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Abstract—Conventional approaches to sampling images 

use Shannon theorem, which requires signals to be 

sampled at a rate twice the maximum frequency. This 

criterion leads to larger storage and bandwidth 

requirements. Compressive Sensing (CS) is a novel 

sampling technique that removes the bottleneck imposed 

by Shannon’s theorem. This theory utilizes sparsity 

present in the images to recover it from fewer 

observations than the traditional methods. It joins the 

sampling and compression steps and enables to 

reconstruct with the only fewer number of observations. 

This property of compressive Sensing provides evident 

advantages over Nyquist-Shannon theorem. The image 

reconstruction algorithms with CS increase the efficiency 

of the overall algorithm in reconstructing the sparse 

signal. There are various algorithms available for 

recovery. These algorithms include convex minimization 

class, greedy pursuit algorithms. Numerous algorithms 

come under these classes of recovery techniques. This 

paper discusses the origin, purpose, scope and 

implementation of CS in image reconstruction. It also 

depicts various reconstruction algorithms and compares 

their complexity, PSNR and running time. It concludes 

with the discussion of the various versions of these 

reconstruction algorithms and future direction of CS-

based image reconstruction algorithms. 

 

Index Terms—Compressive Sensing, Sparsity, Signal 

Recovery,    minimization, Greedy Pursuit algorithms, 

Orthogonal Matching Pursuit (OMP), Iterative Hard 

Thresholding (IHT), Generalized OMP (GOMP). 

 

I. INTRODUCTION 

Reconstruction is an inverse problem in which an 

image or signal can be recovered from the data given. 

The given data can be in the form of codes, from which 

data samples are required to be acquired and processed in 

order to recover the image or signal accurately. In this 

paper, the various techniques for image reconstruction 

using Compressive Sensing are discussed. Compressive 

Sensing is a highly efficient technique because of the 

high need for rapid, efficient and less expensive signal 

processing applications. Earlier, signal processing 

techniques employed Nyquist-Shannon theorem. This 

technique requires sampling rate to be at least two times 

the highest frequency in the signal. This requirement for 

the sampling frequency is called Nyquist condition. This 

theorem finds applications in many audio electronics, 

medical imaging devices, visual electronics, radio 

transmitters and receivers [1]. However, this technique 

requires larger storage space, running time and 

computations. Moreover, in some of the processes, there 

may be the only limited number of samples available or 

may be only limited data capturing devices or slow 

measurements. In such situation, Nyquist-Shannon 

theorem fails and Compressive Sensing (CS) is able to 

use the concept of sparsity using different transform 

domains and incoherent nature of these observations in 

the original domain. CS offers sampling and signal 

compression in one step and measures the only minimum 

number of samples that can carry the maximum set of 

information [2]. CS is one of the novel techniques that do 

not require the Nyquist sampling rate for image 

processing. The implementation of CS reduces the 

requirement of acquiring and preserving the large number 

of samples. It saves only those samples, which have 

significant value and samples with minimal value are 

discarded. CS offers various applications due to its 

property of sparsity and incoherence. This paper presents 

a brief historical description of CS and analyzes the 

various CS based image reconstruction algorithms. In 

this paper, section I presents the introduction of 

Compressive Sensing and image reconstruction. In 

Section II, background and implementation of 

Compressive Sensing are discussed with certain 

properties. The Section III presents    minimization 

recovery algorithm. Section IV presents Matching Pursuit, 

Orthogonal Matching Pursuit (OMP) and its latter 

modification Regularized OMP (ROMP). In Section V, 

the working of Iterative Hard Thresholding algorithms is 

discussed. In the Section VI Generalized OMP (GOMP) 

and Adaptive GOMP (GOAMP) are presented. The 

discussion and analysis is presented in Section VII. The 

paper is concluded in Section VIII.  

 

II. COMPRESSIVE SENSING AND BACKGROUND 

In engineering theory and practical applications, the 

sampling theorem of Nyquist-Shannon theorem has a 

tremendous role but it can be used frequently only for 

band-limited signals otherwise it requires larger storage 

space and measurements for high-dimensional signals. 

However, practically reconstruction is even possible with 

fewer measurements and compression is also needed 

before storage. These requirements can be fulfilled with 
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Compressive Sensing. The field of CS has gained 

enormous interest recently. It is basically developed by D. 

Donoho [3], E. Candes and T. Tao [4]. It was used in 

Seismology for the first time in 1970 and then later on    

norm minimization was suggested by Santosa and Symes 

for recovery algorithms [5]. Then, total variation 

minimization was used by Ruden, Fatemi and Osher [6] 

in 1990s for image processing. The implementation of 

total variation minimization is somewhere identical to    

norm minimization. But, the idea of CS was actually 

taken into account by D. Donoho, E. Candes, Justin 

Romberg and T. Tao [3, 4]. 

