and ,as previous,       is approximately 

analytic wavelet                   .We obtain for  

        the expression 

  
  

 
      [            ][            ]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅   

     [            ][            ]          

                                              

                                (14) 

To obtain four more oriented real 2-D wavelets, we 

can repeat this procedure on the following complex 2-D 

wavelets          ,           ,           ̅̅ ̅̅ ̅̅ ̅  and 

     ̅̅ ̅̅ ̅̅ ̅     ,where                   and 

                 .Specifically, we obtain the six 

wavelets using the following equations. 

 

         
 

√ 
                                

 

          
 

√ 
                                

 

For i=1, 2, 3, where the two seperable 2-D wavelet bases 

are defined in the usual manner; 

 

                    ,                     , 

(17) 

 

                     ,                     , 

(18) 

 

                     ,                      , 

(19) 

 

We have used the normalization 1/√  only so that the 

sum/difference operation constitutes an orthonormal 

operation. 

The CDTCWT can provide good directional selectivity 

in only six orientation angles viz           and 

     while preserving the quality of reconstructed signal. 

The directional wavelet orientation of the MDTCWT is 

shown in fig (6).In order to further increase the chances 

of wavelet orientation in even more directions, the levels 

of signal decomposition has to be brought to the higher 

scales. If this happens a huge amount of significant 

information will be lost in both the trees of CDTCWT, 

while discarding the smaller coefficients. This will leads 

to the remarkable drop in the quality of the reconstructed 

signal. Hence the directional wavelet orientation and 

levels of decomposition are limited by the reconstructed 

signal quality. But with Modified DTCWT the case is 

entirely different. While providing the directional 

wavelet orientation in all six angles as that of the 

CDTCWT, it does not limit the chances of wavelet 

orientation in even more directions and levels of 

decomposition with the reconstructed signal quality. A 

most convincing reason for this is the Modified DTCWT 

performs the signal decomposition in only one tree and 

maintains a perfect information integrity which does not 

allow any significant information loss. Hence if we 

brought the decomposition to higher scales we can 

achieve the better wavelet orientation in even more 

irections without losing the quality of the reconstructed 

signal. 
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Table(4) Multiscale wavelet coefficients for real tree decomposition of the example input signal(X(m,n)). 

Scale 

or 

Level 

Ca1 Ch1 Cv1 Cd1 

Scale 

1 

208.2500    235.4702    336.2500 

326.0654    343.2117    374.2947 

364.5000    397.2104    294.0000 

 -107.8202    -101.6420    -

61.0548 

   082.8729     065.7227   -

60.0700 

 -055.4256    -039.1429     

29.4449 

-48.0644     -57.4772      

64.5189 

-25.0992     -19.0724      

20.9264 

-32.9090      13.1679     -

31.1769 

-24.7500     -58.8503      

53.2500 

 03.7997     -51.4306      

13.5364 

-04.5000      45.8755     

-21.0000 

Scale 

2 

487.7586   519.1071     684.8755 

587.6252   611.4440     709.6574 

760.7854   772.4277     624.8238 

 -99.8501      -92.2430      -

36.1927 

  42.2636       39.3370       -

27.2889 

  57.5864       52.9060        

63.4815 

-21.3923      46.1985     -

24.8062 

-18.7314      26.9029     -

8.17150 

-26.6268     -44.6692     71.2960 

-3.7777         15.8881     

-12.1104 

-2.5714        -19.4321      

22.0035 

 6.3491          03.5440    

- 09.8931 

Scale 

3 

1040.2       1084.2           1367.6 

1143.0       1178.0           1381.7 

1522.5       1513.8           1286.1 

- 084.8568    -78.2740      -

24.7841  

  102.9904     90.8790       -

29.5031 

 -018.1336    -12.6050       

54.2872 

-25.5184      79.8325     -

54.3141 

-22.1482      57.0891     -

34.9409 

-10.1922     -66.5056      

76.6978 

-2.8237        15.2228      

-12.3991 

 3.2330       -34.5012       

31.2682 

-0.4093        19.2784      

-18.8691 

Table(5): Multiscale wavelet coefficients for imaginary tree decomposition of the example input signal(X(m,n)) 

