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Abstract—Reconstruction of a sparse signal from fewer 

observations require compressive sensing based recovery 

algorithm for saving memory storage. Various sparse 

recovery techniques including    minimization, greedy 

pursuit approaches and non-convex optimization requires 

sparsity to be known in advance. This article presents the 

generalized adaptive orthogonal matching pursuit with 

forward-backward movement under the cumulative 

coherence property; which removes the need of knowledge 

of sparsity prior to implementation. In this technique, the 

forward step increases the size of support set and backward 

step eliminates the misidentified elements. It selects 

multiple indices on the basis of maximum correlation by 

forward-backward movement. The size of backward step is 

kept smaller than the forward one. These forward-

backward steps then iterate and increment through the 

algorithm adaptively and terminate with stopping 

condition to ensure the identification of significant 

components. Recovery performance of proposed algorithm 

is demonstrated via simulation results including 

reconstruction of sparse signals in noisy and noise free 

environment. The algorithm has major advantage that it 

does not require the knowledge of sparsity in advance in 

contrast to the earlier reconstruction techniques. The 

evaluation and comparative analysis of result shows that 

algorithm leads to the increment in recovery performance 

and efficiency considerably. 

 

Index Terms—Compressed Sensing, Sparse 

representation, Image reconstruction, orthogonal 

matching pursuit, Generalized orthogonal matching 

pursuit, Forward-backward movement 

 

I. INTRODUCTION 

Conventional image acquisition and reconstruction 

process consider the signal as a whole prior to 

dimensionality reduction via transform codes. 

Compressive sensing breaks this constraint of the 

traditional Nyquist Shannon theorem. It takes complete 

advantage of sparse signal in order to achieve the 

accurate recovery of the compressed signal. Compressive 

sensing is suggested by D. Donoho [1], E. Candes and T. 

Tao [2]. Compressive sensing makes high dimensional 

signal acquisition easy by combining sampling and 

compression [3]. The measured value is lesser as 

comparison to the amount of data that the traditional 

processes required. Compressive sensing firstly requires 

sparse signal having lower dimensions. The sparse signal 

contains maximum information with lesser number of 

captured observations. The implementation of CS method 

enables the reduction in the requirement of saving the 

majority amount of data which is actually not needed. 

Various fields exhibit the usage of CS theory in their 

implementation. The Classical methods for sparse 

representation include Fourier transform (FT), discreet 

cosine transforms (DCT), and discreet wavelet transforms 

(DWT) and etc. The methodology requires compressed 

observations via measurement matrix (  ). Let us 

consider   is a signal in  N
 and it contains at most  

    nonzero components. Here, x can be converted 

into sparse form by representing it in terms of 

orthonormal basis of N 1vectors *  +   
  as given: 

 

 ( )  ∑    
 
     ( )      (1) 

 

where s is the sparse coefficient of  ,   =     i›.  Here, s 

contains K nonzero components and hence called sparse 

signal,   is the sparse expansion of signal   in orthonormal 

domain. And, further the sparse signal is recovered with 

measurement process. In this methodology, measurement 

matrix    M x N
 measures the  -dimensional signal and 

constructs the measurement vector    M
. 

 

                                                                      (2) 

 

The measurement matrix is also known as 

measurement dictionary and each column in a normalized 

form is known as atom. Candes and Tao [2, 4] have 

suggested independent and identically distributed 

Gaussian random measurement matrix as an effective 

measurement matrix in compressive sensing. After 
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obtaining  , the aim of recovery algorithm is to 

reconstruct the sparse signal    using    and   . The 

reconstruction problem is an ill-posed problem and 

requires stable and effective algorithms. The recovery 

algorithms are the major concern in compressive sensing. 

There are various recovery algorithms for CS paradigm. 

They can be generally classified into the following 

categories viz. Greedy Pursuit [5, 6, 7], Convex 

relaxation [4, 8] and Bayesian methods [9,10].The latter 

two methods are theoretically refined but computationally 

complex. On the contrary, Greedy pursuit algorithms are 

simple and require lesser number of measurements. 

