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Abstract—In this paper, the architecture for Fast Fourier 

Transform over Galois Field (2
4
) is described. The 

method used is cyclotomic decomposition. The 

Cyclotomic Fast Fourier Transforms (CFFTs) are 

preferred due to low multiplicative complexity. The 

approach used is the decomposition of the arbitrary 

polynomial into a sum of linearized polynomials. Also, 

Common Subexpression Elimination (CSE) algorithm is 

used to reduce the additive complexity of the architecture. 

By using CSE algorithm, the design with reduced 

operational complexity has been described. 

 

Index Terms—Cyclotomic, Fourier Transform, Galois 

Field.  

 

I. INTRODUCTION 

Fourier analysis is useful in converting a signal from 

its original domain into frequency domain and vice versa. 

The Fast Fourier Transform (FFT) algorithm designed for 

the complex field is not well-suited for the finite field. 

The FFT in the complex field has applications throughout 

the subject of signal processing [3]. Whereas, the FFT 

over the finite field have been widely used in 

cryptography and have applications in error correcting 

codes. The method for Fast Fourier Transform over the 

finite field (i.e. Galois Field) [2] [3] along with the 

architecture has been suggested in the paper. Galois Field 

is a field that contains a number of finite elements. 

The suggested method consists of decomposing an 

original polynomial into a sum of linearized polynomials 

and evaluating them at a set of basis points [2]. The 

architecture designed in this paper is for GF(2
4
). The 

Cyclotomic Fast Fourier Transform (CFFT) is useful in 

RS i.e. Reed-Solomon decoders to reduce the complexity 

of the decoder [4]. Because Reed Solomon code is cyclic 

in nature [15]. The CFFT proposed in [2] has low 

multiplicative complexity but they have high additive 

complexities. The FFT suggested in this paper can be 

used to perform the RS decoding which involves two 

time-consuming steps (Syndrome computation and Chien 

search). Chien search is a fast algorithm used in 

determining roots of polynomials defined over a finite 

field. The RS codes are capable of correcting random 

errors and multiple burst errors. This architecture can also 

be used to implement the Gao algorithm [14] which 

includes operations based on Fourier transform.  

The design of architecture follows several steps which 

have been explained in a simplified manner in this paper. 

The architecture is designed in 4 stages. The architecture 

so designed is modified by applying Common 

Subexpression Elimination (CSE) Algorithm. CSE 

algorithm reduces the additive complexity of the 

architecture.   The language used for design is Verilog 

and has been implemented in the Xilinx ISE Design Suite.  

The paper proceeds as follows. Section II covers basic 

notions and definitions of the Fourier transform and the 

method to determine cyclotomic cosets, along with the 

basic theory of Galois Field. Section III focuses on 

linearized polynomials and generation of the matrix. 

Section IV describes hardware architecture. The Common 

Sub-expression elimination Algorithm has been 

explained in section V. Section VI illustrates the 

architecture after applying CSE. And the paper concludes 

with the comparison between two architectures in section 

VII. 

 

II. DEFINITIONS 

The Fourier transform of a polynomial is the collection 

of elements.  

The Fourier transform can be generated using [2] [10]:  

 

 ( )  ∑    
    

   
                            (1) 

 

is of degree f(x) = n-1 and n | (2
m
-1).  

 

2.2. The elements can be estimated through:  

 

 (  )  ∑    
     

   
                         (2) 

 

Here, j Є |0, n-1|. 
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2.3. The cyclotomic cosets Ck over modulo n=2
m 

– 1 for 

GF(2
m
) is calculated as: 

 

C0 = {0} , 

Ck1 = { k1 , k1 2, k1 2
2
, ....., k1 2

m
1

-1
}, 

..........., 

Ckl = { kl , kl 2, kl 2
2
, ....., kl 2

m
l
-1

}, 

 

where 

 

ks ≡ ks2
ms

modn.                              (3) 

 

2.4. A linearized polynomial over GF(2
m
) is a polynomial 

represented as: 

 

 ( )  ∑   
                                (4) 

 

It can be shown that L(x) satisfies L(a+b) = L(a) + L(b). 

One useful representation of elements  in Galois Field 

is m-tuple representation. Let α0 + α1α + α2α +....+ αm-1 

α
m-1

 be the polynomial representation of a field element β. 

Then, β can be represented by an ordered sequence of m 

components called an m-tuple, as follows [7]: 

(α0, α1, α2, . . . , αm-1 )      

Where, the m components are simply the m 

coefficients of the polynomial representation of β.  