Scale 

or 

Level 

Approximate and Horizontal coefficients 
Vertical and Detail coefficients 

 

Scale 

1 

 

Ca2  208.25 + 22.19i     235.47 + 31.18i       336.25 -46.36i 

 326.07 – 90.21i     343.21 – 93.38i       374.29 +24.39i 

 364.50 + 68.02i     397.21+ 62.20i        294.00+ 21.97i 

Cv2  -48.0644 - 4.5090i      -57.4772 +18.6140i      64.5189 -

30.0819i 

 -25.0992 - 8.7500i      -19.0724 -40.7870i       20.9264 

+55.2500i 

 -32.9090 +13.2590i     13.1679 +22.1730i    - 31.1769 -

25.1681i 

Ch2 -107.82- 79.85i     -101.64 – 60.54i      -61.05 + 51.68i 

 082.87- 30.25i       065.72 – 36.08i     -60.07 – 52.25i 

-055.43 + 110.10i -039.14 + 96.63i      29.44 +00.57i 

Cd2  -24.7500 - 4.7918i      -58.8503 +56.1797i      53.2500 -

19.9396i 

  03.7997 -11.6913i     -51.4306 -60.4635i      13.5364 

+42.8683i 

 -04.5000 +16.4832i     45.8755 + 4.2838i      -21.0000 -

22.9287i 

Scale 

2 

Ca2  487.76 + 99.97i      519.11 + 92.94i     684.88 -48.98i 

 587.63 – 157.63i    611.44 – 146.25i  709.66 + 34.67i 

 760.79 +57.66i       772.43 +53.31i      624.82 + 14.31i 

Cv2  -21.3923 - 4.5584i       46.1985 -41.3222i      -24.8062 

+45.8805i      - 18.7314 + 3.0221i      26.9029 +52.4625i     

-08.1715 -55.4846i 

- 26.6268 + 1.5363i    - 44.6692 -11.1403i       71.2960 + 

9.6041i 

Ch2 -99.85 + 8.84i         -92.243+ 7.8341i   -36.1927 

+52.4063i 

42.2636 -90.896i   39.337 -83.80i       -27.2889 -

57.5469i        57.5864 +82.04i     52.906 +75.967i    

63.4815 + 5.1406i 

Cd2 - 3.7777 + 5.1503i    15.8881 +13.2653i  -12.1104 -

18.4155i   

- 2.5714 - 5.8467i    -19.4321 + 7.1269i    22.0035 - 

1.2802i 

  6.3491+0.6965i          03.5440 -20.3922i       -09.8931 

+19.6957i 

Scale 

3 

Ca2  1040.2 +219.1i       1084.2 +193.9i      1367.6 -055.2i 

 1143.0 -278.5i        1178-248i              1381.7 + 047i 

 1522.5 +059.4i       1513.8 +054.1i      1286.1+008.1i 

Cv2 - 25.5184 + 6.9028i     79.8325 -71.3574i       -54.3141 

+64.4546i 

- 22.1482 - 8.8486i      57.0891 +84.4884i      -34.9409 -

75.6398i 

- 10.1922 + 1.9458i   - 66.5056 -13.1309i       76.6978 

+11.1852i 

Ch2 -084.86-69.93i       -78.27 -59.75i        -24.78 + 48.38i 

 102.99 -38.52i        90.88 -37.91i        -29.50 -45.65i 

-181.3 + 108.45i    -12.60 +97.66i         54.29-02.72i 

Cd2 - 2.8237 - 2.1029i        15.2228 +31.0497i     -12.3991 -

28.9468i   

  3.2330-1.3939i          -34.5012 - 2.3415i        31.2682 + 

3.7354i  

- 0.4093 + 3.4968i       19.2784 -28.7082i       -18.8691 

+25.2114i 
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(a)  REAL TREE 

 

                                                                            

(b) IMAGINARY TREE 

 

                                                                               

(c) Modified DTCWT 

 

                                                                              

Fig(6):Directional wavelet orientation of the MDTCWT,  

that are obtained with,(a)real tree  (b)imaginary tree and (c)magnitudes 

of dual tree complex wavelets 

 

IV.  COMPUTATIONAL COMPLEXITY 

In past DTCWT approaches and in Kingsbury‘s 

approach the transform makes use of two DWT trees. 

