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Abstract—In this paper we aim to solve a problem of 

image reconstruction in tomography. In medical imaging, 

patients suffer from taking high dose of radioactive drug 

in order to get a well-qualified image. Our goal is to 

reduce this dose of radioactive drug given to the patients 

in PET scan and to get a well-qualified image. We use to 

modeling this problem using a convex function to 

minimize. In tomography, real problem requires a 

positive constraint and may get a blurred image due to 

poisson noise. Then, in order to get back a non blurred 

image of human body, we add to this function a wavelet 

regularization which is a non differentiable function. We 

introduce specific algorithms to get the minimum of the 

global function obtained. After presenting the classic 

algorithms with their conditions to solve the problem we 

find that Chambolle Pock’s algorithm requires less 

properties than these algorithms and gives good results. 

Then, we propose its computation method with the proof. 

 

Index Terms—Tomography deblurring, convex 

optimization, wavelet regularization, linear inverse 

problem. 

 

I. INTRODUCTION 

In this paper, we propose a method to compute 

Chambolle Pock’s algorithm. This algorithm is efficient 

to solve a deblurring problem in tomography. 

We aim to solve a problem of image restoration 

dealing with Positron emission tomography (PET). Our 

goal is to reduce the dose of radioactive drug given to the 

patient in PET scan and to get a non blurred image. With 

high dimensions, we want to find the representative 

components of the image. So, we take an image with 

some known, or estimated degradation and we restore it 

to its original appearance.  

In order to reduce the noise, we have to minimize a 

functional in our case dealing with Poisson noise. Then, 

we have to solve a linear inverse problem.  

Nesterov proposes the gradient method as cited in [1], 

Combettes and Wajs propose a proximal forward-

backward splitting algorithm as cited in [2].  

Beck and Teboulle, propose a fast iterative 

thresholding algorithm as cited in [3]. Daubechies et al 

propose an interative thresholding algorithm with a 

sparsity constraint as cited in [4]. And Chambolle Pock 

propose a first-order primal-dual algorithm as cited in [5]. 

We show that Chambolle Pock’s algorithm is the most 

suitable for resolving our problem after comparing the 

algorithms cited above. Also, we give an explicit form of 

its variables. We present four algorithms related to 

Chambolle Pock’s algorithm: 

Dupé et al propose a fast iterative forward backward 

splitting algorithm as cited in [6]. Moreau describes the 

duality in a Hilbert Space in [7]. Figueiredo and Nowak 

propose an expectation –maximization algorithm for 

Image Restoration based on a penalized likelihood 

formulated in the wavelet domain in [8]. Cohen et al 

propose numerical methods for the treatment of inverse 

problems based on adaptative wavelet Galerkin 

dicretization in [9]. 

We describe five algorithms proposed to get a well-

qualified image, compared to the PSNR value: Nain et al 

propose the Peer Group Average algorithm as cited in 

[10]. Jiang et al propose the Stationary wavelet transform 

algorithm as cited in [11]. Mahmoud et al propose the 

Log Gabor filter as cited in [12]. Raj and Venkareswall 

propose the double density dual tree comp as cited in [13] 

and they propose the Split Bregman, total variation as 

cited in [14]. Zanella et al propose the scaled projected 

gradient method as cited in [15]. We explain the PET 

technique and formulate the problem. 

In medical imaging, (PET) is a gamma imaging 

technique that uses radio tracers that emit positrons, the 

antimatter counterparts of electrons. In PET the gamma 

rays used for imaging are produced when a positron 

meets an electron inside the patient's body, an encounter 

that annihilates both electron and positron and produces 

two gamma rays traveling in opposite directions. By 

mapping gamma rays that arrive at the same time, the 

PET system is able to produce an image with high spatial 

resolution. 

Our problem can be formulated as 

 

Rf p                                  (1) 

 

Where:  ,
n m

RM  is the projection matrix
,i jR  

represents the weight of pixel j  in the ray of projection 

i . 
nf   the image to reconstruct. And mp the 

whole projections obtained in several directions or the 

sinogram, a radiograph to visualize any abnormal 

opening in the body, following the injection of contrast 

media into the opening. 
 