Convex relaxation process uses    minimization instead 

of using   0 minimization for example Basis Pursuit 

(BP).Greedy Pursuit algorithm uses iterative technique 

such as Matching Pursuit (MP) [5], Compressive 

sampling MP (CoSaMP) [11], Orthogonal Matching 

Pursuit (OMP) [12], Iterative Hard Thresholding [13, 14], 

Generalised OMP (GOMP) [14] and Subspace pursuit 

(SP) [16]. In this paper, proposed Generalised adaptive 

OMP algorithm with forward-backward movement is 

presented that can recover the image accurately. The 

algorithm selects alternatively the number of atoms with 

forward backward movement. The movement allow the 

forward identification and backward removal steps. It 

expands the support estimate and compressed it 

simultaneously. The proposed algorithm works 

adaptively as the size of the selection set for forward and 

backward movement changes if certain conditions are 

met. It provides an advantage of performing better in 

most scenarios where lesser number of measurements is 

required. It can provide better results even if the priori 

estimate of sparsity K is not known [17].  

The paper is structured as follows: A short description 

of related previous work is explained in Section II. 

Greedy pursuit techniques is presented for explaining 

conventional OMP, CoSaMP and SP processes in Section 

III. The proposed method is then explained in section IV.  

Section V gives simulation results for proposed technique 

under different sampling ratios and the demonstration of 

reconstruction error and running time. The reconstruction 

error and running time have been compared with SP, 

OMP, and Generalised OMP. Then, simulation results for 

the noisy observations are also discussed and compared 

with other existing methods. A brief summary is given in 

section VI.  

 

II. PREVIOUS WORK  

Compressed sensing is a technique capable of using 

reduced memory storage and shorter bandwidth for 

reconstruction from under-sampled data. An image can 

be reconstructed from fewer number of projections as 

proved by E.  Candes,   T.   Tao [2] and   D.   Donoho [1]. 

Compressive sensing has always provided a good 

platform for reconstructing any kind of data from under-

sampled projections. For reconstruction purpose using 

Compressed Sensing, different greedy pursuit algorithms 

and their variants can be used such as Subspace pursuit, 

Matching Pursuit, and Orthogonal Matching Pursuit or its 

variants [18]. Orthogonal Matching Pursuit algorithm and 

its different variants have been studied and analysed for 

reconstructing from inaccurate data samples. The 

compressive sampling version of MP (Matching Pursuit) 

have been designed and analysed to achieve improved 

time complexity [11] as an improved counterpart of 

Matching Pursuit algorithm. The iterative version of 

Forward-Backward algorithm was also analysed which 

turns down the requirement of knowledge of sparsity in 

prior [14]. Hamid   R.   Rabiee,   R.L.   Kashyap and R.  

Safavian have proposed segmented version of OMP 

algorithm. Afterwards, regularization of OMP i.e.  

Regularised OMP algorithm came into account to realise 

reconstruction in shorter time period. OMP  was  further  

modified  so  that  it  possesses  the  property  of  faster  

implementation  than  the  OMP  algorithm [19]. The 

OMP algorithm was further generalized to achieve 

improved performance [15]. The generalized OMP 

algorithm provides improved PSNR for reconstructing 

images or signals from under-sampled projections. The    

Orthogonal Matching Pursuit algorithms    have been 

analysed for reconstructing images or signals in different 

forms such regularized, segmented and generalized 

version of the algorithm. Hence, Image reconstruction 

using Compressive sensing can be further improved by 

implementing adaptive algorithm under different stopping 

conditions. 

 

III. GREEDY PURSUIT ALGORITHMS 

In this section, the implementation and analysis of 

conventional framework of OMP (Orthogonal Matching 

Pursuit) and SP (Subspace Pursuit) algorithms have been 

studied in order to explain the working of conventional 

reconstruction algorithms. SP algorithms have low 

computational complexity and select multiple indices in 

the conventional framework. Later on, centralised, 

adaptive and generalised forms of SP algorithm have 

been proposed. The OMP algorithm used for signal 

recovery offers faster and easy implementation. D. 

