
I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23
Published Online November 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2015.12.03

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

A New Heuristic Approach for DNA Sequences

Alignment

M. I. Khalil
Nuclear Research Center, Atomic Energy Authority, Cairo, Egypt. Currently in a sabbatical leave as an Associate Prof.

at Princess Nora Bint Abdurrahman University, Faculty of Computer and Information Sciences, Networking and

Communication Dept., Riyadh, Kingdom of Saudi Arabia, Riyadh

Email: magdi_nrc@hotmail.com

Abstract—The problem of comparing DNA sequences is

one of the most significant tasks in the field of

computational biology. It helps locating the similarities

and differences between pairs of DNA sequences. This

task can be achieved by finding the longest common

substrings between DNA sequences and consequently

aligning them. The complexity of this task is due to the

high computational power and huge space consuming.

Comparing DNA sequences leads to infer the cause of a

certain disease beside many significant biological

applications. This paper introduces a new Heuristic

Approach for DNA Sequences Alignment between two

DNA sequences. The new approach is based on three

processing phases: the first phase finds the multiple

common substrings in the two sequences, the second one

sorts the obtained common substrings descending

according to their lengths, and the last phase generates

the optimal two aligned sequences. The modules of the

new approach have been implemented and tested in C#

language under Windows platform. The obtained results

manifest a reduction in both time of processing and

memory requirements.

Index Terms—DNA similarity algorithms, DNA

sequence comparison, DNA analysis, pattern recognition,

Longest Common Substring, Longest Common

Subsequence, DNA sequences alignment.

I. INTRODUCTION

DNA (deoxyribonucleic acid) and RNA (ribonucleic

acid) play fundamental roles in carrying genetic

information in all living things on Earth. These structures

are double helixes that look like a twisted ladder in which

the rungs of the ladder consist of match pairs of

nucleobases [1, 16]. DNA and RNA have great chemical

similarities. In their primary structures both are linear

polymers (multiple chemical units) composed of

monomers (single chemical units), called nucleotides.

Cellular RNAs range in length from less than one

hundred to many thousands of nucleotides. Cellular DNA

molecules can be as long as several hundred million

nucleotides [2] (Fig.1). The term DNA sequencing

encompasses biochemical methods for determining the

order of the nucleotide bases, adenine, guanine, cytosine,

and thymine, in a DNA oligonucleotide. The sequence of

DNA constitutes the heritable genetic information in

nuclei, plasmids, mitochondria, and chloroplasts that

forms the basis for the developmental programs of all

living organisms. Determining the DNA sequence is

therefore useful in basic research studying fundamental

biological processes, as well as in applied fields such as

diagnostic or forensic research. Because DNA is key to

all living organisms, knowledge of the DNA sequence

may be useful in almost any biological subject area. For

example, in medicine it can be used to identify, diagnose

and potentially develop treatments for genetic diseases.

Similarly, genetic research into plant or animal pathogens

may lead to treatments of various diseases caused by

these pathogens [3].

Fig.1. DNA Helix

In comparative genomics, comparing genome

sequences is one of the main tasks because sequence

similarities strongly reflect the evolutionary relationships

between the corresponding species. In addition, with the

introduction of next-generation sequencing technologies,

the demand for rapid comparisons of massive amounts of

long sequences has increased in recent years [4,5-11,15].

Improvements in the efficiency of DNA sequencing have

both broadened the applications for sequencing and

dramatically increased the size of sequencing datasets.

For years, DNA comparison has been used in biology and

forensics to discriminate and compares genes or genomes.

Those tools vary in size, complexity and functionality

http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7455/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7786/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7733/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7657/
http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7691/

 A New Heuristic Approach for DNA Sequences Alignment 19

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

based on several factors. Some small tools or websites are

developed as free or open source for research or

experimental purposes. Examples of such small size

limited purpose tools or applications are: Double Act

(http://www.hpabioinfotools.org.uk/pise/double_act.html),

Genomatix (http://www.genomatix.de), Mobyle

(http://mobyle.pasteur.fr), ALIGN, FASTA, etc. BLAST:

(Basic Local Alignment Search Tool) [12,13] is an

example of a larger scale. Most of these algorithms uses

Smith–Waterman algorithm for performing sequence

alignment. This algorithm which is also used in crimes’

forensic investigation does not use full DNA to DNA

sequence comparison. It rather selects several segments

(e.g. eight segments) selected from the different locations

of the DNA. BLAST uses also dynamic programming

and “seeding” to find starts of possible matches. The goal

is to accelerate the process of finding matches between

DNA sequences as this can take a significant amount of

time and resources. Another process that can be different

from one tool to another is the ranking of the different

matches. This can particularly occur when more than a

match is in the same size [12,17].