A. Nyquist Sampling Theorem 

Shannon proposed his famous Nyquist-Shannon 

Theorem in 1949. According to Shannon theorem, any 

band-limited signal, time varying in nature can be 

recovered perfectly if the sampling frequency is 

numerically equal to or greater than two times of the 

maximum frequency present in the signal itself. For a 

signal of frequency   Hertz, sampling rate requires to be 

     seconds. For conventional processes, before 

transmission of the data or signal, it is sampled properly 

at Nyquist rate followed by compression. For example, if 

the data is sampled at   hertz and then compressed to ' ' 
samples and     samples are discarded. At the 

recovery part, for most decompression is performed and 

'  ' samples are extracted from compressed '  ' data 

samples. In Fig. 1, x is the signal of interest and y is the 

compressed measurement vector. The figure depicts a 

model of Traditional Sampling Technique, in which 

acquisition and sampling are separate steps. In this 

approach, the number of captured samples remains 

greater than the information rate. This technique is 

computationally complex, especially for the high-

dimensional signals, due to the requirement of the large 

storage space. Moreover, analog to digital conversion for 

high dimensional signals is expensive. The question that 

arises after studying the Nyquist-Shannon Theorem is 

that what is the need of overall computation when only ' ' 
data samples are sufficient. 

 

 

Fig.1. Structure of Traditional Sampling Technique 

 

Fig.2. Structure of Compressive Sensing paradigm 

The compressed form contains major information; 

hence there is no need of computing rest of the non-

significant samples. So Compressive Sensing is an 

alternative approach, which performs sampling and 

compression together as shown in Fig. 2. 

B. Compressive Sensing 

CS theory enables the implementation of the recovery 

of the high dimensional signal from lesser observations 

as a comparison to the actual number of measurements 

required in conventional techniques. The objective of CS 

recovery algorithms is to provide an estimate of the 

original signal from the captured measurements. It is 

based on the property of the signals to be able to offer 

their representation in the sparse domain with fewer 

numbers of nonzero coefficients. This property is called 

sparsity and the given signals as sparse signals. The 

reconstruction algorithm used with CS decides the 

number of samples needed for exact reconstruction. The 

model of reconstruction using CS depends on two 

properties: 

1) Sparsity 

Many signals are capable to be stored in compressed 

form in terms of their projection in a suitable basis. The 

projected coefficients of these signals can be zero or a far 

lower value, if a suitable basis is used. For a signal 

having   non-zero coefficients, it is called  -sparse. As, 

these sparse signals may offer the larger number of 

smaller coefficients that can be ignored easily; hence a 

compressed signal can be obtained from the sparse form. 

For compressive Sensing, the suitable domains available 

are DCT, DWT, and Fourier Transform [7]. Discrete 

Wavelet Transform is usually preferred over Discrete 

Cosine Transform because it enables the removal of 

blocking artifacts [8]. Basically, Sparsity refers to the 

possibility of having a much smaller information rate for 

a continuous time signal as a comparison to the one 

depicted by its bandwidth. So, CS can use the advantage 

of using these natural signals with their compressed form 

in a particular domain. Suppose a signal   can be 

represented in a suitable orthonormal basis like wavelet, 

DCT. As in a signal, many coefficients are small and 

most of the important information lies in few larger 

coefficients. Hence, it can be expanded in an orthonormal 

basis for sparse representation. Let   the given signal and 

  *       +  represents the suitable basis, 

therefore, an image   in domain   is given as: 

 
 ( )  ∑   

 
     ( )                         (1) 

 
where    is the coefficients of the sparse form of  , 

         . In a sparse representation of the signal, 

small coefficients in that signal can be neglected without 

much information loss. It's like considering the signal   

by keeping only the significant coefficients and 

discarding the smaller coefficients. Thus, the obtained 

vector is known as a sparse signal.  

2) Incoherence 

Incoherence shows that any signal with a sparse 

representation in a particular domain can be spread out in 

a domain in which it is actually captured. It enables the 

relationship of duality between time and frequency. It 

measures the maximum correlation for any two matrices. 

These two matrices give a form of different 

representation domains. For the measurement matrix   
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with     size and the representation matrix   of 

    size, the representation matrix can be represented 

as          as columns and measurement matrix as 

        as rows. The coherence   is given as: 
 

 (   )  √                              (2) 

 

for                 . Moreover, from linear 

algebra, for incoherence following result can be depicted: 
 

   (   )  √                           (3) 
 

In CS technology, the incoherence of two matrices is 

important. One is the Sensing matrix that is used to sense 

the significant columns of the signal of interest. The 

second one is the representation matrix   in which the 

given signal is represented in the sparse form. The low 

value of incoherence for CS shows that the fewer 

measurements are required for reconstruction of the 

signal [9]. Coherence is able to measure the maximum 

correlation between the columns or elements of  and  . 

Mostly low coherence pairs are considered in 

Compressive Sensing. The measurement matrix   

basically performs the function of sampling the 

coefficients. The measurement matrices like Fourier, 

Gaussian are able to satisfy the coherence property. The 

random matrices like i.i.d Gaussian Matrix or binary  1 

matrix with fixed basis   are mainly incoherent. These 

matrices are simple and possess lower convergence, 

which are required for recovery with Compressive 

Sensing. 