Donoho and E. Candes have implemented step wise 

simulation of OMP for the solution of underdetermined 

linear equations. Afterwards, Regularised OMP algorithm 

was introduced which provided the advantage of faster 

work and accessibility. ROMP is capable of faster 

computation but the quality degrades considerably. The 

OMP algorithm was later generalised in order to offer 

better accuracy within shorter interval of time. These 

versions of OMP algorithm work in forward direction for 

searching suitable column with highest correlation. OMP 

searches for the support of sparse signal by locating only 

one element at a time and work as a forward greedy 

method. It picks one column in measurement matrix in a 

greedy technique. Then, it obtains the residual by 

projecting the observed signal onto the atom.  This can be 

represented in Equation no. 3 as follows: 

 

                                     (3)
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The OMP algorithm then make  2- norm of the given 

residual minimum by identifying the selected atoms. 

Therefore 

 
      

  =     
  +            

                 (4) 

 

The argument            
   requires being maximum 

in order to minimize    
 . Thus, the atom with maximum 

correlation with rest part of y is selected. At each iteration, 

the measurement vector is computed as 

 

   * ̃                                (5) 

 

Then the index of its highest coefficient in magnitude 

is added to the initialized index set  . Afterwards, least 

squares problem is solved in order to update the residual 

until the termination condition occurs. 

 

  =             ̃   for                         (6) 

 

The significant column is selected and orthogonal 

projection is computed. Then, the residual is updated at 

each step. The iterations stops when the stopping 

conditions are met and the reconstruction signal is 

achieved [20]. The original framework of the OMP 

algorithm first appeared in the statistics community in 

1950s and the later in signal processing, it develop its 

form. OMP is one of the faster algorithms than BP 

algorithm. It even possess computational complexity that 

can be reduced with the help of certain methods which 

enables OMP algorithm to be greatly productive than BP 

in terms of total elapsed time and the accurate recovery. 

For accurate recovery, many conditions have been 

extracted from restricted isometric property (RIP) [21-25]. 

For instance, it was proven that if  K+1 < 1/ (3√ ) [20], 

 K+1 < 1/ (√   /√   ) [24, 25], then OMP recover 

k- sparse signal accurately, where  K is restricted 

isometric constant. Additionally, coherence, Mutual 

incoherence and cumulative coherence are also used as 

condition. Tropp has proposed the cumulative coherence 

and shows that if  1(   ) +  1( ) < 1 occurs, then 

OMP reconstruct precisely [26]. All these conditions are 

only sufficient for reconstructing but not necessary for 

recovering the  -sparse signal. The Compressive 

sampling MP and SP selects multiple columns at each 

iteration and keep  -element support sets in each 

iteration. SP first expands  t-1
 with   maximum 

magnitude elements of       . This step works until a 

support set  t
 of size 2  is obtained. On the other hand, 

CoSaMP (Compressive Sampling Matching Pursuit) 

expands the support set by 2   elements. Then, the 

orthogonal projection is computed taking y onto  t at 

each iteration corresponding to   indices. The process 

terminates with the stopping condition   new 2      2. 

These algorithms reduce the reconstruction error when 

certain RIP condition occurs. These algorithms use a 

fixed size of the support set and the knowledge of a priori 

estimate of sparsity   is necessary. This is a major 

drawback in practical cases where   is either unknown or 

it is not fixed. 

IV. PROPOSED GOAMP WITH FORWARD-BACKWARD 

MOVEMENT 

OMP algorithm converges slowly as it can identify 

only one atom at a time. Though, the algorithm offers 

simplicity but its simulation results are poor in terms of 

PSNR and visual quality within a specified running time. 

The OMP was later Generalized which basically selects 

multiple indices at each step but the number of indices 

selected remains fixed at each step [26], this method 

requires the knowledge of sparsity prior to the algorithm. 

In order to improve working efficiency without knowing 

the sparsity, the Generalised adaptive OMP (GOAMP) 

was proposed [26]. The proposed method provides better 

recovery results than GOAMP with forward-backward 

movement without the knowledge of sparsity. The OMP 

method selects the single atom corresponding to the index 

having highest magnitude of correlation          . 

However, the GOMP algorithm identifies S top atoms 

having maximum correlation at each step. These selected 

indices are then augmented into the initialized set of 

indices   . After selecting the atoms, estimation of the 

sparse signal  ̃  corresponding to the set of the selected 

atoms  t is computed. Then, the residual is updated until 

the algorithm terminates. 