The current paper addresses the problem of finding a

sequence alignment between two DNA sequences, in

which individual similar letters from each sequence are

placed into correspondence. It is based on a heuristic

approach including three processing phases: the first

phase finds the longest common substrings in the two

sequences, the second one sorts the obtained common

substrings descending according to their lengths, and the

last phase generates the optimal two aligned sequences.

The rest of the paper is organized as follows. Section II

discusses the suggested algorithm. The implementation

and experimental results are discussed in Section III. The

work done in this paper has been concluded in Section IV.

II. THE SUGGESTED APPROACH

The aim of the suggested algorithm is to align

homologous regions separately keeping their order in

both DNA sequences.

Given two DNA sequences:

X= x_(0) x_(1) x_(2)…….x_(m-1) (1)

Y= y_(0) y_(1) y_(2)…….y_(n-1) (2)

Where X, Y are two sequences of length m-1, n-1

respectively, and x_i and y_i are chosen from a finite

alphabet A, e.g. {A, C, G, T}:

x_i ∈ {A, C, G, T}, y_i ∈ {A, C, G, T} (3)

The goal is defining the distance between the

sequences X and Y, or alternatively their similarity.

Where similarity is defined with reference to a sequence

alignment, in which individual letters from each sequence

are placed into correspondence. Achieving this goal, the

suggested approach has been divided into three

consecutive modules:

Module I: An algorithm for finding all common

substrings between two sequences and it has previously

published [14, 18]. In this module, two DNA sequences

are compared to find all possible identical matches

between them. It is based on the convolution between the

two sequences.

The data structure required for the suggested algorithm

is shown in Fig.2. The major DNA sequence string is

represented in the linked-list X while the minor one is

represented in circular linked-list Y. Each element of the

linked-list Y contains a data filed in addition to a single

directional pointer to the next element in a circular

manner. Each data field of Y holds one of the minor

DNA sequence characters. Each element of the linked-list

X consists of three fields described as follows. The first

one is a data field holding one of the major DNA

sequence characters. The second field is a pointer to an

independent linked-list, where the collection of those

independent linked lists are grouped and considered as

array of linked-list Z. The array Z will be dedicated to

hold the resultant of the matching algorithm as will be

illustrated later. The third filed is simply a pointer to the

next element of the linked-list X.

Fig.2. The Data Structures used in the Suggested Approach

The matching algorithm aims to determine both the

location and length of all possible common substrings

between the two DNA sequences represented in X and Y

linked lists respectively. The main matching algorithm

and its subroutines are listed in List. 1 through List.3.

Referring to List. 1, when the two variables x and y are

equal, the process named Get_substring_until_no_match

(List 2) will be performed continuously reading new pair

of characters as long as the new pair of characters x and y

are equal otherwise the process terminates. The length

and location of the obtained substring are considered as

input to the process named Add_obtained_substring_to_Z

(List 3).

C G T A T C C

 A C G G A T T C G

Circular linked list (Y)

Linked list (X)

Array of linked lists

(Z)

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

Location

, Length.

null

null

null

20 A New Heuristic Approach for DNA Sequences Alignment

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

List.1: Pseudo code of Matching Algorithm

// Input: DNA1 and DNA2 sequences
Get Length_of_DNA1;
Get Length_of_DNA2;
For I = 0; I < Length_of_DNA1
 For j = 0; J < length_of_DNA2
 x = read character from DNA1[I]
 y = read character from DNA2[J]
 if (x == y)
 {
 Perform Get_substring_until_no_match(I,J);
 // L = length of the obtained substring
 Add_ obtained_substring_to_Z(I,J, L);
 }
 Next J;
Next I;

List.2: Pseudo code Get_substring_until_no_match

Input: I, J
m =I;
n = J;
Length =0;
do
{
 x = read character from DNA1[m]
 y = read character from DNA2[n]
 Length ++;
 m++;
 n++;
 }
 while (x == y)
Return Length