3) Restricted Isometry property (RIP) 

RIP is one of the most important properties of 

Compressive Sensing. It can be used as a tool in order to 

analyze the performance implementation of CS. RIP tool 

is able to ensure that the sensing matrix captures the 

significant columns from the given signal of interest. 

This property can give the condition for the 

reconstruction matrix for exact recovery. For any   

sparse signal   , restricted isometric constant (RIC) 

  (      ) is the minimum value that makes the 

inequality holds [10]: 

 

(    )‖ ‖ 
  ‖  ‖ 

  (    )‖ ‖ 
           (4) 

 

When this property holds, then the matrix   can 

preserve the Euclidean length of  -sparse signals, which 

shows that the given sparse vectors are not in the null 

space. It can be considered as the sufficient condition for 

recovering the estimate of the support for the sparse 

signal. If RIC constant is not really close to 1, then the 

property ensures that all the columns selected are 

orthogonal and the sparse signal is not in the neglected 

part of the matrix which is sensed. Otherwise, it cannot 

be reconstructed. For the relation of CS and RIP property, 

it is shown that if  -sparse signals are required to be 

recovered, then    should be lesser than 1. This ensures 

the recovery of sparse signals from observations vectors 

with compressive Sensing. The restricted isometry 

property can be considered as the form of uniform 

uncertainty principle for many ensembles of random 

matrices like Fourier, Gaussian, and Bernoulli [4, 11]. 

These matrices satisfy the RIP condition with parameters 

    (     ) which can be represented by Eq. (5). 
 

       ( )                               (5) 
 

where    is the number of measurements and   be the 

dimension of the signal,   is the sparsity of the signal. 

Therefore, a signal can be recovered exactly for   

measurements,   is the sparsity. In some applications, 

measurement matrices play an important role. Some of 

the measurement matrices include Fourier matrix having 

randomly selected rows. The complexity, in this case, can 

be reduced by using Fast Fourier transform. Bernoulli 

matrix which can also be used as measurement matrix 

has faster Sensing but storage complexity. The Gaussian 

random matrix is another measurement matrix which is 

derived from the normal distribution with zero mean and 

variance 1/N. Gaussian matrices are very simple and 

useful operators for Compressive Sensing. Gaussian 

matrix is mostly preferred because of its simplicity and 

easy implementation. 

4) Compressive Sensing Model 

Compressive Sensing model basically performs 

compression and sampling simultaneously. Considering 

an  -dimensional signal  , the sparse form of the signal 

can be constructed by representing it in any suitable basis 

like DCT, Fourier Transform, and wavelet Transform. 

The sparse form or the signal of interest can be given as: 
 

                                        (6) 
 

where    is the sparse form of   and   is the suitable 

basis that shows the projection coefficients of   on the 

given basis. The next step is to compute the measurement 

vector   with a suitable matrix either Gaussian [12] or 

Bernoulli [13]. The measured vector can be given as: 
 

                                      (7) 
 

where   is the measurement matrix of dimension    . 

The overall Eq. can be represented as: 
 

                                      (8) 
 

where   is the Sensing matrix and is depicted as     , 

it is also known as reconstruction matrix. In practical 

applications, the measurement or the random noises can 

also be considered. Equations (6) and (7) are 

reformulated as: 
 

                                   (9) 
 

                                  (10) 
 

where    represents random noise vector. Hence, the 

primary objective of CS is to recover the signal from 

these captured measurements, under sparsifying 
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conditions. Then, the recovery algorithms are applied on 

the given measurement vector. The recovery algorithms 

available are   minimization, several Greedy algorithms 

which are discussed in the next section. 

 

III.    MINIMIZATION 

For recovering the sparse signal from its observed 

measurements, recovery algorithms are required. Convex 

relaxation is the class of algorithms which can solve 

reconstruction issues through linear programming [14]. 

The number of measurements needed for these 

techniques is small, but the methods are complex in 

computational terms. The recovery problem needs to 

solve the highly convex problem according to (11). 
 

   ‖ ‖  subject to                       (11) 
 

It was later suggested by Donoho and his associates 

that for given measurement matrix,    as an NP- hard 

problem can be considered equivalent to its convex 

relaxation i.e.    minimization. 
 

   ‖ ‖  subject to                       (12) 
 

where ‖ ‖ = ∑       denotes the   - norm. This kind of 

convex reconstruction problem can be solved by linear 

programming. For    minimization, the measurement 

matrix must satisfy RIP property for a small value of 

Restricted isometric constant (RIC). BP (basis pursuit) 

[15], BP de-noising are some of the examples of    

minimization techniques. It allows the recovery of norm 

minimization instead of recovering the low-rank matrix 

from the compressed form of the signal. This algorithm 

reduces the complexity, dimensions and order of the 

system because low-rank matrix signifies low order and 

less complex system. Basis pursuit works as an 

optimization problem and minimizes the cost function 

constructed by the Lagrange multipliers. 
 

    (‖     ̌‖   ‖ ̌‖                  (13) 
 

where   is a positive constant. The algorithm works in 

simple steps by first initializing the sparse signal and 

providing the cost function. The Sensing matrix is 

computed by selecting the required number of 

measurements and then the coefficients of the sparse 

image are modified in order to obtain the minimized form. 

