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Abstract—The scale of salient object in an image is not a 

known priori, therefore to detect salient objects 

accurately multiple scale analysis is used by saliency 

detection models. However, multiple scale analysis 

makes the saliency detection slow. Fast and accurate 

saliency detection is essential to obtain Region of Interest 

in image processing applications. This paper proposes a 

scale space reduction with interpolation to speed up the 

saliency detection. To demonstrate the concept, this 

method is integrated with Hypercomplex Fourier 

Transform saliency detection which reduced the 

computational complexity from O(N) to O(N/2). 

 
Index Terms—Hypercomplex Fourier Transform, 

Interpolation, Scale Space Analysis, Object scales, Visual 

saliency. 

 

I.  INTRODUCTION 

Region of Interest (ROI) in the image are marked 

manually or it may be detected automatically from the 

image features. In general, fast and accurate ROI 

detection without human interaction is desirable in image 

processing applications such as object segmentation, 

object recognition and adaptive image compression. 

Visually interesting objects naturally draw our attention 

are called salient objects. The topographical 

representation of salient objects in an image is called as 

saliency map. Thus, saliency maps are gray scale images 

with larger pixel values for more salient points. ROI 

mask, which is useful in various applications, can then be 

derived by applying suitable threshold on the saliency 

map.   

Visual salience is the state or distinct subjective 

perceptual quality which forces some items in the world 

that pop out from their adjacent items and quickly grabs 

visual attention [1]. Such as a colorful rainbow in the sky 

that makes it pop out from its surroundings and draw 

attention in an automatic and rapid manner. Similarly 

some parts of the image are more interesting or visually 

important, that catch visual attention. Thus, salient 

regions are described as uncommon or unique samples, of 

the image having distinct features. The regular samples of 

the image may then be termed as non-salient regions. 

Computing visual salience has been a topic of interest 

since last 25 years. Systematic scanning of images from 

left-to-right and top-to-bottom is the traditional method of 

attempting to locate objects of interest. Whereas, visual 

salience provides relatively rapid mechanism to select a 

few most likely objects and overlook the clutter present in 

an image [2]. The object scale and their spatial 

frequencies are associated [3]. Objects in an image 

become meaningful depending on its scale and distance 

of observation. For example, a green patch of land in the 

satellite image may turn out to be a forest in a closer look 

at the land from an airplane. An even closer look from the 

top of a building can show constituents of it such as trees, 

branches, and leaves. The green patch is observed at a 

coarse scale while the constituents are visible at the much 

finer scales. Analogous to objects in the real world, 

details in an image exist over a limited range of 

resolution. Thus, the concept of scale is very important 

while processing the image to highlight objects in it. 

However, scale of salient object in an image is not known 

in advance. Therefore to detect salient objects accurately 

multiple descriptions of the image becomes necessary. In 

the multiple scale analysis, a set of saliency maps is 

obtained and final saliency map is selected based on 

minimum entropy value.  Scale space  or the set of 

saliency maps is proportional to the size of the image, for 

example in the case of 128X128 and 256X256 size 

images the scale space used is 8 and 16 respectively. 

These multiple descriptions of the image are 

computationally complex and makes the saliency 

detection slow.  

In the literature, saliency detection is done in different 

ways. Using simply the low-level image features such as 

intensity, contrast, color and orientation called bottom-up 

saliency detection or using some kind of task such as face 

recognition called as top-down saliency detection. Top-

down saliency detection is much slower than bottom-up 

saliency detection [4]. Bottom-up saliency detection may 

be of spatial biological, computation or hybrid type. 

Frequency domain computational models of saliency 

detection are comparatively fast. Hence, frequency 

domain saliency detection models are becoming popular. 

Still they are not either not fast enough to match the 

mailto:uttamkolekar@gmail.com
mailto:uttamkolekar@gmail.com


 Scale Space Reduction with Interpolation to Speed up Visual Saliency Detection 59 

Copyright © 2015 MECS                                                        I.J. Image, Graphics and Signal Processing, 2015, 8, 58-65 

requirement of real-time applications or are not 

sufficiently accurate.  