The remainder of the paper is organized as follows. In 

section Ⅱ , a review of the necessary related work 

required to effectively implement our algorithm is 

presented for convex problems. The method and how we 

will compute our proposed algorithm is described in 
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Section Ⅲ . After that, application of the proposed 

algorithm and results is discussed in section Ⅳ, and we 

draw our conclusion in the last section. 

 

  

Fig.1. Construction of the projection matrix R . 

 

Fig.2. Sinogram obtained after the projections over the image to 
reconstruct 

II. RELATED WORK 

A.  Gradient Method 

The gradient method is to minimize a convex 

differentiable function f . This method consists on 

backtracking lines search. And each line search 

minimizes  ( )f x t f x   over t . Every iteration is 

inexpensive and it doesn’t require second derivatives. 

Newton's method also minimize a convex differentiable 

function, uses the first few terms of the Taylor series of a 

function ( )f x  in the vicinity of a suspected root. 

The conjugate gradient method can be used to solve 

unconstrained optimization problems like the gradient 

method. It is a descent method. 

The subgradient method is an algorithm for  

minimizing a non differentiable convex function. It is 

not a descent method; the function value can often 

increase. 

 

Solving  min ( ) ( ) min ( )
x X x X

F x G x f x
 

             (2) 

 

where :F X  is a L -lipschitz differentiable function 

and :G X   is a convex function non differentiable,  

requires the proximity operator as defined below. The 

operator  

 
2

:

1
arg min

2

G

y X

prox X X

x G y x y




 
   

 

          (3) 

 

is called proximity operator associated to G . As cited in 

[2] and [3]. If G  is differentiable, the subgradient 

projection method gives the solution. As cited in [1]. This 

method converges slowly, and the rate of convergence is 

1
k

 

The projected subgradient method is similar to the 

subgradient method, we consider a convex set. 

B.  Extension of the Gradient Method 

We will discuss two methods:ISTA, Iterative 

Shrinkage-Thresholding Algorithm and FISTA, Fast 

Iterative Shrinkage-Thresholding Algorithm, as cited in 

[3] and [4]. These methods are the extension of the 

gradient method. 

ISTA consists on constructing on each iteration a 

regularization of linear differentiable functions. It means 

making some descent of gradient on F differentiable and 

computing the proximity operator on the non 

differentiable G . 

FISTA is an accelerated version of ISTA. Chambolle 

Pock [5] show that solving the following problem 

min ( ) ( )
x X

F Kx G x


 which is the sum of two convex 

functions, lower semi-continuous non differentiable with 

,X Y two finite spaces holding the scalar product. 

:K X Y linear continuous operator with the inducted 

norm  

 

  with 1
max  

x X x
K Kx

 
                       (4) 

 

requires this convergent algorithm while 2 1K  .  

Initialization Choose  0,  0,1     0 0,x y X Y   

and 
0 0x x  

 

 

 

 

*

1

1 * 1

1 1 1

n n n

F

n n n

G

n n n n

y prox y Kx

x prox x K y

x x x x













 

  

  



 


  

               (5) 

 

While taking  

 

0                                      (6) 

 

in that algorithm we obtain the speed of convergence 

approximately of  1 N . We can improve the rate of 

convergence to  21 N . We summarize the algorithms 

their criteria and their rate of convergence on the table 

below. 
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Table1. Comparative table of iterative methods 

Method Criteria Rate of 
convergence 

Gradient method 

f  convex, L - 

Lipschitz 

continuously 

differentiable 

 1
k

c q  

Newton method 

f convex, L - 

Lipschitz 

continuously 

differentiable 

 
2

1
k

c q  

Conjugate gradient 
method 

f convex, L - 

Lipschitz 

differentiable 

Not better than the 
gradient method 

Subgradient method 
f convex non 

differentiable 

Slower than the 

Newton method 

ISTA 

 

f , g  convex 

functions 

f  L -lipschitz 

differentiable 

g  possibly non 

smooth 

1
k

 

