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Abstract—The aim here remains to introduce 

effectiveness of interval methods in analyzing dynamic 

uncertainties for marine navigational sensors. The present 

work has been carried out with an integrated sensor suite 

consisting of a low cost MEMs inertial sensor, GPS 

receiver of moderate accuracy, Doppler velocity profiler 

and a magnetic fluxgate compass. Error bounds for all the 

sensors have been translated into guaranteed intervals. 

GPS based position intervals are fed into a forward-

backward propagation method in order to estimate 

interval valued inertial data. Dynamic noise margins are 

finally computed from comparisons between the 

estimated and measured inertial quantities It has been 

found that the intervals as estimated by proposed 

approach are supersets of 95% confidence levels of 

dynamic errors of accelerations. This indicates a 

significant drift of dynamic error in accelerations which 

may not be clearly defined using stationary error bounds. 

On the other side bounds of non-stationary error for rate 

gyroscope are found to be in consistence with the 

intervals as predicted using stationary noise coefficients. 

The guaranteed intervals estimated by the proposed 

forward backward contractor, are close to 95% 

confidence levels of stationary errors computed over the 

sampling period. 

 
Index Terms—Stochastic, dynamic, error, MEMs, 

inertial, interval, methods, INS, GPS. 

 

I. INTRODUCTION 

Process dynamics in conventional approach towards 

multi-sensor data fusion, are only known with some 

degree of certainty. The basic approach to handling this 

inconvenience has traditionally been to appeal to a 

probabilistic description of this uncertainty, via the 

inclusion of a process and a measurement noise, and 

apply a statistically optimal filter such as the Kalman 

Filter. This approach carries with it the necessity to 

introduce experimentally some distribution law 

describing the process and measurement noise. An 

alternative approach to treating processes with uncertain 

data is to apply the notions and methods of interval 

analysis. The idea of using interval arithmetic to describe 

the uncertainty in the system model was proposed in the 

late 90’s (Chen et al, 1997). This type of uncertainty can 

easily arise in practice. For example, when modelling 

from first principles, the values of certain physical 

parameters may not be known exactly, but known to lie 

within certain bounded limits with absolute certainty. Or 

when using system identification techniques to model a 

dynamic system, several models that differ only in the 

values of the matrix coefficients may be obtained under 

slightly different conditions, and these may all be 

contained in an interval. 

Coming to sensor fusion, stochastic estimators are 

instrumental only in realizing covariance for overall 

estimation error. This is however significantly affected by 

the measurement error margin, which in the conventional 

approach remains unchanged throughout the entire 

estimation cycle. Interestingly the stationary 

measurement error margins fed into the estimation block 

initially are liable to evolve over time, due to 

unprecedented drifts encountered by the sensors. It is in 

this context that work is carried out in incorporating an 

interval based sensor fusion algorithm for an integrated 

navigational sensor suite. The algorithm is capable of 

determining dynamic error margins for a low cost MEMs 

based inertial navigation sensor on the one hand. At the 

other side the algorithm is shown to effectively reduce the 

error bounds for an integrated GPS, compass and Doppler 

velocity profiler meant for autonomous navigation of 

unmanned marine vehicles. 

As regards navigation measure for autonomous marine 

vehicles, use of commercially available low cost MEMs 

inertial navigation sensors has grown into a recent trend. 

Although their suitability for short range operations is 

very obvious due to their high levels of drift, the cost 

effectiveness gives way for integration of other 

navigation aids. Extensive work has been put into studies 

of errors commonly associated with such systems. 

Various calibration and stochastic modelling methods 

have been proposed in this regard. However most of the 

proposed methods aim only at the stationary 

characteristic of such errors, with little attention towards 

dynamic drifts. 

The two distinct types of error sources to be considered 

for MEMs inertial sensors are deterministic and 

stochastic. Fig. 1 illustrates a categorization of typical 
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errors associated with inertial navigation sensor. The 

former relates to systematic errors emanating due to 

physical processes like mechanical misalignments, bias 

and scale factor. The latter however relate to the random 

fluctuations depending upon stochastic variations of 

errors over definite periods of time. While the former can 

be resolved through standard calibration measures, the 

latter is very difficult to completely eliminate and hence 

need to be modelled using statistical processes.  A 

detailed description of such errors is provided in [1]. In 

the present context, we shall restrict the discussion to the 

stochastic modelling of errors associated with 

measurements of low cost MEMs inertial sensor. 