Computationally efficient method called frequency-

tuned saliency detection was proposed by Achanta et.al. 

in [5], which used a bandpass filter of appropriate 

bandwidth. A saliency map contains the wide range of 

frequencies, so the wide bandpass filter is formed by 

combining the outputs of several narrow band pass filters 

with contiguous pass bands. A wide band filter can 

include background and noise in the salient region. Thus, 

to avoid inclusion of background and noise, and to obtain 

only salient objects, narrow bandpass filters should be 

used. The accuracy of this method depends on proper 

tuning of the bandpass filters used, again the question 

arises how to tune the bandpass filters when the sizes or 

scales of salient objects are not known a priory. 

The state of art visual saliency model of Itti and Koch  

[6] is a feature integration model. In this model, among 

all of the chosen features, saliency maps are generated by 

extracting the feature strength at several scales. The 

center-surround approach combines them to highlight the 

salient regions. Then, the individual feature saliency 

maps are summed to generate a master saliency map. 

Winner take all stage decides final saliency map. General 

architecture of this model is a massively  parallel 

implementation to speed up saliency detection.  This 

model forms the basis for other spatial saliency detection 

models. 

SR[7], PFT and PQFT[8], HFT [9] and HSC[10] are 

the state of art frequency domain saliency detection 

models. The Computational models of saliency detection 

employ Fast Fourier Transform (FFT) or quaternion 

hypercomplex Fourier transforms (QHFT). FFT or QHFT 

of an image results in the amplitude and phase spectrum.  

The amplitude spectrum of image consists of all the 

frequency components present in the image. In the case 

of HFT model, the saliency map can be obtained by 

convolution of the amplitude spectrum with Gaussian 

kernel of a right scale, maintaining the other information 

unchanged. Fast and accurate saliency detection is the 

requirement for real-time applications in which ROI is 

used for further image processing. Scale space reduction 

is the solution to this problem, but it may affect the 

accuracy of the saliency map. Modules in [11] attempts to 

reduce the spectral scale space using bisection search, but 

occasionally the search trap in local minima. Heuristics 

search modules proposed in [12] is one of the solution to 

reduce the local minima trap, while it generate and search 

the saliency maps.  This paper proposes a novel method 

of scale space reduction with interpolation to speed up the 

visual saliency detection while attempting to preserve the 

accuracy of saliency model. To demonstrate the concept, 

the proposed method is integrated with Hypercomplex 

Fourier Transform based saliency detection of Jian Li et. 

al. [9]. The reduction in the computational complexity 

achieved is O(N/2). 

 

II.  BACKGROUND 

A. Object Scale and spatial frequency 

There is a close relation between the object scale and 

spatial frequency. In image low frequencies represent 

large objects and the background of the image; high 

frequencies define object boundaries; highest frequencies 

specify noise, coding artifacts and texture patterns; 

whereas medium frequencies generally represent the most 

important parts called as visual salient objects. In order to 

represent objects of different sizes, it is necessary to 

convolve a given image I(x,y) with 2D Gaussian kernel 

g(x,y;σ). Where, σ defines the width of the Gaussian 

kernel. In statistics, when we consider the Gaussian 

probability density function, we call it as standard 

deviation and σ2 as variance.  The series of Gaussian 

kernels for low pass filter is given by. 

 

 

22 2

2

1 2( , ; )
2

yxg x y e 



   
    

  

               (1) 

 

Where, the term  21/ 2  is the normalization 

constant. With the normalization, the constant integral of 

the Gaussian kernel over its full domain is unity for every 

σ. Thus, the amplitude of the Gaussian kernel decreases 

rapidly with an increase in σ.  