 

     =   -     ̃                                   (7) 

 

where    is the sub-matrix consisting of the columns 

selected from the measurement matrix   corresponding to 

the identified set of the atoms. GOMP algorithm provides 

higher convergence rate as comparison to the OMP 

algorithm but sparsity is required to be known. The 

proposed method works on the low frequency coefficients 

of the image. Therefore, reduces the requirement for the 

large storage space. The low frequency components are 

converted into sparse form with wavelet basis. The high 

frequency components are transformed and then inverse 

transformed in the end for recovery. The sparse form of 

low frequency components are then treated with proposed 

method for recovery. The proposed method changes the 

size of the support estimate adaptively for both forward-

backward movement [17] and works under the coherence 

condition for accurate recovery. The atoms identified at 

first are primarily important, so the size of the support is 

initialized to a small number so that wrong atom is not 

selected. And then the size increment adaptively through 

the iteration when the residue reduces slowly, leading to 

faster convergence [27]. This algorithm has two stages for 

identifying the significant atoms. The first stage i.e. the 

forward step expands the support by  , where   > 1 and is 

known as the forward step size. These selected indices 

have maximum correlation with the residue. Then, the 

algorithm computes the orthogonal projection of the 

measurement vector onto the space defined by the selected 

support. Later, the backward part crop the estimate of the 

support set by eliminating the   indices, where    . The 

  indices have minimum participation in the projection. 

Similarly,   is known as backward step size. Then the 

orthogonal projection corresponding to the updates support 

estimate is calculated. This projection is used later for 
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residue update. These steps are performed until the residue 

is less than the specified threshold which is proportional to 

the measured estimate.  For the accurate recovery, it is 

required that     so that the estimate of the support set 

expand at each step [28]. At the end, mosaic the 

reconstructed image followed by filtering in order to 

remove any blurring, if there. The filtering is provided by 

soft thresholding by only selecting those coefficients 

which are above certain permissible limit. Thus, the soft 

thresholding ensures the selection of the significant 

coefficients which improves the quality of the recovered 

image. 

A.  Proposed Algorithm 

For the implementation of the proposed method an 

image is considered and low frequency components are 

extracted on which the algorithm is required to be 

implemented. The high frequency coefficients are then 

transformed with wavelet transform, which is later 

recovered. The low frequency components are then taken 

into sparse form with orthonormal basis (wavelet 

transform). The sparse form then converted into 

measured observations   with measurement matrix   . 

These measured components are then recovered with the 

proposed method. Firstly, the cumulative coherence 

condition is checked to ensure the selection of significant 

components. It requires the computation of the 

cumulative coherence and the maximum of its value is 

checked. 

 

  ( )       *   +        ∑                     (8) 

 

The coherence  ( )  for the measurement matrix 

  should be lesser than or equal to 1. If the condition 

holds then the further steps are implemented. For the 

recovery, the support estimate is initialized as  0  ,   
   the residue is set to measured vector       . At first 

step,     , the set   k-1 
is expanded by indices of the 

  maximum magnitude elements in the inner product  *  
by the forward step. It constructs the support set in 

expanded form  ̃k
. Then, orthogonal projection of   on 

the selected set   ̌  is computed. The selected set of 

indices is then cropped by the backward step. It removes 

the   indices corresponding to the minimum magnitude 

of the projection coefficients. It results in the final set of 

the indices of the support estimate  ̌  corresponding to 

the     iteration. The projection coefficients    are 

computed by taking orthogonal projection of   on   ̌  

corresponding to the vector    ̌ .The residue is finally 

updated as          . Then, in order to increment 

the size of forward and backward step,            
  

      
    2 condition is checked. If the condition holds 

true, then backward and forward step is incremented 

adaptively as the residue reduces, keeping the difference 

fixed. The overall steps iterates until        <  1     

and           . For the implementation of the 

proposed algorithm, consider     image and extract 

the low frequency components. Take the sparse form of 

these components with wavelet basis and measurement 

matrix  . Compute the measurement vector   Transform 

the high frequency components for recovery of overall 

image later. The steps of the proposed algorithm can be 

given as follows: 

 

Step 1) Inputs:   . 

Step 2) Initialize:   = ,          . 