MTWIST 

Monotone version of 

TWIST(Two step 
ISTA for extremely 

ill-conditioned 
problems) 

f , g  convex 

functions 

f  L -lipschitz 

differentiable g  

possibly non smooth 

2
1 1( )r k

k k
   

FISTA 
 

f , g  convex 

functions 

f  L  -lipschitz 

differentiable g  

possibly non smooth 

2
1

k
 

Projected 
subgradient method 

f convex non 

differentiable, 

x C a convex 

set 

Not better 

than 1
k

 

Chambolle Pock’s 
algorithm 

f , g  lower semi-

continuous 

conjugate convex 
functions 

Can be accelerated 

to 
2

1
k

 if 

*  or f g is 

uniformly convex. 

 

In[6] they present a deconvolution algorithm, fast 

iterative thresholding algorithm, taking into consideration 

the Poisson noise. For denoising the images, they use the 

Anscombe transform. And finally, they select the 

regularizing parameter by using the generalized cross 

validation based model selection. They recommend using 

sparse-domain regularization in many deconvolution 

applications with Poisson noise. 

In [7], Moreau propose dual functions and conjugate 

functions in the Hilbert space. He talks about proximity 

operator.  

In [8], they propose a wavelet-based criterion for 

Image Deconvolution. This algorithm MPLE/ MAP 

criterion maximum penalized likelihood estimator, 

maximum a posteriori alternates between Fourier domain 

filtering and wavelet domain denoising. 

In [9], they propose Galerkin methods for inverse 

problems based on wavelets. They combine a 

thresholding algorithm on the data with a Galerkin 

inversion on a fixed linear space and then they invert by 

constructing a smaller space adapted to the solution 

iteratively constructed. 

In [10], many mixed noise removal techniques were 

compared such as Peer Group Averaging (PGA), Vector 

Median Filter (VMF), Vector Direction Filter (VDF), 

Fuzzy Peer Group Averaging (PGA), and Fuzzy Vector 

Median Filter (FVMF). (PGA) is a non-linear filter, 

whose aim is to average over a peer group rather than the 

whole window. (FVMF) performs a weighted averaging 

where the weight of each pixel is computed according to 

its similarity to the robust vector median. They prove that 

(PGA) is advisable when the image size is small and if 

the image size is large it is better to use (FVMF). Also, 

(PGA) gives best visual quality results while (FVMF) 

gives the worst visual quality results. 

In [11], they develop a novel method to improve the 

Visual quality of X-ray CR images, consisting of a 

wavelet-based filter denoising based on SWT:Stationary 

Wavelet Transform and the wavelet thresholding then, 

they enhance the image contrast using Gamma Correction 

and after extract and classificate high frequency 

components into three feature images and then Image 

fusion obtained after adjusting the compression ratio of 

non-diagnosis feature component in the high signal range 

and calibrate the parameter. 

In [12], they show that the Log Gabor Filter, a filter in 

the transform domain gives good images quality, PSNR 

values and CPU time, while Speckle Reducing 

Anisotropic Diffusion (SRAD) a spatial filtering is better 

than several commonly used filters including Gaussian, 

Gabor, Lee, Frost, Kuan, Weiner, Median, Visushrink, 

Sureshink and also the Homorphic Filter, but on the other 

hand, has a very high CPU compared to the other filters. 

In [13], they show that in order to remove the noise of 

Poisson and Rician from medical images, the double 

density dual tree complex wavelet transform based on 

discrete wavelet transform is performing based on 

discrete wavelet transform is performing well than the 

other transforms. 

In [14], they show that total variation based 

regularization split Bregman method from optimization 

method is well-suited to image restoration in medical 

images and it is better than the traditional spatial domain 

filtering methods. 

In [15], they show that for Poisson noise removal the 

scaled gradient projection method based on a Bayesian 

approach is more efficient than the gradient projection 

methods. 