The iterations work until the number of total significant 

components remains less than  , sparsity of the signal. 

 

IV. ORTHOGONAL MATCHING PURSUIT (OMP) 

The greedy algorithms are iterative approaches; 

capable of recovering the images using Compressive 

Sensing. Block based Compressive Sensing enables the 

use of Greedy algorithms for recovering thermal images 

also [16]. It works in an iterative fashion in order to 

recover the sparse signal. Orthogonal matching pursuit 

(OMP), a greedy algorithm, basically comes into account 

in the form of a variant of MP (Matching Pursuit) 

algorithm. Earlier, the MP algorithm, an iterative greedy 

method, was introduced in order to approximate the 

decomposition [17]. It identifies those bases and their 

coefficients; that can construct the input signal on 

combining. It starts with the assumption that all the bases 

are orthogonal to each other i.e. independent of each 

other. The value calculated by correlation of the given 

signal with the basis gives the influence of basis on the 

signal. For the basis to be the important part of the signal; 

correlation value should be high and for a lower value of 

the correlation, the basis has a negligible contribution. It 

works by selecting the elements having the maximum 

correlation with the residual vector throughout the 

algorithm at each step. 

Let           be the element having the strongest 

correlation with residual    denoting the     element of 

measurement matrix . All atoms are assumed to be 

normalized with value unity. The selection of elements 

by the algorithm, at each iteration, is represented as: 

 
                                        (14) 

 
where the inner product is denoted by ‹.› and      shows 

the residual at     iteration.The algorithm then updates 

the residual depending on the column selected till the 

termination criterion occurs. When the halting condition 

occurs, the algorithm stops i.e. when the value of the 

norm of residual becomes lesser than the predefined 

threshold or error bound. The algorithm may stops even 

when the number of distinctly selected elements in the 

approximation set becomes equal to the desired limit. 

The Matching Pursuit algorithm is used mostly because 

of its simplicity. But it suffers from the drawback of slow 

convergence and poor sparse results.  

The orthogonal matching pursuit (OMP) [17, 18] has 

the capability to remove this drawback by projecting 

orthogonally the signal on the subspace corresponding to 

the selected set of columns. The method of selecting the 

elements remains the same in both the algorithm.  As 

OMP is based on orthogonalization, an atom is selected 

only once throughout the algorithm. Y. C. Pati et al., 

demonstrated OMP as the recursive algorithm, to 

calculate the functions in the form of the non-orthogonal 

basis using wavelet frames.  

OMP constructs the orthogonal projection onto the 

observation vector. Before the orthogonal projection, the 

algorithm computes the inner product of the residue and 

the measurement matrix. Then the coordinate of the 

highest magnitude is selected and the column 

corresponding to that coordinate is extracted. These 

columns are then embedded into the selected set. It offers 

better asymptotic convergence as comparison to the 

conventional MP algorithm. OMP algorithm is 

considered as a powerful and fast recovery algorithm for 

the sparse signal from the random measurements. It can 

provide recovery results for M measurements and N 

dimension with  (    ) random measurements. It is a 

huge improvement over the conventional recovery 

algorithms. OMP algorithm has an evident place because 
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of its speed and easier implementation. Consider a given 

signal   of dimension N. Select the number of 

measurements required i.e. M. Construct measurement 

matrix   of dimension M x N. Then, obtain the sparse 

form of the signal   and construct the observation 

vector     , this measurement vector is of dimension 

M, hence obtaining the compression and sampling in one 

step. OMP algorithm works step by step. The OMP 

algorithm searches for the significant column in the inner 

product of the residue and the measurement matrix. Then, 

the orthogonal projection is computed onto the subspace 

of the measurement vector. This orthogonal projection 

gives the estimate of the support set. The residue is 

updated according as the estimate. The iterations 

continued until the residue is lesser than the specified 

threshold. Finally, the recovered signal is obtained in 

terms of the estimate of the support system. For the 

termination of the algorithm, the norm of the residue can 

be checked with respect to the threshold. Here, the 

residual    is always orthogonal to the columns of the 

measurement matrix. The conditions for termination of 

the algorithm can be based on cumulative coherence 

property [19]. This algorithm selects a new significant 

column at each step. The column selected corresponds to 

the index having maximum inner-product. Then, this 

selected column is augmented with the initialized set. 

The residual is updated with each step for the new 

estimate of the support set. Finally, the estimate of the 

sparse signal is computed with the updated residual. The 

running time of the algorithm is depicted by the step of 

identifying the new indices. A prototype of OMP 

algorithm first came into account in 1950 [20, 21]; later 

on it was investigated further for its implementation in 

recovering the sparse image from random measurements 

with noise in year 2011 by T. Tony Cai and Lie Wang 

[22]. The OMP algorithm was studied with bounded 

noise and its recovery performance is checked under such 

condition. The implementation of OMP provides an 

effective way of recovering the sparse signal from 

random observations even in the presence of noise with 

appropriate measurement matrix. The steps of the OMP 

algorithm are given as follows: 
 

OMP Algorithm 

 Initialize the index set   =  and the residue      

and the counter set t=1 

 Identify the coordinate for which the inner-product is 

highest 

                            

 Take the selected index set and augment it with the 

matrix of chosen atoms         *  + . 
 Compute the least square problem in order to obtain 

the new estimate of the sparse signal: 

            ‖     ‖2 

 Estimate the newly updated approximation of the 

residue: 

        
        

 Increase the counter number and go back to step 2 if t 

< K. 