Step 3) Define:                
Step 4) Compute mutual coherence for   

 

  ( )       *   +        ∑     
       

      

 

Check for the measurement matrix   and       

 

 ̌ ( )       *   +*      ∑     
     

     

         ∑    
   

     + 

 

is called cumulative coherence of order  . If this value is 

less than 1, then the program continues as follows 

otherwise the loop fails. 

 

Step 5) Repeat until termination rule occurs 

a) Increment the iteration count at each step: 

      
b) Forward identification of significant columns: 

  = {Indices corresponding to   maximum magnitude 

coefficients in    (   )} 

 

 ̌( )   (   )      

 ̌             ̌( ) ̌  

 

c) Backward selection of the minimum magnitude 

columns: 

   {Indices corresponding to   minimum magnitude 

coefficients in  ̌} 

 

 ( )    ̌( )     
 

d) Computing the Projection corresponding to the 

pruned support set: 

 

             ( ) ̌  

 

e) Residue update at each iteration corresponding to 

the selected support set: ( )      ( )  

f) Adaptive increment in the factor   

IF: If these two conditions as given: 

 

            
        

     
   ( ) and    ( ) 

 

Satisfies; make an adaptive increment 

ELSE: Go to next step 
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Step 6) Termination rule: Algorithm works until  

 

           1     and          . 

 

Step 7) Outputs:  S
(k)

,   ( )    ( )
   

 

For exact recovery, the image is first converted into 

sparse form with orthonormal basis for example FFT, 

DCT, wavelet transform, the latter is used in this paper. 

The resulting sparse signal of the low frequency 

components is converted into measurement vector   by 

multiplication with measurement matrix   . Then with 

proposed algorithm the original image is recovered 

precisely based on measurement vector and finally 

mosaic the overall reconstructed image. The algorithm 

uses increment as  ( )       ( )     ,   is in 

the range of [1, 7]. As the recovery probability of the 

algorithm decreases as n increases but it still remains 

acceptable. In the recovery algorithm, two thresholds are 

used, one for termination and other for checking the 

decrease in residue. As the parameter for termination    

requires being small, the value taken is below 10
-6

 for 

noiseless observations. The value of threshold    should 

be selected on the basis of noise level in the image for the 

noisy case. The second threshold    can be set in between 

0.7 to 0.9 and can be decided through number of 

experiments. The proposed method does not require 

sparsity before the implementation. The maximum size of 

the selected indices for support is limited by      in 

order to stop running of algorithm when it may fail. 

Though, the selection of specific value of      does not 

affect greatly the recovery performance. The value of 

     can be set either large enough or its value may be 

set as     =M. The prime issue in this methodology is 

the selection of the forward and backward process step 

sizes. The forward step   should be above 1 but not very 

large as it increments in the algorithm for reduction in 

residue adaptively. And the backward step    should be 

lesser than the forward step for optimal recovery of the 

image. It is considered as       , which leads to 

faster convergence and performs with better recovery 

accuracy. 

 

V. SIMULATION RESULTS AND ANALYSIS 

This section discusses the simulation results of the 

proposed method for the given cases, for evaluation of 

the performance and also demonstrates the comparison of 

the given algorithm with the existing ones. Several 

simulations have been done to evaluate the performance 

of the implemented technique. In these simulations, the 

two-dimensional sparse images have been reconstructed, 

even by the different existing techniques and then 

comparison of their performance is done. The two-

dimensional image is firstly obtained in the sparse form 

by the wavelet transform and converted into measurement 

observation   with measurement matrix   . Gaussian 

measurements are used for Compressive Sensing and 

results for different sampling ratios with results of noisy 

observations are given. The reconstruction error and 

running time are also discussed. In this paper, several 256 

  256 gray scale '.bmp' test images are considered. The 

conventional CS measurement matrix i.e. identically 

distributed and independent Gaussian matrix with mean 

zero and standard deviation 1/N is used for all. All 

simulations are performed in MATLAB 7.6.0. The 

experiments are run on a laptop with Intel core i5-32/0 

CPU at 2.5 GHz and 6 GB under windows 7. The 

threshold parameters are set as:        
   and 

       under the condition of maximum 

iteration          . The forward and backward 

parameters are taken as          and     initially. 