 

III. METHOD AND THE PROPOSED ALGORITHM
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The process of image construction is 
jf : isotopes 

concentration on pixel 0,  jj f  . 
ijR : the average 

number of photons detected on i  per unit of isotopes 

concentrations on pixel j . We note  

 

1

n

i ij jj
p R f


                              (7) 

 

In fact, what we measure on each pixel i , is the 

realization of a random variable  

 

 ni ij jj
p R f


                           (8) 

 

of Poisson parameter ip . One way of finding jf  is to 

estimate the maximum of likelihood. 

 

 
!

j

i

j
ij j

j

i i

ij

p

R f
R f

p
P e

f p




 
 
 


          (9) 

 

All 
i

p  are independent. (And n  are random variables). 

The maximum of likelihood estimate is the value that 

makes the observed data the most probable. Rather than 

maximizing this product, we often use the fact, that the 

logarithm is an increasing function so it will be 

equivalent to maximize the log likelihood. Maximizing 

likelihood on f  means minimizing the criteria: 

 

  ij j i ij j

i j j

J f R f p log R f 
  

  
  

         (10) 

 

We will minimize it under the constraint: nf  . 

We have to minimize the error. This functional is convex 

but not differentiable on n


, so if she takes a minimum, 

this minimum is global. J  takes a global minimum, in 

this case, it is not unique because R  is not invertible on 

prior. It is an ill-posed inverse problem. 

A.  Explanation of a basic linear inverse problem 

A basic linear inverse problem leads us to study a 

discrete linear system of the form: 

 

 R x p w                              (11) 

 

where 
m nR   and 

mp  are known, w  is an 

unknown noise and x  is the ― true’’ and unknown image 

to be estimated. In image blurring problems, 
mp  

represents the blurred image. In these applications, the 

matrix R  describes the blur operator, which in the case 

of spatially invariant blurs represents a two-dimensional 

convolution operator. The problem of estimating x  from 

the observed blurred and noisy image p  is called an 

image deblurring problem.  

The blur operator is unbounded, we are in ill-posed 

problems. The generalized inverse operator may be 

unbounded. So, it has to be replaced by bounded 

approximants, so that numerically stable solutions can be 

defined and used as meaningful approximations of the 

true solution corresponding to the exact data. This is the 

purpose of regularization. 

In image deblurring applications, R  is chosen as 

R AW , where A  is the blurring matrix and W  

contains a wavelet basis. R  corresponds to performing 

inverse wavelet transform. We deal with the 1?l  norm 

regularization criterion because most images have a 

sparse representation in the wavelet domain. In our case, 

we are using medical data represented by photon images 

degraded by Poisson noise. Because of this, it is a 

difficult task to remove the noise. However, if we can 

remove Poisson noise effectively, we will acquire a fine 

image from the degraded image produced with a small 

amount of photons. This may lead to a reduction of the 

probability of not only medical exposure, but also 

medical errors. To accomplish the effective reduction of 

Poisson noise, the techniques based on wavelet transform 

have been proposed recently. The method gives 

thresholding in each wavelet domain, maintaining the 

features of an original signal. As seen in the related work, 

Chambolle Pock’s algorithm requires less properties than 

the other algorithms. 

We will choose to minimize (  ) ( )F K x G x  

Where (  ) ( )F K x J x , K R  and G  is non 

differentiable. F  and G are lower semi-continuous 

convex functions. 

B.  Choice Of The Functionals 

  ij j i ij j

i j j

J x R x p log R x 
  

  
  

           (12) 

 

 C
 is the function indicator of a convex set 

  : 0C x x  , 
 

      
( )

     else.
C

if x C
x

 
 



 and 

,1,
, j kW

j k

x x     

 

     1,C W
G x x x                   (13) 

 

We include on G  the positive constraint and the 

wavelet 1?l -regularization. G  is the functional 

representing the denoising. The parameter   is the 

regularization parameter, which is used to control the 

degree of regularization. 
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C.  Application On Chambolle Pock’s Algorithm 

After choosing F  and G  convex functions as defined 

above, we compute: *F ,  *F
prox x


 and  Gprox x

. 