 The value of the calculated estimate gives the 

recovered signal. 

Later on, Subspace Pursuit (SP) is suggested, which 

considers multiple indices at each step and keeps only K 

coefficients for the support set throughout the algorithm 

[23]. SP algorithm is able to provide low computational 

complexity with a comparable capability for every sparse 

signal. The algorithm can be used for both noisy and 

noiseless observations. It can reconstruct the  -sparse 

signal accurately from noise-free observations when the 

sensing matrix   satisfies the RIP property. For the 

inaccurate measurements, the distortion is limited by the 

constant which is a multiple of measurements. The basic 

idea of the SP algorithm is extracted from coding theory. 

Here, the set of   columns representing the information 

are selected. These symbols have the maximum 

correlation. Their selection is basically a hard-decision, 

thus, metric for the parity checks are computed. The 

other lower coefficients in these selected atoms can be 

adaptively changed in a sequential order on the basis of 

this metric. At iteration t, the algorithm selects K indices 

with the largest magnitude of the inner-product:       . 

By selecting these coefficients, the support set is 

expanded. Then, an orthogonal projection is computed 

for the selected support set by taking the estimate of y 

onto the measurement matrix, corresponding to the 

selected indices.  The iterations work until residue falls 

below the certain limit. Subspace Pursuit is capable of 

providing simple implementation and accurate results. 

On the other hand, the approach of CoSaMP is based 

on restricted isometry property. The restricted isometric 

constant of measurement matrix   is considered lesser 

than 1. Then, for the  -sparse signal  , having a vector 

       can be considered as an equivalent 

representation of  . This is due to the fact that the energy 

in   components of   is equivalent to the energy in the   

components of  . Hence, the highest atoms of   can be 

represented by the highest atoms of   . Hence, the 

recovery of sparse signals becomes easier. CoSaMP 

expands the support set by 2K elements. Then, the 

orthogonal projection is computed taking y onto  t at 

each iteration corresponding to K indices. The process 

terminates with the stopping condition ‖ new‖2 ‖ ‖2. 

These algorithms reduce the reconstruction error when 

certain RIP condition occurs [24]. These algorithms use a 

fixed size of the support set and the knowledge of a priori 

estimate of sparsity K is necessary. This is a major 

drawback in practical cases where K is either unknown or 

it is not fixed.  

The OMP algorithm was later modified with the 

regularization step. The regularized OMP is able to 

recover the sparse signal from random measurements 

within considerably reduced time interval. Deanna 

Needell and Roman Vershynin proposed ROMP for 

sparse recovery which gives the advantage of fastest 

implementation [25]. The regularized OMP performs 

accurately the recovery for all measurements matrices 

under RIP conditions for all kind of sparse recovery. It 

starts with sparsifying the given signal of dimension N 

with measurement matrix . Then, the measurement 

vector is constructed     . This measurement vector 

is operated on in order to recover the signal. The 
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algorithm selects the S largest coefficients of the inner-

product rather than identifying the only the largest one. 

Thus by considering multiple indices at a time and then 

considering only those having energy greater than a 

particular threshold, total running time can be reduced 

considerably.  

The ROMP algorithm works until the iteration count 

becomes greater than twice the Sparsity value, K. The 

ROMP algorithm is able to prove the stability bound 

without the logarithmic factor. Even, it does not need the 

prior knowledge of the given threshold or tolerable error. 

The running time of ROMP is very less as compared to 

the OMP algorithm. The identification of the multiple 

significant columns in ROMP is based on the 

regularization step. This step requires considerably low 

time. In a ROMP technique, the first step is to select the 

number of measurements   . A residual, index set are 

considered as:               , where y is the 

measurement vector. The algorithm selects the set   of 

the   highest non-zero components having the maximum 

magnitude of the inner product       , for all 

coordinates. Then, the step of regularization comes in 

which among these sets, set     is taken into account, 

which a subset of   for having maximal energy is. These 

selected coordinates in the set are then added to the 

initialized index set. The residual is updated for each time 

the set is augmented. The algorithm halts when the 

stopping condition meets i.e. until |     , where   is 

the predefined size for the selection of atoms at each 

iteration. 

 

V. ITERATIVE HARD THRESHOLDING TECHNIQUE  

The Iterative Hard Thresholding (IHT) algorithm for 

the first time was suggested by Blumensath and Davies 

for recovery in compressed Sensing scenario [26].  This 

algorithm can offer the theoretical guarantee with its 

implementation which can be shown in the particular one 

[27].  The basic idea of IHT is to chase a good candidate 

for the estimate of support set which fits the 

measurement. The iterative hard thresholding (IHT) 

algorithm is an algorithm with a simple implementation. 