The Gaussian scale-space representation,  , ;L x y   is 

the convolution of the image I(x, y) with Gaussian kernel 

 , ;g x y   written as, 

 

     , ; , ; * ,L x y g x y I x y 
               (2) 

 

Typically, only a finite discrete set of levels of L for  

0   represents the scale-space. For, 0    , ;0g x y is 

an impulse function and  , ;0L x y  is simply the original 

image. Further, the Fourier transform of Gaussian F(u,v) 

is also Gaussian, therefore it can generate the linear scale-

space representation that too, without introduction of new 

structures at the coarse scales [13][14][15].  

The Fourier transform of Gaussian is given by, 
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As σ increases, smoothing of I(x,y) with a larger 

Gaussian filter results in removing high-frequency details. 

The object scale and cutoff frequency of low pass or band 

pass filters are very much related. The fineness in 

boundaries and the amount of high-frequency details 

required decides the higher cutoff frequency of the filters. 

The bandwidth of the filters should be narrow to highlight 

salient objects; at the same time, it should suppress 

background, noise, coding artifacts, texture, and repeated 

patterns. The use of the band-pass filter can also control 

the lower cutoff frequency to narrow the bandwidth. The 

larger is the scale of the object; the lesser is the lower 

cutoff frequency fLC of the band pass filter. For salient 

object detection, it is necessary to highlight the entire 

object. For edge detection, fLC is kept high which narrows 
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down the bandwidth [16]. Similarly, a narrow bandwidth 

is used for corner and interest point detection [17], [5]. 

Nevertheless, it is difficult to detect the scale of large 

elongated object. If we know it in advance, segmenting 

the object can solve the problem to some extent else 

using all of the low-frequency contents is the only 

solution.  

In fact, there is no way to know a priori what scales are 

appropriate for describing the objects in an image, hence, 

descriptions of the image at multiple scales is considered 

for salient object detection in hypercomplex Fourier 

transform saliency detection method.  

B. Saliency detection using Quaternion Hypercomplex 

Fourier Transform 

Hypercomplex Fourier Transform proposed in [18], 

[19], overcome the limitation of the traditional Fourier 

Transform; it can exploit the correlation between the 

three-color components and  process color image in a 

holistic manner. For color images, to define the 

Hypercomplex Fourier Transform, the hypercomplex 

numbers specifically quaternion are used as. 

 

1 2 3 4( , )f n m q q i q j q k   
                   (4) 

 

Here 1q  is scalar part and 2 3 4q i q j q k    is a vector 

part in which 1 2 3, ,q q q  and 4q are real numbers and , ,i j k  

are complex operators that obeys, 
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And       
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            (6) 

 

Given a hypercomplex matrix ( , )f m n , (7) and (8) 

gives the left sided discrete version of the HFT and 

inverse HFT respectively. Both [ , ]HF u v and ( , )f m n are 

hypercomplex matrices. 
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Where, 𝜇 is unit pure quaternion and 
2 1     [9]. 

C. Representation of Feature Maps 

The features considered for saliency detection in the 

HFT model of [9] are intensity and two opponent color 

space representations. A fourth feature vector of the 

quaternion can extend the saliency model to incorporate 

motion in video saliency detection. Feature maps 2 3,f f  

and 4f  are computed from the three-color channels 

, ,r g b of the image as, 
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The feature maps describe hypercomplex matrix 

( , )f m n  as, 
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            (12) 

 

Where 1 4w   and 1 4f  are the weights and the feature 

maps. In which, 2, 3, 4f f f are features of the image and 1f

is a motion feature. For the static image, weight of motion 

feature is set as zero. Weights of image features like 

intensity 2f and opponent colors 3f and 4f are set as

2 0.5w  , 3 0.25,w  4 0.25w     respectively. 

Polar form representation of [ , ]HF u v  in (7) is as 

follows, 
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Where ( , ) , ( , )HF u v u v and ( , )u v are called as 

amplitude spectrum ( , )A u v , phase spectrum and a pure 

quaternion matrix or the eigenaxis spectrum respectively. 