The prox  have an explicit form. Knowing 0ip  . After 

computing, we get: 

 

   *

21
   1 1 4
2

 
i i iF

prox y y y p


     
 

       (14) 

 

 Gprox x  is the projection on a positive set of inverse 

wavelet transform of a threshold of parameter   of the 

wavelet transform on x .  

 

 1
( )

G C
prox x W S Wx

 


               (15) 

C.  Computing  *
F

prox y


 

    
 

log( )
i i i i

i

F y y p y y


             (16) 

 

*
( )F y

x prox


                           (17) 

 

Then, 

 

 
21

   1 1 4
2

i i i i
x y y p     

 
            (18) 

 

In our case, 0ip  . 

Proof: 

 

   
 

log( )i i i i i if y y p y y            (19) 

 

if  is lower semi-continuous over because 0ip   

Then, 

 

      i i

i

F y f x                       (20) 

 

is convex lower semi-continuous over 
n

. 

For computing  *
F

prox y


, we will use Moreau’s 

identity see [7]. 

 

   * 1F F

y
prox y y prox Y







  
    

  

      (21) 

 

Then, we will have to compute  

 

 
1

 with 
F

prox Yy





                    (22) 

 

because we know the explicit form ( )?F y . 

 

 

 

 

 
   

 
   

2

2

 

 

2

2

 

arg min

  arg min

arg m

   
2

log ,1 ( )
2

  
2

2

in

 arg min
i

y

y

i i

i i
y i

i i

i
y

F

C

i

ii

y

Y

y Y
f y

y Y
f

prox Y

y
F y

y Y
y p x

y

x

y

y





















 








  

 


  

 
 
  

 
  
 



        (23) 

 

Differentiating  if y  with respect to  iy , we get:  

 

 

 

 2

1  then, we hav

0

e

1 0

i i

i

i i i

i

i i

i

i

i

i

f y p

y y

y Y

y y Y p

y

p

y

 



 
















 
          (24) 

 

By calculating the discriminant of this binomial  

 

 
2

4 0i iY p                     (25) 

 

delta being positive, admits two solutions: 

 

   
2

1

4

2

i i i

i

Y Y p
y

     
           (26) 

 

   
2

2

4

2

i i i

i

Y Y p
y

     
           (27) 

 

We choose the second solution because for this value 

we get the minimum value of the prox . After Moreau’s 

identity, we have: 

 

   

 

 

* 1

2

2 2

2

1 41
              1

2

1
             ?

  1 1 4

2

F
F

i i

i i i

i i i i

y
prox y y prox Y

y p
x y y

x y y p











  



 


    

    

  
  

  

  
  

  
  

 
  

    (28) 

 

And we get the result. 

D.  Computing  Gprox x
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Before computing  Gprox x , we aim to minimize 

this following functional which will help us to compute 

 Gprox x . 

 

 
2

1
J y A                  (29) 

Because,  

 

 

  

2

1

21
 arg min

2

1
    arg min

2

X
y X

X
y X

C

K G y x y

x yy Wy










  

   

 
 
 

 
 
 

       (30) 

 

We notice that this functional is convex being the sum 

of two convex functionals. In fact, let us compute the 

differential of 
2

y A . 

 

 
2

1
,J y A y A y A                (31) 

 

   

   

 

1 1

*

    = ,

    ,  

     = ,

     ,  
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    (32) 

 

   *

1
2J A y A                     (33) 

 

 " *

1
2J AA                            (34) 

 

Then,  1J   is convex. For 1   we have  

 

   
1 11

1 1                 (35) 

 

which shows that 1   is convex. Therefore,  J   

being the sum of two convex functions is convex. We 

know that J  is convex, 0 ( )J x is equivalent to say 

that x  is the minimizer of J . Then, the minimum is 

reached.  

Another writing of:  

 
2

1
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

                       (36) 

 

We take:  and 
k k k k

k k

y y A       Then (36) 
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E.  Computing  
 .