It requires the application of the operators corresponding 

to the measurement matrix i.e.  and   . Both operators 

are required once in each iteration, with the operation of 

two vector additions. The partial ordering of the elements 

of         
 (     )  in magnitude requires the 

operator   . The implementation of IHT requires lesser 

storage. The algorithm requires the storage of the 

measurement vector   and the sparse signal. The 

operators  and     may create the computational 

complexity in terms of running time and storage. If the 

measurement matrices are the general matrices, then the 

computational complexity reduces considerably. The 

common operators which are based on Fourier Transform, 

Wavelet Transform are used for the higher dimensional 

problem, which leads to the reduce requirement of 

memory. Suppose    = 0 and use the following iteration 

step: 

       (    
 (     )                (15) 

 

where   ( ) is the non-linear operator that sets all the S 

largest elements of   to zero. A set can be selected 

randomly or in terms of any previously defined order of 

the elements if no such unique set exists. In this case, the 

above algorithm converges to a local minimum of the 

optimization problem. 

 

    ‖    ‖ 
                           (16) 

 

Iterative Hard Thresholding is a technique that 

provides accurate recovery results from sparse 

measurements with the optimization problem. IHT is the 

class of algorithms that offers guarantees for near optimal 

error. Its performance remains robust even in the 

presence of noise. This algorithm can perform well with 

lesser number of measurements.  The memory 

requirement depends on the size of the problem. The 

computational complexity is lower, depending on the 

number of captured observations. The fixed number of 

iterations is required by the algorithm depending on the 

signal to noise ratio. The iterative Hard Thresholding can 

be implemented in two forms as Fast IHT (FIHT) and 

Forward- Backward Pursuit (FBP). Fast Iterative Hard 

Thresholding was suggested as a variant of Algebraic 

pursuit, though it uses a support set by taking other 

indices with respect to the large candidates of the residual 

of particular cardinality.  

However, Algebraic pursuit uses larger support and 

extracts the correct and significant support of the 

observed vector, FIHT uses smaller size support set in 

order to more accurately reducing the residue. It is a 

special case when the support is correctly located. FIHT 

has better convergence and performance than algebraic 

pursuit [28].  Forward Backward Pursuit is also one of 

the iterative hard thresholding algorithms. This algorithm 

uses two stages: forward stage and backward stage. The 

forward stage includes the addition of the selected indices 

and the backward stage includes removal of the non-

significant columns. This movement expands the support 

set and shrinks it simultaneously in an iterative manner. 

This algorithm is an iterative hard thresholding that uses 

the concept of expanding the support iteratively. The 

major advantage of the FBP is that it does not require the 

knowledge of sparsity   in advance. In most of the 

scenarios, FBP is able to perform better than SP, OMP, 

and BP.  

In this algorithm, after implementing compressive 

Sensing on the given signal FBP is applied. In the 

forward step, the algorithm identifies the   indices 

corresponding to the maximum magnitude of the inner-

product of residual and the measurements. In this step, 

the forward step size   should be greater than 1. Next, 

the orthogonal projection is computed for the columns 

corresponding to the selected   indices. Then, backward 

step is applied by cropping the support set estimate. It 

removes   indices from the estimate of the support set 

which are the indices having the minimum magnitude of 

the orthogonal projection. In this algorithm, the final 
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orthogonal projection is computed for the columns 

corresponding to the cropped set. For the successful 

recovery of the sparse signal using FBP, it is required 

that     . Thus, the number of indices added should 

always be greater than the number of indices removed 

[29].  

The steps or the implementation of FBP algorithm can 

be as shown as follows: 

 
Algorithm of FBP 

Initialize:   =  ,          

 while true do 

      

   = {indices corresponding to   maximum magnitude 

coefficients in    (   )} 

 ̌( )   (   )      

 ̌        ‖    ̌( ) ̌‖ 

    {indices corresponding to   minimum magnitude 

coefficients in  ̌} 

 ( )    ̌( )     

 Projection:         ‖    ( ) ̌‖ 

 Residue update: ( )      ( )  

 Termination rule: Algorithm works until  

‖    ‖    ‖ ‖ and         . 

 Outputs: S(k),   ( )    ( )
   

 

The FBP algorithm uses the threshold parameter   in 

order to check that the current residue is within the range. 

Its value depends on the level of noise present in the 

given signal for noisy observations. In this case, there is 

no requirement of sparsity  , but the iterations can be 

limited with the parameter      . For the accurate 

performance of FBP, it is require having the forward 

parameter greater than the backward parameter so that a 

suitable range of support set is selected at each iteration 

[30]. The   can be considered as [0.2 , 0.3 ] and 

      for the faster implementation of the algorithm. 

FBP usually succeeds in the majority of cases but the 

failure may begin when      > 55. It is easy to 

implement the algorithm that can expand support set 

iteratively and recover the sparse signal precisely. 