A. Simulation results w.r.t different sampling ratios 

In this subsection the simulation result of the 

implemented algorithm under different sampling rates are 

analyzed. The standard grayscale .bmp images 

Cameraman and Peppers 256   256 are considered, and 

the sampling rates M/N= {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} are 

taken into account. The recovered images in Fig.1 shows 

visual outcome for the given algorithm under the 

specified sampling rates. The simulation results show that 

as M increases, the visual quality of the recovered image 

increases. The proposed method is capable of providing 

optimal result even at lesser measurements M=128 

(M/N=0.5), thus saving the number of observations. This 

method provides accurate results than the other 

techniques and the performance improves. It outperforms 

the other methods like OMP, SP. BP tends to fail 

around     , but the proposed method works well for 

     and performance degrades slowly for      in 

terms of average normalized mean square error which is 

discussed later. The reconstruction ability for the 

proposed method under different sampling rates is 

depicted in Fig. 2. The graphical result shows that the 

average PSNR for he proposed method is better than the 

remaining compared techniques. The numerical value of 

Average PSNR is compared with that of the other 

techniques and for fewer observations there is a visible 

improvement in PSNR at lesser measurements. Though, 

at M/N=0.9 and above, the PSNR value becomes almost 

comparable. The numerical results for the implemented 

algorithm under different sampling rates can be 

represented in tabulated form showing PSNR and running 

time for the given technique. And, also the value of 

PSNR performance and running time are compared with 

several other techniques in Table 1. The Table list 

experimental results and compares the proposed method 

with the existing algorithms for image reconstruction 

such as SP, OMP, ROMP, GOMP and GOAMP. From 

the numerical results, it is shown that the recovery 

performance for the implemented method is better than 

the existing algorithms. For lesser number of 

measurements, for example M/N=0.5, 0.6, the betterment 

in PSNR as comparison to the other comparing 

techniques is evident. It shows that the given algorithm is 

capable of providing accurate recovery even at lesser 

observations. Hence, it requires only minimal number of 

captured observations and in turn lesser memory storage. 
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A careful examination of the reconstructed images shows 

that the proposed method is able to recover accurately at 

detailed regions and edges. 

Table 1. PSNR Performance and Running time comparison of several techniques 

Sampling rate M/N 
0.5 0.6 0.7 0.8 

PSNR TIME PSNR TIME PSNR TIME PSNR TIME 

Lena 

SP 25.76 52.38 26.49 58.20 26.90 74.92 27.17 77.39 

OMP 26.56 5.65 30.06 5.83 31.38 5.97 32.26 6.11 

ROMP 21.84 1.51 25.59 2.20 27.36 2.27 29.26 2.46 

GOMP 28.82 4.66 31.13 7.50 33.39 11.34 35.89 15.35 

GOAMP 26.82 8.73 29.18 9.81 31.51 9.89 36.42 11.54 

Proposed 
Method 

31.58 4.51 33.13 5.01 34.09 5.63 35.89 6.82 

Peppers 

SP 24.03 57.19 24.54 64.35 24.97 72.33 25.18 73.26 

OMP 25.80 8.77 26.75 6.78 27.58 6.61 28.52 6.80 

ROMP 21.03 2.38 22.05 2.25 25.44 2.41 29.69 2.73 

GOMP 27.50 5.20 29.55 8.51 31.60 11.35 34.00 15.26 

GOAMP 27.27 8.98 30.15 12.32 29.84 10.40 32.6 12.83 

Proposed 
Method 

29.50 3.45 32.05 6.60 33.44 6.35 34.04 5.86 

 

     
(a)                       (b)                                       (c) 

 
          (d)                               (e)                 (f) 

Fig.1. Reconstruction results of the proposed method under different sampling rates: For cameraman.bmp (a) Original image (b) M/N=0.4 (c) 
M/N=0.5 (d) M/N=0.6 (e) M/N=0.7 (f) M/N=0. 