 

 

Fig.1. Classification of errors typically associated with measurements 

from Inertial Navigation Sensors 

Reportedly Autocorrelation Function has been 

primarily used for stochastic modeling of inertial sensor 

errors. Autocorrelation function determines the 

dependence of data values of stationary process at one 

time on values recorded at another time. However 

accuracy of estimating parameters for the autocorrelation 

process depends upon length of static data recorded from 

the sensor. In view of this fact, another robust stochastic 

modeling technique defined as Autoregressive process 

has been adopted. Autoregressive processes have greater 

modeling flexibility since they are not always restricted 

to only one or two parameters. The model parameters for 

such process can be effectively computed by solving a set 

of linear equations. The work of Nassar [2], Noureldin et 

al [3] reflects use of autoregressive processes as modeling 

tool for stochastic error analysis of inertial sensor. Noise 

is segregated into short-term as well as long-term errors. 

Short term random errors have been modelled using fist 

ordered Gauss Markov process, defined as follows: 

 

tt)x(Ix δtttδtt    22  

 

Where x(t+δt) is the current observation, β being the 

reciprocal of correlation time, ω(t+δt) is the white noise 

having density σ and δt is the sampling time. On the other 

side a p-th order polynomial fitting is done for realizing 

long term correlated errors using autoregressive process. 

Burg estimation method [4]-[6] is used for determining 

the parameters of the AR model defining the sequence in 

time-domain as follows: 
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The Burg method is used to fit a p-th ordered AR 

model to the input signal by minimizing the forward and 

backward prediction errors. 

Interestingly however, variance analysis methods have 

been widely used for studies of static errors associated 

with inertial sensors. Most important of such methods is 

the Allan Variance technique of determining critical noise 

coefficients for stochastic errors. The seminal work of 

David Allan [7] in computing correlation co-efficient 

simply through a time averaged procedure has been 

subsequently put to error analysis of inertial sensors 

profoundly in the thesis work of Haiying Hou [8], Park [9] 

and Naser et al [10]. Allan variance is a method of 

representing root mean square (RMS) random drift error 

as a function of averaged time. Consequently, Allan 

variance method is incorporated to determine the 

characteristics of the underlying random processes that 

give rise to data noise. The data is normally plotted as the 

square root of the Allan variance versus T on a log-log 

plot. 

In the present scope of work, Allan Variance method is 

used at the first hand, in order to characterize a low cost 

MEMs sensor by recording static data over a significantly 

long period of time. Subsequently, static noise 

coefficients are computed using cluster time averaged 

variance analysis. At the second phase, dynamic errors 

are estimated using interval analysis over data collected 

from an integrated sensor framework consisting of the 

inertial sensor, a compass and a GPS receiver. The 

dynamic error margins are computed using interval 

contractions. 

 

II. BACKGROUND 

A.  Stochastic Analysis of Stationary Errors 

Allan variance analysis is carried out to realize two 

dominant noise terms associated with stationary data viz. 

random walk and bias instability parameters. A short 

description, as to how to compute the non-overlapping 

Allan variance out of stationary data, is being presented. 

Assume that there are N consecutive data points, each 

having a sample time of t0. Forming a group of n 

consecutive data points (with n < N/2), each member of 

the group is a cluster. Associated with each cluster is a 

time T, which is equal to nt0. If the instantaneous output 

rate of the inertial sensor is Ω (t), the cluster average is 

defined as: 
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Where, represents the cluster average of the output rate 

for a cluster which starts from the k-th data point and 
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contains the n data points. The definition of the 

subsequent cluster average is 
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Where t(k+1)=tk+T 

Performing the average operation for each of the two 

adjacent clusters can form the difference 
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For each cluster time T, the ensemble of ξs forms a set 

of random variables. The quantity of interest is the 

variance of ξs over all the clusters of the same size that 

can be formed from the entire data. Thus, the Allan 

variance of length T is defined as [11]: 
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In order to carry out the necessary exercise on 

stochastic modeling a low cost MEMs inertial sensor Mtx 

of Xsens make has been employed. The specifications of 

the sensor are as tabulated in Table.1. The Allan 

deviation plots for accelerations and angular rate are 

shown in Fig. 2. 