For GF(2
4
) the 4-tuple representation generated by p(X) 

= X
4
+X+1 is: 

Table 1. 4-Tuple representation 

Power 

representation 

Polynomial 

representation 

4-Tuple 

representation 

0 0 (0 0 0 0) 

1 1 (0 0 0 1) 

α α (0 0 1 0) 

α2 α2 (0 1 0 0) 

α3 α3 (1 0 0 0) 

α4 α+1 (0 0 1 1) 

α5 α2+ α (0 1 1 0) 

α6 α3+ α2 (1 1 0 0) 

α7 α3+α+1 (1 0 1 1) 

α8 α2+1 (0 1 0 1) 

α9 α3+α (1 0 1 0) 

α10 α2+α+1 (0 1 1 1) 

α11 α3+α2+α (1 1 1 0) 

α12 α3+α2+α+1 (1 1 1 1) 

α13 α3+α2+1 (1 1 0 1) 

α14 α3+1 (1 0 0 1) 

 

The elements of GF(2
m
) forms all the roots of X

2^m
 + X. 

Let Ø(X) be the polynomial of the smallest degree over 

GF(2
m
). This polynomial Ø(X) is called the minimal 

polynomial of β.  Ø(X) must be irreducible. Minimal 

polynomials of the elements in GF(2
4
) generated by p(X) 

= X
4
+X+1 are: 

Table 2. Minimal polynomials 

Conjugate roots Minimal polynomials 

0 X 

1 X+1 

α, α2, α4, α8 X4+X+1 

α3, α6, α9, α12 X4+X3+X2+X+1 

α5, α10 X2+X+1 

α7, α11, α13, α14 X4+X3+1 

 

III. CYCLOTOMIC FAST FOURIER TRANSFORM 

Based on the formula mentioned in  (3) in section II, 

the cyclotomic cosets so formed for GF(2
4
) after 

substituting m=4 i.e. n=15 are as follows: 

 

C0 = {0} 

C1 = C2 = C4 = C8 = {1,2,4,8} 

C3 = C6 = C9 = C12 = {3,6,9,12} 

C5 = C10 = {5,10} 

C7 = C11 = C13 = C14 = {7,11,13,14} 

 

An irreducible polynomial p(X) of degree m is said to 

be primitive if the smallest positive integer n for which 

p(X) divides X
n
+1 is n = 2

m
-1. p(X) = X

4
+X+1 divides 

X
15

+1 but does not divide any X
n
+1 for 1 ≤ n ≤ 15. Hence, 

X
4
+X+1 is a primitive polynomial for GF(2

4
). Let α be 

the root of this polynomial. 

f(α
i
) can be developed using:  

 

f(α
i
)  = ∑ (  ( 

   ))
 

   
                       (5) 

 

These coefficients αijs are used to form the matrix A. 

For example, in GF(2
4
) l=4, k0=0, k1=1, k2=3, k3=5, k4=7. 

So,  

 

f(α
1
)  =  L0(α

0
)+L1(α)+L2(α

3
)+L3(α

5
)+L4(α

7
)  

=  L0(1) + L1(β) + L1(β
8
) + L2(β) + L3(γ) + L4(β)  + L4(β

2
) 

+ L4(β
4
) 

 

Here, the basis for C1, C3, C7 is (β, β
2
, β

4
, β

8
), where  β 

= α
3
 and α is an element of GF(2

4
) as α = β + β

8
. For C5 

the basis is (γ, γ
2
) where γ = α

5
. 

The coefficients of f(α
1
) are deduced as   

 

αijs = [1 1 0 0 1 1 0 0 0 1 0 1 1 1 0] 

 

The rest of the equations are developed as follows: 

 

f(α
0
) = L0(α

0
) + L1(α

0
) + L2(α

0
) + L3(α

0
) + L4(α

0
) 

f(α
1
) = L0(α

0
) + L1(α) + L2(α

3
) + L3(α

5
) + L4(α

7
) 

f(α
2
) = L0(α

0
) + L1(α

2
) + L2(α

6
) + L3(α

10
) + L4(α

14
) 

.... 

.... 

.... 

f(α
13

) = L0(α
0
) + L1(α

13
) + L2(α

39
) + L3(α

65
) + L4(α

91
) 

f(α
14

) = L0(α
0
) + L1(α

14
) + L2(α

42
) + L3(α

70
) + L4(α

98
)
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Based on the above equations, the matrix A so formed 

is –  

 

A =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                             
                              ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

This matrix A is multiplied by the vector. The vector is 

denoted as Lf, where f is the original vector and  L is the 

block diagonal matrix formed by elements β. The matrix 

L is represented as –  

 

L = 

[
 
 
 
 
     
      
      
      
      ]

 
 
 
 

 

 

where 

 

L1 = L2 = L4 = 

[
 
 
 
 
       

       

       

       ]
 
 
 
 

  

 

and 

 

L3 = [
   

   
] 

 

Further, applying cyclic convolution between the 

normal basis and fi i.e. Lf [2][5][6] is rewritten as [3] 

B = Lf = Q ((R βi
T
).(S fi)) = 

[

         
         
         
         

] 

[
 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
    
    ]

 
 
 
 
 
 
 
 

[
 
 
 
 

  

  
 ]
 
 
 

[
 
 
 
 
 
 
 
 
    
    
    
    
    
    
    
    
    ]

 
 
 
 
 
 
 
 

[

  
  
  
  

] 

 

This four point cyclic convolution [6] is obtained for 

cosets C1, C3, C7. Whereas, the same interpretation for 

coset  C5 gives a two-point cyclic convolution. 