For handling amplitude spectra, rewriting (1) as a series of 

Gaussian kernels for low pass filter at different scales k:  
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Convolution of the amplitude spectrum ( , )A u v with 

Gaussian kernels creates smooth Spectral scale space 

(SSS).  k    represents SSS. 
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             (15) 

 

Where, k  is the scale parameter 1,....k K and it is 

determined by the image size. For given smoothed 

amplitude spectrum k  and the original phase and Eigen-

axis spectra, (17) perform the inverse transforms to give 

the saliency map at each scale: kS  
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Here, 𝑔 is Gaussian kernel at fixed scale. Fig. 1 shows a 

series of saliency maps 𝑆𝑘 obtained, for Gaussian filtering 

of a 128x128 image at scales k=1 to 8. On a saliency map, 

salient regions are in the highlighted form and rest of the 

map is in suppressed form. It also reveals that when the 

scale is very small, the information contained in the 

amplitude spectrum plots retains quite well, but when it 

becomes very large, the pertinent information is lost [17]. 

With an expectation that the histogram of saliency map 

clusters around certain values, its entropy would be very 

small. With this assumption, in the HFT saliency model 

the final saliency map S is chosen from the set of saliency 

maps Sk for a specific scale based on minimum entropy.  

 

 

Fig. 1. Image filtered at eight different scales with Gaussian filter. 

D. Model Parameters 

The comparison of estimated saliency map S  and the 

ground truth map G  evaluates the saliency model. By 

inserting ones at eye fixation locations in a zero matrix, 

we built a fixation map. Smoothing of the fixation map 

with a Gaussian kernel produces the ground truth, map. A 

perfect ground truth map would come from an infinity 

observers. MIT Saliency benchmark is created from 39 

viewers, it has a performance of 0.899 which captures 

about 95% of ground truth, and is assumed an accurate 

approximation [20]. To detect salient object regions in a 

scene, an algorithm should respond uniformly throughout 

the salient region. Ground truth map segment the entire 

portion of salient object, hence we use ground truth for 

comparison. 

For analyzing saliency models, we considered more 

than one evaluation scores to make the conclusions 

independent of the choice of metric. Area Under the 

receiver’s operating Characteristics (AUC) and Dice 

Similarity Coefficient (DSC) measures the performance of 

saliency detection algorithms and as a measure to evaluate 

the overlap between the thresholds applied saliency map 

and the ground truth respectively; The Peak value of the 

DSC (PoDSC) corresponds to the optimal threshold, and it 

is the best possible evaluation score [18].  

Area under Curve (AUC): To obtain the ROC curve, 𝐺 

and predicted S  are converted to binary using fixed and 

varying thresholds, respectively. ROC curve is then 

plotted as the true positive rate against the false positive 

rate averaged over the set of images and over distortion 

levels, if  0.1G ,  0.1S  and the common points of 

saliency between the two are, A G S   Equations and  

(18) compute the True Positive Rate (TPR) and False 

Positive Rate (FPR) as: 

 

 

 

N A
TPR

N G


                              (17) 

 

    
    

N s N A
FPR

T G N G





                        (18) 

 

Where the operator ( )N X  gives the number of ones in 

𝑋  and ( )T X  gives the total number of elements in X. 

AUC of ROC curve  is then calculated [19]. The area 

under the curve indicates how well the saliency map 

predicts actual human eye fixations. AUC score of one  

indicate correct prediction whereas a score of 0.5 

corresponds to chance level [21].  

Linear Correlation Coefficient (CC):   Pearson's linear 

coefficient CC measures the strength of linear correlation 

between two variables 

 

   , cov , / G SCC G S G S  
             (19) 

 

Where 𝜎𝐺  and 𝜎𝑆  are standard deviations of 𝐺  and 𝑆 

maps, respectively. A CC score of 1.0  indicate perfect 

linear relationship whereas a score of zero correspond to 

no linear correlation between two variables [22]. 

Normalized Scan path Saliency (NSS): NSS is the 

average value of the normalized saliency map at human 

eye fixation locations [23]. 
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Where the total number of eye fixations is N, the 

specific location of fixation is p  and the saliency map 

variance is s . A NSS score of one  indicates that the 

subject look into the region whose predicted saliency is 

more than average by one standard deviation, whereas a 

score of zero corresponds to a chance in predicting human 

gaze. 