 

 

Fig.2. Plot for Allan Deviations against acceleration (left) and gyroscope (right) measurements during static tests with Mtx INS 

 

Data from the Mtx inertial sensor was recorded over an 

uninterrupted duration of 2 hours, and the stochastic 

variations in the observed errors were studied in order to 

compute the random walk and bias instability co-efficient. 

Angle (/Velocity) Random Walk is denoted by N. The 

error grows as N x √sec, and is modelled as white noise. 

On the other hand, Bias Instability is denoted by B, and 

defined as a random variable variance of which grows 

over time in correlated manner. It is usually modelled as a 

first-ordered Gauss Markov noise variable. The random 

walk and bias instability coefficients are provided in 

Table 1 as follows. 

Table1. Specifications for Mtx inertial navigation sensor from Xsens 

Type of 

Sensor 

Physical 

Type 

Bias Stability 

(1-sigma) 

Alignm

ent 

Error 

Noise 

Density 

Accelerome

ter 

MEMs 

solid state, 

capacitativ

e readout  

0.02m/sec2 0.10 0.002 

m/sec2/√H

z 

Rate 

Gyroscope 

MEMs 

solid state, 

beam 

structure 

monolithic

, 

capacitativ

e readout 

10/sec 0.10 0.05 

deg/s/√Hz 

The cumulative effect of both the above-defined types 

of errors may be consolidated into a single white noise 

representative standard deviation as follows: 
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Consequently, the intervals for accelerations and 

angular rates can be drawn out as follows: 

 

]3,3[|| cc uuu     

 

B.  Stochastic Analysis of Dynamic Errors 

In the present scope of work interval method is used in 

analyzing dynamic uncertainties for a low cost MEMs 

inertial sensor. The present work has been carried out 

with an integrated sensor suite consisting of a GPS, a 

compass along with an inertial motion unit. Error bounds 

for all the sensors have been translated into guaranteed 

intervals. GPS based position intervals are fed into a 

forward-backward propagation method in order to 

estimate interval valued inertial data. Dynamic noise 

margins are finally computed from comparisons between 

the estimated and measured inertial quantities. It is 
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therefore meaningful in constraining errors from 

individual measurements so that the estimated data 

(position in the present context) may well be defined 

within guaranteed intervals. Stochastic models involving 

few probabilistic approximations are not complete 

representation of the true characteristic of errors, whereas 

intervals can be more reliable, in a sense that they tend to 

typically restrict the boundaries for maximum drift and 

that they can provide for a worst case performance 

analysis of any sensor fusion algorithm. 

C.  Error bounds for Compass and GPS receiver 

Error in compass measurements arises from imperfect 

calibration or the presence of some additional magnetic 

field in the calibration area or at the field site. Compass 

error is therefore typically a function of the measured 

heading. Because the origin of this compass error is due 

to external magnetic forces, the error is well represented 

by a one-cycle (hard iron) model [12]: 

 

)cos()sin(  CBAerr   

 

Where ψerr is the total error in heading, ψ is the 

measured heading, A, B and C are obtained from 

calibrating the compass with reference to some magnetic 

needle. Subsequently, the non-punctual heading can be 

constructed as: 
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However, position fixes from GPSs suffer from 

different types of noise associations [13] which may 

either be associated with the loss of sync between satellite 

(SV) and receiver atomic clocks, or due to paucity of 

proper SV geometry. The latter phenomenon dilutes a 

position fix to a great extent even with limited noise in 

range measurements, as obtained by the receiver from the 

available satellites. The performance index for any GPS 

is defined in terms of dilutions of precision (DOP) [14] 

categorized as position (PDOP), vertical (VDOD) and 

horizontal (HDOP). The HDOP is accepted more 

popularly as a measure of accuracy for the two-

dimensional planar position of the receiver. It is 

numerically defined as: 

 

R

yx
HDOP



 22 
  

 