 

Fig.2. Comparison of Average PSNR (dB) for varying Sampling ratios 
M/N 

B. Reconstruction Error and Running Time 

For the noise less case, the performance of the 

algorithm can be seen in terms of the reconstruction error 

and running time. The proposed method uses  - 

dimensional image with  =128 measurements and      

is in the range {10, 45} and          . For the 

individual sampling ratio, reconstruction simulations are 

done on 20 standard grayscale .bmp images. The 

reconstruction error is given in the form of Average 

Normalized Mean-Squared-Error (ANMSE), which is 

defined as: 

 

      
 

  
∑

     ̌   
 

     
 

  
                        (9) 

 

where    is the     original image and  ̌  is the recovered 

form of it. The exact recovery condition is represented in 

terms of:    ̌     
      . The reconstruction rate 

remains acceptable with minimal ANMSE for the 

proposed algorithm. The Fig. 3 depicts ANMSE for 

different Gaussian measurements. The ANMSE for the 

proposed method remains minimal for          . 

The recovery performance is better as the given algorithm 
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offers lesser Average Normalized MSE with the different 

sampling ratios. Hence, it offers higher recovery 

percentage than the compared methods for the given 

dataset of images. But, for the run times, increment in 

    slows down the algorithm. It is because of the 

decrease in the increment of the size of the support set per 

iteration through the algorithm. In Fig. 4, the average 

running time for the different recovery algorithms is 

compared. The running time elapsed for ROMP 

algorithm is the minimum but simultaneously the visual 

quality and recovery performance is poor. The 

implemented method has acceptable running time, 

comparable to ROMP at M/N=0.3, 0.4, 0.5. Though, the 

running time increases with increment in sampling ratio 

but still less than OMP, SP and others existing recovery 

methods. Thus, the proposed method is capable of 

recovering the sparse images with better quality within 

acceptable running time. 

 

 

Fig.3. Average normalized Mean-squared Error (ANMSE) comparison 
for varying Sampling ratios M/N 

 

Fig.4. Comparison of Average Running Time (sec) for varying 

Sampling ratios M/N 

C. Reconstruction Results for Noisy Observations 

As the signal transmission system channel may add a 

lot of noise that may lead to the distortion of information. 

It is required to study the recovery performance of the 

given algorithm in the presence of noise. In this paper, 

white Gaussian noise is added with the specified value of 

signal to noise ratio (SNR) =10, 15, 20, 25. The 

reconstruction result for the proposed method with added 

noise is depicted in Fig. 5. The Fig. 5 shows that the 

algorithm provides effective recovery for the two-

dimensional images but the quality goes lower for lower 

sampling ratio.  The simulation results of PSNR and 

running time for different value of SNR is provided by 

Table 2. A comparative analysis for the image 

reconstruction is given in Table 3 with different SNR and 

sampling ratio M/N= {0.5. 0.6, 0.7, 0.8}. The comparison 

conveys that the recovery performance of the given 

method is better than the other algorithms, which are not 

able to recover accurately. The proposed method 

outworks the other method in terms of PSNR for 

reconstruction in the presence of noise. 

 

 
  (a)                          (b)                                    (c) 

 
        (d)                                  (e)                                  (f) 

Fig.5. Reconstruction result of proposed method for noisy observations. For M/N=0.5, (a) SNR=10 (b) SNR=15 (c) SNR=20. For M/N=0.8 (d) 
SNR=10 (e) SNR=15 (f) SNR=20. 

D. Performance Analysis of algorithms 

In order to evaluate the performance of the given 

algorithm, the effect of recovery performance for 

different algorithms is demonstrated. The comparative 

analysis of the recovery performance of the different 

algorithms relative to the proposed method is given in Fig 

6. It shows that the proposed method is capable of 
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recovering the fine and near the edge details as 

comparison to the reconstructed image by the other 

methods. The proposed method can take into account the 

effect of noise added while recovering the sparse image 

and is able to provide practical reconstruction. A careful 

comparative analysis of the proposed method with that of 

the existing methods in the presence of noise 

demonstrates higher value of PSNR within reasonable 

time period. Similarly, in the case of added Gaussian 

noise, quality of recovered image for each of the 

tabulated algorithm is shown in Fig. 7.  It shows that for 

lower value of SNR, for example SNR=5 dB, the 

recovery accuracy is ineffective as comparison to the 

noiseless situations. The output PSNR value is low but as 

the value of SNR increases, the value of PSNR increases 

with better recovery performance. It depicts that even in 

the presence of noise; the proposed method is capable of 

reconstructing the image precisely. Though, there is only 

minor difference in the visual outcome of GOAMP 

algorithm relative to the proposed method. However, the 

details of the fine region are recovered accurately with 

proposed method. The reconstruction results depicts that 

the given method works efficiently and perform more 

accurate for faster reconstruction of the image and is 

much more sophisticated than the older method SP, OMP, 

CoSaMP and GOMP. On the contrary, the reconstruction 

probability of the proposed method decreases with 

factor   . And, it provides better results with    ,   -. 
Hence, suitable value of   is required and the backward 

step       for the accurate recovery of the sparse 

image.