Similarity measure (SIM): It measures the similarity 

between two different saliency maps when viewed as 

distributions [23]. It is the sum of the minimum values at 

each point in the distributions. The similarity between two 

maps S   and G   is obtained as 
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Where
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A SIM score of one indicate that the distributions are 

identical whereas a score of 0.5 corresponds to completely 

different distributions.  

The Earth Mover’s Distance (EMD): EMD is a measure 

of the distance between two probability distributions over 

a region [20], [24]. EMD computes the minimal cost to 

transform the probability distribution of the saliency maps 

S  into the one of the human eye fixations G   [25] as: 
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Where ,i jf  represents the amount transported from the 

thi  supply to the 
thj  demand. The ground distance 

between bin i  and bin j  in the distribution is ijd  An 

EMD score of zero indicates that the distributions are 

identical, whereas a score of one corresponds to no 

overlap and distributions are completely different [25].  

 

III.  INTERPOLATION 

Interpolation is the process to construct new data 

points within the range of a discrete set of known data 

points. Any two points in the plane, 1 1( ,  )p q  and,

2 2( ,  )p q  with 1 2p p  determine a unique first-degree 

polynomial in p  whose graph passes through the two 

points. It may be generalized to more than two points. For 

given n points in the plane, ,  ,   1,  . . ,(  ) .  ,k kp q k n  with 

distinct points, there exist unique polynomials in p of 

degree less than n that can connect all the points through 

a smooth curve [26]. This polynomial is called the 

interpolating function or interpolant. In general, there are 

three interpolation functions; linear, polynomial and 

cubic spline for each of the intervals. High-degree 

polynomials take more time to interpolate. Spline 

interpolation is used in this algorithm. Spline 

interpolation uses low-degree polynomials in each of the 

intervals and chooses the polynomial pieces such that 

they fit smoothly together. The resulting function is 

called as a spline. The natural cubic spline is piecewise 

cubic and twice continuously differentiable. Furthermore, 

its second derivative is zero at the end points. In this 

experiment only four saliency maps out of eight are 

obtained at scales 1,3,6 and 8. At the intermediate scales 

saliency maps are not obtained, instead they are predicted 

using the interpolation method. Fig. 2 compares true 

values of entropy with interpolated values for the two 

arbitrary sample images imageA and imageB from a MIT 

database at eight different scales. It is observed that 

interpolated values of entropy approach the true values of 

entropy at the intermediate scales 2,4,5 and 7. 

Hence, the concept of interpolation is explored to 

reduce the number of saliency maps in the intermediate 

stage to make the saliency detection faster. Fig. 3 

illustrates the procedure to obtain optimum saliency map 

with the proposed model. First of all color image is  

 

 

Fig. 2. Interpolation approach for a sample image from MIT Saliency 

Benchmark 

resized to 128X128 to make saliency detection time 

independent of image sizes. In the second stage, low-

level feature matrices such as intensity and color 

difference are combined to form a quaternion 

hypercomplex matrix. In the third stage quaternion, 

Hypercomplex Fourier transform is applied to the 

quaternion hypercomplex matrix to obtain amplitude 

spectrum, phase spectrum and Eigen-axis spectrum. With 

this transform, whole color images can be transformed, 

rather than as color separated components. These three 

stages are same as Hypercomplex Fourier Transform 

(HFT) saliency detection model of [9]. In next stage, 

Gaussian kernels smooth the amplitude spectrum. 

Then, we obtained saliency maps for alternate scales. 

Entropy is calculated for the derived saliency maps. With 

the cubic spline interpolation, intermediate entropy values 

are obtained. Then minimum value of entropy predicts 

the scale of the optimum saliency map. To verify its 

correctness actual saliency map and its entropy is derived 

at the predicted scale. An optimum saliency map with 

minimum entropy is finally selected. Coding algorithm 

for interpolation approach is given below.  