Where σx and σy are the standard deviations for X and Y 

coordinates with σR termed as User Equivalent Range 

Error (UERE). Since HDOP is highly affected by the 

satellite geometry, the GPS measurements may suffer 

from varying HDOP measures with the same margin of 

noise in range measurement. However, low HDOP 

measure for a given fix evidently means greater position 

accuracy. Considering a HDOP measure of unity there 

are other common definitions of accuracy of a GPS 

position fix. Circle of Equi-Probable error (CEP) is 

another common performance measure, usually provided 

by GPS manufacturers. The distance specified as CEP for 

a given GPS means that the actual position of the receiver 

remains with 50% probability within a circle centered at 

the measured position and having as radius the distance 

specified as CEP. In more general terms the probability P 

of actual position, being within a specified radius of error 

D, is defined by using a Rayleigh distribution as follows: 
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Where the root mean square distance, DRMS is 

defined as√(σx2+σy2 ) (Refer to [15]). Referring back to 

CEP error, we can find out the DRMS through a sequence 

of derivations as follows: 
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A 95% confidence interval for positional error D is 

accordingly expressed as. However, considering a HDOP 

of unity the DRMS is the same as UERE. UERE being 

independent of the DRMS, in the case when motion of 

the vehicle is such that the view of the satellite geometry 

changes with a consistent UERE, DRMS is simplistically 

defined as: 
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Where, ‘i’ is the sampling instant. Finally the mean 

GPS error μe can be defined as follows: 
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The non-punctual position based on GPS observations 

may be expressed as: 
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III. PROPOSED INTERVAL BASED ALGORITHM 

A little background on interval contractions is 

presented before deriving the equations in the present 

context. The FBP contractor is simplest among all 

contractors and works on the principle of primitive 



28 Stochastic Characterization of a MEMs based Inertial Navigation Sensor using Interval Methods  

Copyright © 2015 MECS                                                        I.J. Image, Graphics and Signal Processing, 2015, 7, 24-32 

functions [16]. It consists of two steps, the first being 

propagating the dependent variables using the general 

form of equations. This results in updated intervals for 

the dependent variables. Subsequently, the second stage 

involves propagating independent variables using inverse 

functions, which results in contracted bounds. The cycle 

is repeated until no variable has a contracted interval. The 

process ultimately generates optimal contraction for the 

interval values associate with the variables. This may be 

illustrated with a simple example before defining the 

process in the context of sensor error interval fusion. 

Let us consider a simple addition of two interval 

valued variables [x] and [y] which leads to a third 

variable [z]. Then the FPB contractor works as follows: 

 

Forward Propagation:  

[z]=[z]∩{[x]+[y] } 
 
Backward Propagation:  

 [x]=[x]∩{[z]-[y] }[y]=[y]∩{[z]-[x] } 
 

The FPB contractor is further used in Waltz algorithm 

[17] which involves repeated propagations back and forth 

until the intervals do not contract any more. However, in 

context of the present problem, the propagations are 

carried out once in order to ensure completion of the 

contraction process within a single sampling time. 

Moreover, the present application does not demand very 

sharp bounds for a worst case analysis of dynamic error 

margins associated with inertial measurements. 

In the present scope of work the mechanization 

equations for inertial sensor are used for propagating 

intervals in the forward direction. Subsequently, GPS 

based equations are used for shrinking the intervals along 

a backward traversal. For the purpose of exploiting error 

intervals, positions have been expressed in the form of 

boxes as follows: 
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Where source represents the particular sensor from 

where data is obtained. In our case there shall be only two 

sources viz. GPS and INS. The forward set of 

mechanization equations are expressed with respect to a 

local East North Up {ENU (n-) [18]} navigation frame of 

reference. The body frame velocities are transformed into 

the reference frame and positions in the navigation frame 

are dead reckoned as follows: 
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Where the interval based linear and angular velocities 

are computed as follows: 
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r being the measured angular rate. The interval based 

accelerations and angular rate are defined using static 

error bounds as described in section 2.1. The state vector 

involving position boxes may be expressed in interval 

form as follows: 
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Hence GPS based positions may be computed in the 

navigation frame in order to carry out the backward set if 

equations. Relative positions with respect to the origin of 

the navigation frame are obtained through transformation 

of GPS coordinates as follows: 
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Where, S and  represent the great circle distance and 

bearing between a pair of GPS coordinate, i.e. latitude 

and longitude. Distance and bearing are computed using 

Haversine formula as follows: 
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Where the parameters A, B, C, D and R are defined as 

below: 
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R is the mean radius of Earth. Coming to the backward 