[
   
   

] [
  
  
  

] [
 

  
] [
  
  
  

] [
  
   
] 

 

The complete architecture can be computed as [2]: 

 

F = AQ(C . (Pf))                                (6) 

 

Where, Q is the binary block diagonal matrix, C is the 

combined vector of constants, and P is the binary block 

diagonal matrix of combined pre-additions. 

 

IV. HARDWARE ARCHITECTURE 

The architecture design of FFT starts with the 

designing of GF multiplier. The GF multiplier is used for 

multiplication of polynomials [7].  

Consider 2 polynomials (a0α
3 

+ a1α
2 

+ a α + a3) and 

(b0α
3 
+ b1α

2 
+ b α + b3).   

The multiplication of these polynomials results in  

 

c0α
3
+c1α

2
+c α+c3 = (a0b0+a3b0+a0b3+a2b1+a1b2) α

3
 + (a0b0 

+a1b0 +a0b1 +a3b1 +a1b3 +a2b2) α
2
 +( a1b1 +a0b1 +a2b0 

+a0b2 +a1b1 +a3b2+a2b3) α + (a3b3 +a2b0 +a0b2 +a1b1 ) 

 

The GF multiplier design can be represented as –  

 

 

Fig.1. GF Multiplier 

The above design requires 16 AND gates and 8 XOR 

gates.  

The complete FFT architecture [3] can be represented 

as follows:  

 

 

Fig.2. Architecture design 
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The cosets form the stage 1 and 2 of the architecture. 

The design for C1, C3, C7 is same, whereas the design for 

C5 is different. Cosets C1, C3, C7  requires 5 XOR gates 

and 8 GF multipliers, whereas C5 requires only 1 XOR 

gate and 2 GF multipliers. The design for cosets is: 

 

 

Fig.3. Coset design for  C1, C3, C7. 

 

Fig.4. Coset design for C5. 

In stage 3, the matrix multiplication is performed. The 

matrices A and Q are multiplied and thereby stored in 

ROM. The resultant matrix size is 15 x 31. Finally, in 

stage 4 the matrix and vector are multiplied. Stage 1 and 

2 results in a vector, whereas stage 3 results in a matrix. 

The output of stage 4 is the FFT of the input. 

 

V. COMMON SUB-EXPRESSION ELIMINATION 

ALGORITHM 

In many Digital Signal Processing applications, 

multiple constant multiplication is widely used.  In VLSI 

design for high-level synthesis, proper optimization of 

multiple constant multiplication is effective in improving 

parameters like area and power consumption. To 

optimize multiple constant multiplications, the Common 

Sub-Expression Elimination (CSE) algorithm is used in 

this paper [5]. The approach used in CSE is initially to 

identify the identical terms i.e. the common sub-

expressions present in the equations and then to replace 

them with a single variable. Thus, by computing the 

terms only once, results are significantly being reduced in 

the hardware architecture in VLSI design.  

In Galois field, matrix multiplication is performed. 

Here, the addition is performed via XOR-ing but there are 

several methods to perform multiplication. In this paper, 

the multiplication is a linear transform of the form C = 

AB, where C and B are m- and n- dimensional column 

vectors, respectively, and A is an m x n constant binary 

matrix. Here, B represents input variable and C represents 

output variables. According to this paper, the B column 

vector is  (C . (Pf)) and the matrix A is the resultant 

matrix of AQ (Refer (6)). So, the CSE algorithm is 

applied to this matrix – vector multiplication.  

Some general steps are involved in carrying out the 

CSE algorithm. These steps are as follows [5]: 

 

1. To identify common patterns present in the 

transformation. 

2. Select an appropriate pattern for elimination. 

3. Compute the pattern only once. 

4. Eliminate the occurrences of the computed pattern 

5. Repeat steps 1 to 4 to cover every pattern. 

 

So, by applying CSE algorithm to matrix-vector 

multiplication there is a significant reduction in a number 

of XOR gates. 

The method suggested in [8] reduces the additive 

complexities of Cyclotomic Fast Fourier Transform using 

a weighted sum of the numbers of multiplications and 

additions. [12] focuses on both area and delay 

optimization in hardware implementations over GF(2
m
).  