Each tree will have a pair of low pass and high pass 

filters. Let in Kingsbury approach, {               }  
 

be the filter pair for real tree, with transfer 

functions {               } . In a similar manner 
{               }  is the filter pair for the imaginary 

tree with functions{               }. 

Fro[10]  the number of complex computations  

insteadobtaining it directly from the real tree with 

neededfor CDTCWT is investigated analytically and 

compared with that needed for MDTCWT. For each 

versions individual number of operations needed are 

calculated for both real and imaginary trees separately 

and then overall computations .In case of  CDTCWT for 

real tree a total of    |       |  |       |      

complex computations are needed. Similarly for an 

imaginary tree a total of   |       |  |       |     

complex computations are required. Thus on a whole the 

CDTCWT needed   |       |  |       |  
|       |  |       |     complex computations as 

in table (6). But in the case of the MDTCWT ,the total 

number of complex computations needed are get reduced 

to approximately half to that in the CDTCWT, because 

the imaginary tree does not involve the process 

QF(process involves simple shift and fourier conjugate 

operations,) as in table(7).Hence the MDTCWT requires 

only approximately   |       |  |       |     

complex computations. 

A practical verification of the computational efficiency 

offered by the MDTCWT is compared with the 

CDTCWT by taking into account the numerical value of 

the spectral lengths of the filter pair used for analysis in 

both real and imaginary trees of the respected. Thus the 

number of complex operations needed to process a 

64X64 image can be estimated as in table (8).The 

computational complexity of the MDTCWT is compared 

through graphical illustration and it is shown in figure (7). 

Table (6): complex computations for conventional DTCWT. 

TCW

T 
Real Imaginary Total 

Multipli

cations 
|       |  |       |    |       |  |       |    |       |  |       |  |       |  |       |    

Additi

ons 
|       |  |       | |       |  |       | |       |  |       |  |       |  |       | 

Total   |       |  |       |       |       |  |       |       |       |  |       |  |       |  |       |     

Table (7): complex computations for MDTCWT 

For 

MDTCWT 
REAL Imaginary Total 

Multiplications |       |  |       |        |       |  |       |    

Additions |       |  |       |     |       |  |       | 

Total   |       |  |       |           |       |  |       |     

Table (8): operations required for processing a 64X64 image with conventional DTCWT and modified MDTCWT. 

CDTCWT MDTCWT 

Input size 64X64 image 64X64 image 

Operation Real tree Imag Tree DTCWT Real tree Imag Tree MDTCWT 

Multiplication

s 
155648 155648 311296 155648       159744 

Additions 147456 147456 294912 147456       159744 

Total 303104 303104 606208 303104       319488 
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Fig (7): computational complexity between CDTCWT and MDTCWT 

V.  CONCLUSION 

The MDTCWT achieves a nearly shift invariant and 

directionally selective properties with a redundancy 

factor of    for‗d‘- dimensional signals, and the signal of 

any(d)dimension will be decomposed in only one tree. 

For 2 dimensional signal the redundancy factor is     , 

so the entire data in the decomposed signal is significant 

and hence there is no redundant data.Thus the MDTCWT 

is completely redundant free compared to the 

Conventional  Dual Tree Complex Wavelet Transfom. 

The proposed work is computationally more efficient 

than the CDTCWT as from the fact that, the modified 

MDTCWT obtains its imaginary straight away from the 

real and it does not requires separate tree. The tool 

developed is obeyed to all conditions of DTCWT 

integrity and preserves all the performance features. 

The MDTCWT has a huge scope in the signal 

processing plot forms where process speed and power 

consumption are the major factors to be considered .It 

finds its applications in image analysis and synthesis, like 

denoising, deblurring, super-resolution, watermarking [4], 

segmentation [3] and pattern classification [5] where 

processor has to process a bulk amount of data in quicker 

times at relatively higher speeds with process 

homogeneity. 
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