2

k
prox y


 

 
2

k k k k
J y                        (38) 

 

We compute the subgradient of J  on a point k . And 

we calculate at which condition  0 kJ  .Let us 

consider these cases: 

First case: J  differentiable on 0k  . We have 
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The critical point is:  

 

0
2

k k
y


                          (41) 

 

and this impose the following condition:  

 

0
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k
y
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Second case: J  is differentiable on 0k  .  

We have  
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The critical point is  

 

2
k k

y


                               (44) 

 

and this impose 
2

k
y


  knowing that 0

k
  . In both 

cases,  kJ   is differentiable. 

Third case: 0k   

J  is not differentiable. Let us calculate the subgradien 

 

ton 0.  
2

0 kJ y                       (45) 

 

If (0)p J , we get:  
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First case: 0
k

   
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We must have: 2 0
k

y p     

Then,  

 

2
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Second case: 0
k
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We must have: 2 0
k

y p     

Then,  2
k

p y    

Then, we must have: 

 

2 2
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Conclusion: 
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Notations: 

Let us note by:
1,W

y  the norm of y  on the wavelets 

basis. We will design by Wy  the wavelet transform y . 

And we will note by  

 

 
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G x Wx                            (51) 

 

The thresholding operator S  is defined by:  
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The previous functional is a thresholding of a 

parameter 
2


 on ky . We aim to compute  

 

 GK prox x .                       (53) 

 

We have:  
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IV. APPLICATION ON PET AND RESULTS 

To verify the performance of the proposed algorithm, 

we experiment with medical images. The first three 

images represent the simulated data  ,  and f p p . In the 

fourth and fifth images, we show results of Chambolle 

Pock’s algorithm after 50 iterations with 0.05   , 

0.5 and =0  . 

The fourth image represents the constructed image 
1nx 

 in Chambolle Pock’s algorithm. And the fifth image 

represents the sinogram obtained 
1ny 

 in Chambolle 

Pock’s algorithm. 

In the section method, by computing  *
F

prox y


 and 

 G
prox x


, we removed the Poisson noise on the blurred 

projection operator and we get the unblurred image. Also, 

we get an explicit form of the parameters of Chambolle 

Pock’s algorithm easy to implement in matlab. 

 

 

Fig.3. Image f  to reconstruct ( unknown of the algorithm). 

 

Fig.4. Image of the non blurred sinogram p . 

 

Fig.5. Image of the blurred sinogram p  

 

Fig.6. Image 
50x estimation of f  after 50 iterations of the algorithm. 

 

Fig.7. Image 50y  after 50 iterations of the algorithm. 

V. CONCLUSION 

This study proposes a method to compute Chambolle 

Pock’s algorithm, used to solve a deblurring problem in 

tomography, dealing with two convex, lower semi-

continuous functions. After introducing the wavelet 1?l -

regularization on the functional representing the 

denoising, we compute the proximity operator associated 

to the functions in Chambolle Pock’s algorithm and we 

get an explicit form of the parameters easy to implement 

on matlab. 

The experiment results show that after computing 50 

iterations of Chambolle Pock’s algorithm with 

0.05    we get an unblurred image. This algorithm 

is efficient in removing Poisson noise from a 

tomographic image. 

For the future work, this research will be extended 

further by involving other components of other related 

algorithms and we expect to get better results.  

ACKNOWLEDGMENT 

This paper is fully supported by the Computer Science 

and Statistics Department of the Lebanese University, 

Fanar.



 Tomographic Convex Time-Frequency Analysis 41 

Copyright © 2015 MECS                                                        I.J. Image, Graphics and Signal Processing, 2015, 7, 33-41 

REFERENCES 

[1] Y.Nesterov. Introductory lectures on convex optimization 

a basic course, Vol. 87, 2004. 

[2] P. L. Combettes and V. R. Wajs, Signal Recovery by 

proximal forward-backward splitting: Multiscale 

Modeling and Simulation, 4 (4): 1168-1200, November 

2005. 