List.3: Pseudo code Add_obtained_substring_to_Z

Input: I, J, Length
m =I;
n = J;
l = Length;
if X[m].pointer == null
 {
 create new linked_list Z[m]
 add new cell with (n, l)
 // n = location of substring in DNA2 sequence
 // l = length of substring
 }
 Else
 Add new cell to linked_list Z[m]

The Add_obtained_substring_to_Z process is

responsible of adding information related to the obtained

substring to the array of linked lists Z. Each character of

the major DNA sequence, which is represented by X[I],

points to a separate linked list in the array Z. The

initialization process does not create the linked lists in

array Z but leave this task for process

Add_obtained_substring_to_Z to create only the

actually needed linked lists to save the allocated memory

space. Each separate linked list Z[I] should hold

information about all common substrings between

sequence X, starting at position I, and sequence Y.

Accordingly, the process adds a new node to the

corresponding linked list Z[I] writing both the length of

the substring (Length), and its location (J) in the second

sequence Y to the corresponding fields of this node.

By the end of the matching process, some characters of

the DNA sequence X have linked lists in the array Z and

the others do not have.

The following example illustrates the matching process

of the suggested algorithm:

Input: two sequences:

 DNA-1 sequence = “ATCAGTTACGT”

 DNA-2 sequence = “TATCATG”

The two sequences are placed in linked lists X and Y

respectively. The matching process yields the array Z of

the linked lists (Red boxes in Fig.3). For example, the

first character at position 0 of the first sequence (“A”) has

two matches with the second sequence at locations 1 and

4 with lengths 4 and 2 respectively. The first matching

has length of 4 where the substring “ATCA” exists in

both sequences. The second matching has length of 2

where the substring “AT” exists in both sequences.

Fig.3. Illustration Example of the Matching Process

Inspecting the linked lists produced by the matching

process leads to finding that the longest common

substring is “ATCA” at location 0 of the first sequence

and location 1 of the second sequence.

Module II: Module I generates a list of the common

substrings between DNA sequences X and Y along with

their lengths and their locations in both X and Y

sequences. In Module II, this list is sorted descending

according to the lengths of the obtained common

substrings, location in X and location in Y respectively.

Module III: the algorithm of this module attempts to

infer which positions within both sequences are

homologous. The output of module II is passed as input

to this module where individual letters from each DNA

sequence are placed into correspondence. To explain the

algorithm behind module III let us begin with the

 A New Heuristic Approach for DNA Sequences Alignment 21

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

following example:

Sequence-1:

GAATTCAGTTACGGTAATCGTTACGACGTAATCAGTATCAGT

TACGA

Sequence-2:

GGATCGAAGCTCGATCGTTACGACGTGGCACCATCGT

Applying module I to both sequences yields several

common substrings and sorting these substrings (applying

module II) yields the list partially shown in Fig.4.

Fig.4. Sorted List of the Common Substrings According to Module II

We can geometrically (Fig.5) represent any common

substring S with length l as:

S = {(x1, y1), (x2, y2)} (4)

Where:

x1 = position of the substring in the first sequence X

y1 = position of the substring in the second sequence Y

x2 = x1 + l (5)

y2 = y1 + l (6)

Considering pair of the common substrings in the

current example:

The first one is “ATCGTTACGACG” has length 13 and

starts at position 16 in the first sequence and at position

13 in the second sequence. Geometrically, we can define

this substring as: S1{(16,13),(29,26)}. The second one is

“CGTTACGA” with length 7 and starts at position 40 in

the first sequence and at position 16 in the second

sequence. And can be defined geometrically as: S2 {(40,

16), (47, 23)}. So, We have two choices of alignment;

either “ATCGTTACGACG” of the first sequence with its

correspondence in the second sequence or

“CGTTACGA” of the first sequence with its

correspondence in the second sequence. However, we

cannot make alignment of both of them, as the second

substring is included in the first substring of the second

sequence. To avoid this conflict the choice should be

subject to the following condition: if two substrings

belong to the same sequence, we choose both of them if

and only if the following four conditions are satisfied and

assuming that S1 is longer than S2:

S2.. x1 ∉ [S1.x1, S1.x2], (7)

S2.. x2 ∉ [S1.x1, S1.x2], (8)

S2.. y1 ∉ [S1.y1, S1.y2], (9)

S2.. y2 ∉ [S1.y1, S1.y2] (10)

Or simply omit all substring in zone A and zone B as

illustrated in Figure.5.