phase of interval contractions we are interested in 

formulating equations which shall represent non-punctual 

accelerations and angular rates. The difference in 

intervals between contracted ones and those predicted 

during the forward phase, may be considered as the 

dynamic error margins. Backward propagation of errors 

is formulated as follows: 
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Where the velocity estimate in the navigation reference 

frame is denoted as ttX |
ˆ

|  and is expressed in the body 

fixed frame as ttU || Finally, non-punctual 

accelerations expressed in body frame and estimated from 

an inverse transformation of GPS interval position 

coordinates are expressed in the body-fixed frame of 

reference as ttU ||  Similarly, angular rate intervals are 

estimated from residual between current observation from 

compass and heading prediction in the previous sampling 

instant: 
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Where the estimated heading intervals are obtained as: 
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The latter representing intervals of compass heading 

defined with the error bounds of compass as: 
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The method discussed so far can be drawn into an 

algorithmic structure described in the following steps: 

1. Obtain acceleration and angular rate 

measurements U and r from INS. 

2. Compute intervals for acceleration and angular 

rate observations by considering noise margins 

as obtained from stationary characteristics 

3. Use forward propagation equations to obtain 

interval estimates for position as follows: 
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Where,  
G

yx |||,| is the interval bounded GPS 

observation and the latter in intersection comes 

from kinematic model using INS data bounds. 

Similarly, C|| is the bounded Compass 

readout and the latter in intersection are the 

model predicted heading bounds 

4. Use backward propagation equations to obtain 

estimated bounds for acceleration and angular 

rate as follows: 
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The obtained acceleration estimates can be 

transformed into body-fixed frame using the 

direction cosine matrix as stated previously. 

 

 

 

Fig.3. Position of the vehicle as tracked by GPRS based navigation tool on mobile handset
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Fig.4. Placement of sensors on board the vehicle used for carrying out experiment. A platter is shown to be fixed on the dashboard (left) with Xsens 

INS and compass mounted on it. The GPS receiver is mounted on top of the roof for better signal reception. 

 

IV. EXPERIMENTAL VALIDATION AND RESULT ANALYSIS 

A MEMs inertial sensor of make Xsens has been used 

along with a GPS receiver from Rhydolabz and compass 

OS5000 from Ocean Server, all of which were mounted 

on a ground vehicle. Relative positions for the different 

sensors mounted on a car are depicted in Fig. 3. Compass 

and inertial sensor are mounted on a platter fixed with the 

vehicle and aligned with the vehicle's heading. The 

experiment involved a single closed trip covering a total 

distance of 9.4 kms with an average speed of less than 50 

km/hr and over duration of 792 seconds, map of which is 

shown in Fig. 4. Medium quality GPS corrections were 

obtained with an average horizontal dilution of precision 

(HDOP) measure of < 0.8 and a circular error probability 

(CEP) of 3m.  The GPS used for the said test platform 

suffers from a CEP error of 3 meters, which gives an 

approximated measure of DRMS as 3.6 meters. With a 

mean HDOP measure of 0.8 (as has been recorded over 

the entire duration of tests), the mean error in position is 

found to be 3.19 meters. Intervals for GPS obtained 

position measures are finally construed on the basis of the 

mean error, and are used subsequently. 

Set of data collected from the above-mentioned three 

sensors was logged with a unique time-stamp, so that 

offline processing could be done effectively, with 

samples collected at a rate of 1 Hz. 

In order to realize the effectiveness of the interval 

approach in assessing the dynamic noise margins 

associated with the inertial sensor, we need to revisit the 

static noise levels computed using variance method. The 

physical interpretation of Random Walk (RW) and Bias 

Instability (BI) coefficients may be discussed in the 

present context. RW introduces a stochastic error as a 

result of integrating a noisy signal whereas BI is the time 

averaged drift in bias associated with the original signal. 

RW has got a lesser correlation time than the sampling 

interval whereas BI is a low-frequency noise, which 

makes RW to be considered as the real noise contributing 

significantly to the overall errors present in the 

measurement. In practical terms, RW is a factor by which 

the  value of the random noise changes over the square 

root of the sampled duration. As for example, a value of 

RW=0.20/sec /√hr for a noise having density defined by 

the statistic σ, corresponds to  σ x 0.2 x √2 0/sec over a 

duration of 2 hours. 