 

VI. REDUCED FFT ARCHITECTURE 

To reduce the additive complexity of the FFT 

architecture, in this paper, the CSE algorithm mentioned 

in section V has been used.  The basic stages of 

architecture mentioned in section IV remain the same, 

with the only difference in being applying the CSE 

algorithm. The CSE algorithm is applied to stage 4. After 

applying the CSE algorithm to the matrix, the  matrix size 

increases from 15 x 31 to 47 x 63. Due to this, the 

number of LUTs eventually increases in the final 

architecture but the additive complexity i.e. the number 

of XOR gates are reduced significantly. 

We have written a synthesizable Verilog code for the 

different stages of the architecture. First 3 stages of the 

architecture remains the same, whereas, the architecture 

design changes at stage 4. Based on the appropriate 

changes the two architectures i.e. without CSE and with 

CSE can be compared in terms of LUTs, the number of 

XOR gates required and delay.  
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VII. RESULTS 

The complexity of the proposed architecture has been 

evaluated considering the synthesis report generated in 

Xilinx ISE Design Suite. The synthesis report has been 

generated for two FPGA devices, namely- Spartan 6 and 

Virtex 5. The results of the GF multiplier used in the 

architecture are- for Spartan 6 the LUTs required are 9 

whereas for Virtex 5 the LUTs required are 8. Number of 

IOBs remains the same for both FPGA kits.  

Table 3. Synthesis Report – GF Multiplier 

XOR gates LUTs 

required 

IOBs Max 

Combinational 
path delay 

Spartan 6 

4 9 12 6.781ns 

Virtex 5 

6 8 12 5.115ns 

 

The maximum combinational path delay is the 

maximum delay that would occur for the complete 

architecture. For cosets C1, C3, C7 since the design is the 

same the implementation results so generated are same. 

But, for coset C5 the results are different. For cosets C1, 

C3, C7 te results are: 

Table 4. Synthesis Report – Cosets C1, C3, C7 

XOR gates LUTs 

required 

IOBs Max 

Combinational 
path delay 

Spartan 6 

37 88 80 8.379ns 

Virtex 5 

52 80 80 5.969ns 

 

For cosets C1, C3, C7 the XOR gates required for Spartan 6 

are 37 and for Virtex 5 are 52.  

Table 5. Synthesis Report – Coset C5 

XOR gates LUTs 
required 

IOBs Max 
Combinational 

path delay 

Spartan 6 

9 22 24 7.791ns 

Virtex 5 

13 20 24 5.715ns 

 

The stage 3 of the architecture is formed by the 

multiplication of matrix A with Q. The simulation results 

are: 

Table 6. Synthesis Report – Matrix A*Q 

LUTs 

required 

IOBs Max 

Combinational 

path delay 

Spartan 6 

31 35 6.1ns 

Virtex 5 

31 35 3.979ns 

 

In the stage 3 of architecture, since only matrix 

multiplication is involved, no XOR gates are required in 

this stage. 

Finally, the results for the architecture without 

applying CSE are: 

Table 7. Synthesis Report – Architecture without CSE 

XOR gates LUTs 
required 

IOBs Max 
Combinational 

path delay 

Spartan 6 

121 360 100 10.893ns 

Virtex 5 

170 340 100 8.363ns 

 

The paper mainly focuses on reducing the additive 

complexity of the FFT architecture. Therefore, the 

number of XOR gates required before modifying the 

architecture are 121 and 170 for Spartan 6 and Virtex 5 

respectively. 

The results after modifying the architecture with CSE 

are:  

Table 8. Synthesis Report – Architecture with CSE 

XOR gates LUTs 
required 

IOBs Max 
Combinational 

path delay 

Spartan 6 

54 176 132 6.93ns 

Virtex 5 

73 173 132 9.849ns 

 

After applying CSE, the number of XOR gates are 

reduced to 54 and 73 for Spartan 6 and Virtex 5 

respectively. 

 

VIII. CONCLUSION 

It is clearly evident from the above-mentioned results 

that the additive complexity of the architecture after 

applying CSE reduces by a considerable amount. The 

area of the architecture is also reduced. The number of 

XOR gates required before applying CSE is 121 and 170 

for Spartan 6 and Virtex 5 respectively. Whereas, after 

applying CSE XOR gates reduces to 54 and 73. Thus, the 

additive complexity of the FFT architecture is reduced. 

Graphically, the comparison between two architectures 

can be plotted as: 
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Fig.5. Complexity comparison of architectures. 

 

IX. FUTURE SCOPE 

This paper primarily focuses on FFT of 15 elements 

represented as GF(2
4
). But, based on the technique 

mentioned in the paper, the FFT for higher powers of 2 

can also be generated. To generate DFT over larger fields 

like GF(2
11

) or GF(2
12

), the algorithm mentioned in [11] 

can be used. Different multipliers like Karatsuba 

multiplier, Montgomery multiplier etc. can be used and 

compared with above-mentioned results.   
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