Algorithm:QHFT Visual saliency with Interpolation 

Input: The resized color image C with a resolution 
  m n   

Output: Saliency map   ,  S m n  of   ,  C m n   

Steps 1-3 are according to HFT algorithm of [9]. 

 

1) Calculate the feature maps 2 3 4{ , , }f f f  form

  ,  C m n . 

2) Combine these features to obtain the 

hypercomplex matrix ( , )f m n .  

3) Compute amplitude spectrum of ( , )f m n  by 

taking its HFT. Preserve the exponential term 

which consists of the phase and Eigenaxis 

spectrum. 

4) Smooth the amplitude spectrum with Gaussian 

kernels, according to (2) and obtain saliency maps 

according to (3) for a specific scale selected by the 

following interpolation approach.  Let 

1,  2,  3... k N  where N the maximum scale, 
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obtained from image size. For example for images 

of 128X128 sizes, N is considered as eight. 

 

i. Derive saliency maps and calculate entropies for 

alternate scale for example  1,  3,  6  8and . This 

set is called as true saliency set. 

ii. Interpolate above set to predict entropies at 

intermediate scales  2,  4,  5  7and  with the cubic 

spline method.  

iii. Find the minimum value of entropy minE  and 

corresponding scale k . 

iv. Derive actual Saliency map and its entropy for 

scale k  only if it belongs to interpolated set. 

Include this saliency map into a set of true saliency 

maps. 

v. Final optimum saliency map S  is the map 

corresponding to minimum entropy map from a set 

of true saliency maps.  

 

5) Return S. 

 

 

 

Fig. 3. Procedure to obtain an optimum saliency map 

Sample image from MSRA Salient Object Database 

used in [27] are used to understand the algorithm. Fig. 4 

illustrates the progress of the interpolation approach when 

minimum entropy is part of interpolated set. To verify its 

accuracy, the actual saliency map is derived at this scale. 

If the actual entropy found is not a minimum, then the 

final optimum saliency map is selected from the set of 

true saliency maps with a minimum entropy value. So in 

worst case / 2 1N   is the scale space size. A red border 

shows the final saliency map, in the Fig. 4.  In the second 

example, after interpolation the minimum entropy found 

belongs to the true set of entropy. Thus, the saliency map 

with minimum entropy belongs to the set of true entropy 

as shown in Fig. 5. 

 

 

Fig. 4. Progress of interpolation approach when minimum entropy 

belongs to interpolated set 

 

Fig. 5. Progress of interpolation approach when minimum entropy is in 

true set 

 

IV.  EXPERIMENTATION AND RESULTS 

In the experiments of saliency detection in natural 

images, to evaluate the performance; saliency map S  

generated by the three state of art saliency models Itti [6], 

HFT [9] AC [5] and the proposed model  are directly 

compared  with the human-labeled salient regions called 

as ground truth G . The test images and respective 

ground truth are from the ImgSal V1.0 database by Jian 

Li [28] which has 235 images of different category. 

Evaluation is also done with the Achanta’s Salient Object 

database  which has about 1000 images and accurately 

derived ground truth from the one presented in [29]. For 

analyzing saliency models, more than one evaluation 

scores are considered to make the conclusions 

independent of the choice of metric.  

Fig. 6 and Fig. 7 shows the average Receivers 

Operating Characteristic (ROC) curves plotted as the true 

positive rate (TPR) against the false positive rate (FPR) 

averaged over the set of images and over distortion levels, 

for the proposed and the state of art models of saliency 

detection. From the figures we can see that, the proposed 

model HFT-S achived the highest AUC scores of 0.94 

and 0.90, for the two databases ImgSal and Achanta 

respectively and are the same as the  HFT model. The 

ROC curves and the AUC score of this model are better 

than the other state of art models. In general, the results 

of HFT and HFT-S models are consistent for the two 

databases, which proves the reliability of ROC curve and 

AUC score. 