Applying the last rule to the sorted list of common

substrings in the current example yields the short list

shown in Fig.6.

Fig.5. Geometrical Representation of Common Substrings

22 A New Heuristic Approach for DNA Sequences Alignment

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

Fig.6. Short List of the Common Substrings

The first phase of the alignment algorithm is listed

below.

The input to this phase is the short list previously

obtained (Fig.6). It is based on comparing the positions of

each common substring in both sequences. Getting the

distance between the two positions, n = S1.x1 - S1.x2

then inserting number n of “=” in front of the substring

with the little position in the hosting sequence until the

two positions become equal. This action leads to

increasing the position value of each subsequent substring

in the short list. Fig.7 shows the two aligned sequences

and the updated positions in the short list.

Fig.7. The Preliminary Aligning of the two Sequences

List.4: Alignment algorithm

// input : short list of the common substring

S1.filler =””;
S2.filler =””;
foreach substring in the short list
{
 temp = "";
 x1 = position of the substring in the major sequence ;
 y1 = position of the substring in the minor sequence ;
 x = x1 + S1.filler;
 y = x1 + S2.filler;

 if (x < y)
 {
 S1.filler += y - x;
 for (int i = 0; i < y - x; i++)
 temp = temp + "=";
 S1= S1.Insert(x, temp);
 x =+ temp.Length;
 }
 else if (y < x)
 {

 S1.filler += x - y;
 for (int i = 0; i < x - y; i++)
 temp = temp + "=";
 S2= S2.Insert(y, temp);
 y =+ temp.Length;
 }

}

As shown in Fig.7 there is an exception case where the

two characters “T” and “G” are unaligned. This case

occurs when the sum of substring’s position value plus

the length of this substring is less than the position of the

next substring in the same sequence. To overcome this

situation, another procedure should be performed to

detect the similar cases inserting number of “=” in the

proper positions in both sequences (see Figure 8)

Fig.8. The two Sequences After Complete Aligning

III. IMPLEMENTATION

The suggested system consists of two main algorithms,

the matching algorithm and aligning algorithm

respectively. The first one handles the process of finding

the common substrings between two DNA sequences. It

generates a list of common substrings along with their

lengths and locations in both DNA sequences. The

second algorithms processes the generated information

from the first one yielding two new DNA sequences

where all possible homologous substrings are aligned

together (Fig.9). The system has been designed and

implemented using C# language.

Fig.9. Snapshot of the Program

 A New Heuristic Approach for DNA Sequences Alignment 23

Copyright © 2015 MECS I.J. Image, Graphics and Signal Processing, 2015, 12, 18-23

IV. CONCLUSION

The algorithm proposed in this paper addresses the

problem of locating the longest homologous substrings in

two different sequences and consequently generates two

new aligned DNA sequences. It is based on the

convolution between the two DNA sequences (named

major sequence X and minor one Y) and creating a node

for each matched substring between the two sequences.

If two or more matches share the same location in string

X, the corresponding nodes will construct a single linked-

list yielding a group of linked-lists containing nodes

arranged in certain manner representing all possible

matches between sequences X and Y. A list of the

common substrings are then constructed, sorted and got

rid of repeated ones. The short list of the common

substrings are then more processed yielding the aligned

sequences with the priority given to the longest common

substring. The prposed algorithm could be more

developed to locate and align the longest common strings

between the major DNA sequence and several minor

sequences. Moreover, the algorithm needs to be

developed to be able to run in parallel processing manner

to cope with the long time processing problem.

REFERENCES

[1] Http://www.astrochem.org/sci/Nucleobases.php, retrieved

on 8th, june 2015.

[2] Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul

Matsudaira, David Baltimore, and James Darnell.,

Molecular Cell Biology, 4th edition, New York: W. H.

Freeman; 2000., ISBN-10: 0-7167-3136-3.

[3] S.Rajesh, S.Prathema and.L.S.S.Reddy, “Unusual Pattern

Detection in DNA Database Using KMP Algorithm”,

International Journal of Computer Applications (2010)

(0975 - 8887) Vol. 1 – No. 22.