Table 2. Comparison of PSNR and running time when SNR=10,15,20,25,30 

SNR 10 15 20 25 30 

Sampling 

Ratio M/N 
PSNR Time PSNR Time 

PSN

R 
Time PSNR Time PSNR Time 

0.5 20.86 4.30 25.07 4.35 28.30 4.19 29.89 4.20 30.90 4.31 

0.6 21.52 4.60 26.10 4.62 29.67 4.73 31.79 6.39 32.50 6.64 

0.7 22.00 4.88 26.70 4.99 30.68 4.97 32.95 9.29 33.73 9.40 

0.8 22.35 4.97 27.13 5.47 31.07 4.92 33.76 15.07 34.51 12.52 

Table 3. Performance analysis  for noisy observations when M/N=0.5 

SNR 5 10 15 20 

Reconstruction 

algorithms 
PSNR Time PSNR Time PSNR Time PSNR Time 

SP 12.89 53.79 17.14 56.75 20.83 57.85 20.83 40.38 

OMP 10.19 17.603 14.79 13.10 19.11 10.46 20.43 8.0 

ROMP 15.11 1.77 17.21 1.95 19.32 1.93 20.03 2.16 

GOMP 12.21 5.45 16.78 4.27 20.85 4.70 24.31 4.71 

GOAMP 11.66 9.06 15.61 8.42 20.44 8.15 24.16 8.15 

Proposed Method 16.19 8.39 20.64 4.41 25.07 4.35 28.30 4.19 

 

 
         (a)      (b)   (c)              (d) 

 
 (e)            (f)   (g) 

Fig.6. Comparison of reconstruction results for M/N=0.5 (a) Original image (b) SP method (c) OMP method (d) ROMP method (e)GOMP method (f) 
GOAMP method (g) Proposed method.
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(a)                                    (b)                                   (c) 

 
(d)                                   (e)                                    (f) 

Fig.7. Comparative demonstration of the reconstruction result for sampling ratio M/N=0.5 and SNR=30 dB (a) Original image (b) Image 
reconstructed with SP (c) Image reconstructed with OMP (d) Image reconstructed with ROMP (e) Image reconstructed with GOMP (f) Image 

reconstructed with GOAMP . 

 

VI. CONCLUSION 

This paper proposes an algorithm for forward-

backward movement in adaptive Generalized OMP under 

certain stopping conditions for CS based image recovery. 

The stopping conditions are refined by cumulative 

coherence and the method works on low frequency 

components for saving the memory storage. This two-

stage technique expands the support set by forward step 

with the size of indices    and then the selected indices of 

the support estimate is cropped by the backward step with 

a step size of  . Additionally, the size of the forward and 

backward step increases adaptively for reduction in 

residue through the algorithm. As compared to existing 

techniques, this method provides the advantage of 

removing the misidentified or non-significant elements 

with backward step. The step size also increases 

adaptively and the algorithm is terminated with the 

stopping condition. Simulation results show that the 

given method improves reconstruction for Gaussian 

measurement both in noiseless and noisy cases. Hence, it 

recovers images accurately with significant PSNR. Even 

at lesser number of observations, such as at  =0.3, 0.4, 

0.5, the proposed method provides the better results i.e. 

the reconstruction result is clearly visible at lesser 

observations. However, for the sampling ratios equal to 

or greater than 0.9, the results become comparable with 

Generalized OMP. But, when the magnitude of nonzero 

elements is not comparable, proposed method provides 

better performance. Consequently, it is concluded that 

proposed method is capable of providing better recovery 

performance for image recovery from compressed 

observations in both noisy and noise-less cases. 
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