All the models were run on the same Pentium i-V 

3.2GHz machine with 3GB RAM. The proposed 

algorithm of HFTs was implemented in MATLAB 13. 

The databases, including saliency maps and ground truth 
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for Achanta’s (AC) and Itti’s models were downloaded 

from the site:  

 

 

Fig. 6. Area under the receiver’s Operating Curve for ImgSal V1.0 

database 

 

Fig. 7. Area under the receiver’s Operating Curve for Achanta database 

http://ivrgwww.epfl.ch/supplementary_material/RK_C

VPR09/GroundTruth/binarymasks.zip 

http://ivrgwww.epfl.ch/supplementary_material/RK_C

VPR09/saliencymaps.zip 

The database ImagSal was downloaded from 

http://www.escience.cn/people/jianli/DataBase.html .  

Table 1 and Table 2 list the average evaluation scores 

AUC, PoDSC CC, NSS, SIM, EMD and time to obtain a 

saliency map of  128X128 resized color images for the 

two databases ImgSal and Achanta respectively. It is 

observed that evaluation scores of both HFT and HFT-S 

are better than AC and Itti. The evaluation scores of the 

proposed model are close to that of the HFT model. 

Whereas, the time required to detect saliency is reduced 

up to half as compared to HFT.  

Table 1. Evaluation Scores for Database IMGSAL 

Model AUC PoDSC CC NSS SIM 

Time    to 

compute 

Saliency 

map (s) 

Achanta(AC) 0.838 0.411 0.46 0.13 0.596 0.032 

HFT 0.944 0.587 0.669 0.163 0.6305 0.234 

HFT-S 0.943 0.584 0.668 0.163 0.629 0.146 

Itti 0.899 0.462 0.518 0.126 0.579 1.1 

 

Similar to HFT, AUC scores of HFT-S is close to one, 

which indicates the correct prediction of human eye 

fixation. A CC score of 0.668 indicates a reasonable 

linear relationship. An NSS score of the proposed method 

is greater than the other state of the art methods  indicates 

that the subject look into the region. A SIM score of 

0.629 indicates that the distributions are almost identical.  

Table 2. Evaluation Scores for Database Achanta 

Model AUC PoDSC CC NSS SIM 

Time to 

compute 

Saliency 

map (s) 

Achanta(AC) 0.867 0.625 0.456 0.168 0.596 0.032 

HFT 0.919 0.691 0.651 0.242 0.640 0.234 

HFT-S 0.908 0.675 0.625 0.232 0.629 0.146 

Itti 0.776 0.518 0.240 0.093 0.467 1.1 

 

Interpolation approach is also studied for all the six 

category images of ImgSal database. The Table 3 lists the 

accuracy of each category. The average scale selection 

accuracy found is 82%. It indicates that the proposed 

method is fairly accurate in all the categories of images. 

Table 3. Scale Selection Accuracy for Database IMGSAL 

Category Salient Region size 

(Images) 

Accuracy 

Against HFT (%) 

 

Large (1-50) 92 

Medium (51-130 ) 85 

Small (131-190 ) 68.33 

Cluttered backgrounds (191-205) 86.67 

Large and Small (206-220) 93.33 

Repeating Distracters  (221-235) 86.67 

 

V.  CONCLUSION 

The scale of salient object is an important factor, but it 

is not a known priori. In this context, HFT and other 

saliency detection models use multiple scale descriptions 

of the image.  This paper proposed interpolation 

approaches to predict the appropriate scale and speed up 

saliency detection in the framework of HFT model. The 

interpolation approach only generated alternate saliency 

maps. Therefore, the proposed method reduced 

computational complexity from O (N) up to O (N/2) as 

compared to the HFT method. Scale selection accuracy of 

this method is about 82%. The performance scores for the 

proposed model and state of the art HFT model matched 

with each other. It concludes that the scale selection of 

the proposed method is not only accurate, but saliency 

detection is also faster than HFT model. It is worth noting 

that this method is free from local minima trap. 
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