[4] Kyohei Yamaguchi and Satoshi Mizuta, “A New

Graphical Representation of DNA Sequences Using

Symmetrical Vector Assignment”, Review of

Bioinformatics and Biometrics (RBB) Volume 3, 2014.

[5] O. Gotoh, “An Improved Algorithm for Matching

Biological Sequences,” Journal of Molecular Biology, 162,

pp: 705~708, 1982.J. Clerk Maxwell, A Treatise on

Electricity and Magnetism, 3rd ed., vol. 2. Oxford:

Clarendon, 1892, pp.68-73.

[6] S. Grier, “A tool that detects plagiarism in Pascal

programs”, ACM SIGCSE Bulletin, vol. 13, no. 1, (1981),

pp. 15-20.

[7] J. A. W. Faidhi and S. K. Robinson, “An empirical

approach for detecting program similarity within a

university programming environment”, Computers &

Education, vol. 11, no. 1, (1987), pp. 11-19.

[8] U. Manber, “Finding similar files in a large file

system[C/OL]”, In: Proceedings of the Winter USENIX

Conference, (1994), pp. 1-10.

[9] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, (2011)

September.

[10] C. Yu, S.-Y. Cheng, R. L. He and S. S. -T. Yau, “Protein

map: An alignment-free sequence comparison method

based on various properties of amino acids”, Gene, vol.

486, (2011), pp. 110-118.

[11] Y. Guo and T. -m. Wang, “A new method to analyze the

similarity of the DNA sequences”, Journal of Molecular

Structure: THEOCHEM, vol. 853, (2008), pp. 62–67.

[12] Izzat Alsmadi and Maryam Nuser, “String Matching

Evaluation Methods for DNA Comparison”, International

Journal of Advanced Science and Technology, Vol. 47,

October, 2012.

[13] BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi, (2011)

September.

[14] M.I.Khalil, Finding Longest Common Substrings in DNA

Sequences, IJITCS, 2015.

[15] J. K. Me, M. R. Panigrahi, G. N. Dash and P. K. Meher,

Wavelet Based Lossless DNA Sequence Compression for

Faster Detection of Eukaryotic Protein Coding Regions,

IJIGSP Vol.4, No.7, July 2012.

[16] Mohammed Abo-Zahhad, Sabah M. Ahmed and Shimaa

A. Abd-Elrahman. A Novel Circular Mapping Technique

for Spectral Classification of Exons and Introns in Human

DNA Sequences, IJITCS Vol. 6, No. 4, March 2014,

PP.19-29.

[17] G. Sethuraman,Kavitha Joseph, Star Coloring Problem:

The DNA Solution, IJITCS Vol. 4, No. 3, April 2012,

PP.31-37.

[18] M.I.Khalil, M.A.Hadi, Finding Longest Common

Substrings in Documents, IJIGSP Vol. 7, No. 9, 2015, 9,

27-33.

Authors’ Profile

Dr. Magdi Ibrahim Khalil El-Sharkawy,

Egyptian, male, has obtained his B.Sc

degree in Computer and Automatic

Control Engineering from Faculty of

Engineering, Ain Shams University, Cairo,

Egypt, in 1983, M.Sc degree in Computer

Engineering from Faculty of Engineering,

Tanta University, Tanta, Egypt, in 2003

and Ph.D degree in Computer Systems

Engineering from Faculty of Engineering, Benha University,

Cairo, Egypt, in 2005. He is currently working as Associate

Professor in Department of Networking and Communication

systems at the Faculty of Computer and Information Sciences,

Princess Noura Bent Abdulrahman University, Riyadh, KSA.

He has 15 years of previous experience at the Reactor Physics

Department, Nuclear Research Center (NRC), Egyptian Atomic

Energy Authority Cairo (EAEA), Egypt in the field of Data

Acquisition and Interface Design. His main research interests

focus on: Digital Signal Processing, Wireless Sensor Networks,

Personal and Mobile Communications. So far, he has twelve

years of teaching experience and has published more than

twenty-five papers in repute journals and proceedings of

conferences in fields of the data acquisition, digital signal

processing, image processing and neural networks.

http://www.astrochem.org/sci/Nucleobases.php