 

VI. GENERALIZED OMP 

Generalized OMP (GOMP) is basically a clear 

generalization of the OMP algorithm. It selects multiple 

indices rather than identifying only one as in the case of 

OMP algorithm. As multiple indices are selected at each 

iteration, hence lesser numbers of the iteration are 

required for overall recovery. It provides exact recovery 

for  -sparse signal where the restricted isometric 

constant    
√ 

√   √ 
. Generalized OMP is basically an 

extension of OMP algorithm with better efficiency and 

recovery probability. In each iteration step, GOMP 

computes the correlation of the columns of measurement 

matrix   and the residual. Then, these correlations are 

compared and the indices corresponding to the S 

maximum correlation are selected. The support set is 

extended using these S indices and the least mean square 

problem is solved. After this, the residue is updated by 

eliminating the orthogonal projection from the measured 

vector [31]. This orthogonal projection corresponds to 

the indices with maximal correlation. These steps are 

repeated until the iteration count reaches its maximum set 

value. This algorithm provides better recovery results 

within reduced running time as compared to the already 

existing algorithms. For GOMP algorithm, the 

complexity of the overall algorithm is  (  ) where M 

is the number of measurements and   be the dimension 

of the given signal. The threshold parameter specified in 

this algorithm is used to check the magnitude of the 

residue so that it remains within the range. GOMP is 

potentially more effective than OMP algorithm in 

recovering the sparse signal from random measurements 

within a specified time interval. Hence, we can say that 

the convergence speed of GOMP algorithm is better than 

OMP. The steps for GOMP algorithm are as shown: 

 
GOMP algorithm 

Initialize: The index set   =  and the residue      and 

the counter set t=1. 

Steps: 

 

 while ‖  ‖    and       *     + 
      

 Identify indices corresponding to the S largest entries in 

       in magnitude. 

 Augment the selected indices with the existing support 

set 

        * ( )    ( )+ 
 Calculate the estimate for the sparse signal 

 ̌        ‖     ‖2(24) 

 Update the residue according as the estimate: 

        ̌  
End 

 Provide the Output:    ̌        ‖     ‖2 

 

Later, GOMP algorithm was made adaptive in order to 

eliminate the need of sparsity before the algorithm. 

Basically, value S i.e. the number of indices selected at 

each iteration defines the actual performance of the 

algorithm. Generalized Adaptive OMP makes this value, 

S, adaptive through the iterations as the residue reduces. 

As the columns identified initially have a greater role to 

play hence an optimal value of ‘S’ is required. This 

ensures that any wrong atom is not selected. Further, the 

factor ‘S’ keeps on incrementing depending on the 

reduction in the residue. The Generalized adaptive OMP 

has rapid convergence and moreover there is no need of 

sparsity [32]. The number of columns selected increases 

at each iteration with a decrease in the residual through 

the algorithm. In GOAMP algorithm,   indices are 

selected for having the highest magnitude in the 

correlation of measurement matrix and the residue. These 

  indices are then augmented or added to the initialized 

index set. The residual is updated for the new orthogonal 

projection of the measurement matrix onto the 

measurement vector corresponding to the new 

coordinates. Then the size of selecting atoms increases if 

the residual decreases through the algorithm. So, through 

the algorithm the step size increments so that the atoms 
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are selected adaptively. The algorithm works until the 

residual falls below the specified threshold. Finally, the 

residual is updated and the recovered signal is obtained. 

The GOAMP algorithm uses two thresholds. Usually, the 

value of thresholds depends on the value of noise 

available in the given signal for measurements in the 

noisy environment. Otherwise, the thresholds are selected 

considering the number of atoms to be selected at each 

iteration. The GOAMP algorithm provides exact 

recovery with not having the knowledge of sparsity  . It 

provides acceptable results even in the presence of noise. 

This algorithm provides the mean to identify the 

significant column and then increasing the size of the 

number of the column selected adaptively on the basis of 

the decrement in a residue. Hence, it is able to provide 

suitable results for recovery from sparse observations. 

 

VII. DISCUSSION AND ANALYSIS 

The concept of image reconstruction with compressive 

Sensing is not only a useful combination for image 

recovery, but also comes with its ease of implementation. 

The CS based image reconstruction algorithms include 

Greedy pursuit algorithms and convex minimization 

methods. These algorithms can be implemented in the 

field of communication, medical images, signal 

processing and networking systems. Due to faster, 

cheaper and efficient implementation of CS-based image 

reconstruction; it has larger perspectives. The greedy 

algorithms even provide reconstruction on the basis of 

orthogonal projection for the selection of significant 

columns only. The greedy algorithms work in an iterative 

fashion. It works in a step by step fashion in order to 

recover the images from random measurements. One of 

its algorithms i.e. Matching Pursuit is able to overcome 

the drawbacks of    minimization. Although, due to 

slower convergence, it was later replaced by Orthogonal 

Matching Pursuit; it provides the selection of orthogonal 

columns with highest correlation so that each atom 

selected is unique. It is preferred mostly because of its 

simplicity.  