In the present context of test conducted, the estimated 

non-punctual accelerations and angular rate are compared 

against the measured values of the corresponding 

parameters from the inertial sensor. However mid values 

of the estimated intervals are taken as real-valued 

approximations for carrying out valid comparisons. 

Estimated errors are taken to represent the noise levels 

corrupting the dynamic behavior of the inertial sensor. 

Fig. 5 (top) and (bottom) illustrate the guaranteed 

intervals of the estimated accelerations along X and Y (in 

grey colored bars) respectively with measured values 

from accelerometers shown in red bars. The measured 

values are seen to be restricted within estimated 

guaranteed intervals, having mean of [-0.7156, 0.6978] 

and [-0.6690, 0.6248]. Dynamic error margins for angular 

rate are defined by a mean interval of [-3.7479, 3.5424]. 

It is evident from Fig. 6 that, the dynamic bounds for 

angular rate angular rate measurements are well restricted 

within the dynamic intervals of -0.1 to 0.1 rad. /sec. (-

5.73 to 5.730/sec). 

However, reconsidering the static accuracy levels of 

acceleration and angular rate measurements (refer to 

Table 1), we can define the noise margins over a duration 

of 792 seconds (= 0.22 hour). The intervals may be 

defined using 95% confidence levels as follows: 

 

099.022.0108.096.1 u m/sec2 

11.022.012.096.1 v m/sec2 

52.522.0696.1 r
0/sec 

 

Where, σfx , σfy and σr  denote the changed statistical 

measures for the noise density representing stochastic 

error in accelerations along X and Y axes as well as 

angular rate respectively, over the specified duration of 

sample collection. It may be well observed that the 

intervals as estimated by proposed approach are supersets 

of 95% confidence levels of dynamic errors of 

accelerations. This indicates a significant drift of dynamic 

error in accelerations which may not be clearly defined 

using stationary error bounds. Notwithstanding the higher 

margins for dynamic error, mean values are found to be 
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quite close to the predicted stationary levels. By taking 

real-valued approximations (i.e. mid-point values) of the 

error intervals, mean errors are computed as μ=0.12 and 

0.2 m/sec2 for acceleration values along X and Y axes, 

respectively. 

 

 

Fig.5. Bounds for dynamic error margins for accelerations along X (top) and Y (bottom) channels; along with real-valued observations are plotted in 

red. 

 

Fig.6. Bounds for dynamic error margins for angular rate about z axis 

(rate of change of heading of the vehicle); along with real-valued 

observations are plotted in red . 

On the other side bounds of non-stationary error for 

rate gyroscope are found to be in consistence with the 

intervals as predicted using stationary noise coefficients. 

The guaranteed intervals estimated by the proposed 

forward backward contractor, are close to 95% 

confidence levels of stationary errors computed over the 

sampling period. Moreover the mean interval estimated 

using proposed method is sharper than the 95% 

confidence interval based upon stationary error statistics. 

In the present context, it may therefore be observed that, 

the stationary error characteristics do not completely 

define the stochastic behavior of the sensor when put in 

non-stationary operation. It is therefore an effective 

means as to employ interval techniques in studying the 

stochastic nature of dynamic errors associated with low 

cost MEMs inertial navigation sensor. 

 

V. CONCLUSION 

An associated contribution is laid in connection to 

characterization of MEMs inertial motion unit using 

interval methods. Analysis of stationary errors and 

determination of static accuracy is prominent in the 

literature. However, dynamic accuracies tend to vary due 

to angular variations incurred during motion of the 

platform. The present work involves forward and 

backward contraction of error intervals. An INS / GPS 

framework is considered for the purpose. Measurements 

coming from both the sensors are converted into intervals 

and fed into transition equations for extrapolation of state 

variables. The predicted intervals are contracted using 

GPS based position intervals. Subsequently, the 

contracted intervals are propagated backwards through 

first and second order derivations, and intersected with 

primitive inertial measurements obtained from the INS. 

The difference is obtained as an error interval for linear 

accelerations and angular rate. It is found that the 

proposed interval approach is instrumental in estimated 

dynamic errors of accelerations, such that they are 

inclusive of 95% confidence interval of stationary errors. 

This indicates a significant drift of dynamic error in 

accelerations which may not be clearly defined using 

stationary error bounds. On the other side sharper 

intervals are obtained for mean gyroscope errors in 

comparison to the predicted stationary bounds  
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