[3] A. Beck and M. Teboulle, ―A fast Iterative Shrinkage-

Thresholding Algorithm for Linear Inverse problems‖, 

2009. 

[4] I. Daubechies, M. Defrise and C. De Mol, ― An iterative 

thresholding algorithm for linear inverse problems with a 

sparsity constraint‖, Comm. Pure Appl. Math, 57, pp. 

1413-1541, 2008. 

[5] A. Chambolle T. Pock, ― A First-Order Primal –Dual 

Algorithm for Convex Problems with Applications to 

Imaging‖, december 2010. 

[6] F.-X. Dupé, J. Fadili and J.-L. Starck, A proximal 

iteration for deconvolving poisson noisy images using 

sparse representations, IEEE TIP, Vol.18, 2009. 

[7] J.J.Moreau, Proximité et dualité dans un espace 

Hilbertien, 1965. 

[8] Mário Figueiredo and Robert D. Nowak, An EM 

Algorithm for Wavelet-Based Image Restoration, IEEE 

Transactions on Image Processing, Vol.12, no.8., August 

2003. 

[9] A.Cohen, M. Hoffmann and M. Reib ―Adaptative Wavelet 

Galerkin Methods For Linear Inverse Problems‖. SIAM, 

2003. 

[10] A. K. Nain, S. Singhania, S. Gupta and Bharat Bhushan, 

―A comparative Study of mixed noise removal 

techniques‖, International Journal of Signal Processing, 

Image Processing and Pattern Recognition, Vol.7, no.1, 

pp.405-414, 2014. 

[11] H. Jiang, Z. Wang, L. Ma, Y. Liu, P. Li. A novel method 

to improve the visual quality of X-ray CR Images. 

International Journal of Image, Graphics and Signal 

Processing, Vol.3, no.4, June 2011. 

[12] A. A. Mahmoud, S. El Rabaie, T.E. Taha, O. Zahran, F. E. 

Abd El –Samie, W. Al-Nauimy, ―Comparative study of 

different denoising filters for speckle noise reduction in 

ultrasonic B-mode‖. International Journal of Image, 

Graphics and Signal Processing, Vol. 5, No.2, February 

2013. 

[13] V. Naga Prudhvi Raj and T. Venkateswarlu, M.E. 

―Denoising of Poisson and Rician Noise from Medical 

Images using Variance Stability and Multiscale 

transforms‖. International Journal of Computer 

Applications, Vol 57/21, November 2012.  

[14] V. N. Prudhvi Raj and Dr. T. Venkateswarlu, ―Denoising 

of Medical Images using Total variational Method‖, 

Signal & Image Processing: An International Journal, 

Vol.3, No.2, April 2012. 

[15] R. Zanella, P. Boccacci, L. Zanni and M Bertero.Ye. 

―Efficient gradient projection methods for edge-

preserving removal of Poisson noise‖. IOP Science, 

Inverse Problems. Vol 25, No 4, February 2009. 

 

 

 

Authors’ Profiles 
 

Rose Sfeir, female, was born in Ajaltoun, 

Lebanon on, 28/08/1988. She received 

the Masters degree in probability and 

statistics from The University of 

Provence, Aix-Marseille 1, France in 

2011. Her research interests are in 

convex optimization and image 

processing. 

 

 

Charbel Julien, male, was born in 

Jdeidet Marjayoun, South of Lebanon, 

on 31/08/1978. He received his Ph.D. 

degree in computer science in 2008 from 

Lumière Lyon 2’s University, France. He 

is a Lecturer at the Lebanese University, 

Fanar, Computer Science and Statistics 

Department. His research interests are in 

machine learning and image processing. 

 

 

 

 

 

 

How to cite this paper: Rose F. Sfeir, Charbel H. Julien,"Tomographic Convex Time-Frequency Analysis", IJIGSP, 

vol.7, no.7, pp.33-41, 2015.DOI: 10.5815/ijigsp.2015.07.05 