The termination conditions for OMP can be based on 

coherence, cumulative coherence, RIP; it can be further 

optimized in order to ensure the selection of significant 

components only. The ROMP was later introduced in 

order to reduce the overall running time by selecting 

multiple indices. The Generalized version of OMP helps 

in recovering the images or signals accurately with 

multiples indices at each iteration. The Generalized 

algorithm was later made adaptive in order to select the 

size of atoms selection set according as the decrement in 

the residue. Earlier, the knowledge of sparsity was 

required but the adaptive algorithm eliminates this 

requirement. Table 1 compares the recovery performance 

of the greedy pursuit algorithms for the reconstruction of 

the image. The recovery performance is analyzed in the 

form of PSNR value obtained and running time elapsed. 

It shows the PSNR value and running time elapsed for 

the implementation of these algorithms and provides 

comparative results in a tabulated form.  

Table 1. Comparison of Recovery Performance of Different Techniques 

Recovery performance 
parameters for M=128 

PSNR 

(dB) 

Time 

(sec) 

Complexity 

of the 

algorithm 

Subspace Pursuit 25.76 52.38  (   ) 

Orthogonal Matching Pursuit 25.01 8.54  (   ) 

Regularized OMP 21.84 2.31  (   ) 

Generalized OMP 27.82 8.63  (  ) 

Generalized adaptive OMP 28.82 4.52  (  ) 

 

(a)                                   (b)                                    (c) 

 
(d)                                (e)                                    (f) 

Fig.3. Comparison of Reconstruction Results for M/N=0.5 (a) Original 

Image (b) SP Method (c) OMP Method (d) ROMP Method (e)GOMP 
Method (f) GOAMP Method 

In Fig. 3, the recovery performance of greedy 

algorithms has been demonstrated in terms of visual 

outcome. The simulation is done on standard grayscale 

256 x 256 'peppers' image. The result of greedy pursuit 

algorithms is shown for the sampling ratio M/N=0.5. The 

conventional CS measurement matrix i.e. independent 

and identically distributed Gaussian matrix with mean 

zero and standard deviation 1/N is used. All simulations 

are performed in MATLAB 7.6.0.The experiments are 

run on a laptop with Intel core i5 CPU at 2.5 GHz and 6 

GB under windows 7. In Fig. 3, the recovery results of 

the greedy pursuit reconstruction algorithms are 

demonstrated. It provides the comparative analysis of the 

reconstructed result for each algorithm. The visual 

quality of recovered image is better in case of 

Generalized OMP which is able to secure the fine details 

of the given image.  

The implementation of CS-based reconstruction to 

exploit the sparsity in 3D video frames can be used for 

3D video coding, and recovery and communication on 

mobile hand-held devices in future. The medical MRI 

and CT images can also be recovered efficiently with 

lesser storage requirements. The photo-acoustic images 

and the recovery of the satellite captured images, images 

for remote sensing can easily employ CS based recovery; 

thus providing only the storage of fewer components and 
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saving the memory or database. The Compressive 

Sensing based image reconstruction can be used in 

RADAR imaging, biomedical imaging, and mobile 

communication. The reconstruction based on 

Compressive Sensing can be implemented for color 

images and in digital cameras. For the suitable basis, the 

multistage sparse representation can be adopted for better 

accuracy. 

In future research, the bounds can be tightened more. 

These bounds are concerning the termination conditions 

in the recovery algorithms. The sparse correlation bound 

can be used for recovering and the algorithm for speed up 

can be considered. The Generalized OMP can be made 

more effective by using improved probabilistic analysis. 

The Generalized Adaptive technique can further be 

optimized for its implementation with noisy images. The 

Basic advantage of the CS based reconstruction with 

these algorithms includes faster and easier 

implementation, fewer storage requirements, lower 

computational complexity and wider scope of their 

implementation in different fields.  

 

VIII. CONCLUSION 

In this paper, Compressive Sensing paradigm and the 

Compressive Sensing based image reconstruction 

algorithms are analyzed. Various recovery algorithms 

like   minimization, Basis pursuit, Subspace pursuit, 

OMP, GOMP, ROMP, IHT and their variants have been 

considered. The reconstruction algorithm uses the 

process of sampling the components which tend to 

require larger storage space, which is largely reduced by 

compressive Sensing techniques. Compressive Sensing 

based reconstruction algorithms uses lesser number of 

data samples, provides faster computation, and lesser 

memory requirements. Thus, it eliminates shortcomings 

of conventional sampling techniques. In this paper, 

computational complexities along with the running time 

of these recovery algorithms have been compared. The 

OMP method offers simple and faster recovery as 

comparison to the Matching pursuit method. Though, the 

performance for generalized algorithms is better than 

OMP. The PSNR value is better for GOAMP as the 

comparison to the other techniques.  

On the contrary, ROMP technique provides 

considerably shorter running time but the visual quality 

lacks considerably than the generalized algorithms.  For 

the generalized form of OMP, both GOMP and GOAMP, 

the computation complexity is lesser than that of the 

other techniques. They provide considerably better visual 

results for image reconstruction. However, the respective 

quality of each algorithm is improved by incorporating 

Compressive Sensing method. The processing steps, 

improvements and implementation of Compressive 

Sensing based image reconstruction algorithms have 

been discussed. The paper also represents the possible 

improvements in these algorithms and the 

implementation of Compressive Sensing in various fields. 
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