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Abstract—The ability of the human visual processing 

system to accommodate and retain clear understanding or 

identification of patterns irrespective of their orientations 

is quite remarkable. Conversely, pattern invariance, a 

common problem in intelligent recognition systems is not 

one that can be overemphasized; obviously, one‘s 

definition of an intelligent system broadens considering 

the large variability with which the same patterns can 

occur. This research investigates and reviews the 

performance of convolutional networks, and its variant, 

convolutional auto encoder networks when tasked with 

recognition problems considering invariances such as 

translation, rotation, and scale. While, various patterns 

can be used to validate this query, handwritten Yoruba 

vowel characters have been used in this research. 

Databases of images containing patterns with constraints 

of interest are collected, processed, and used to train and 

simulate the designed networks. We provide extensive 

architectural and learning paradigms review of the 

considered networks, in view of how built-in invariance 

is learned. Lastly, we provide a comparative analysis of 

achieved error rates against back propagation neural 

networks, denoising auto encoder, stacked denoising auto 

encoder, and deep belief network.  

 

Index Terms—Convolutional neural network, auto 

encoders, pattern invariance, character recognition, 

Yoruba vowel characters. 

 

I.  INTRODUCTION 

Computer vision is an interdisciplinary field that deals 

with the analysis and understanding of acquired real 

world data images. It also involves machines that 

simulate the perception of images as in human ability and 

processing. The goal of computer vision is to make useful 

decisions about real physical objects and scenes based on 

sensed images [1]. Generally, the field of computer vision 

is not one that can be separated from image processing 

and machine learning. 

 Image processing usually involves operations or 

algorithms that condition images depending on the aims 

of applications. Some of the operations include image 

filtering, dimension reduction, enhancement, 

segmentation, and characteristics evaluation. 

Machine learning, a field under artificial intelligence, 

deals with the design of adaptive systems that can learn 

and improve its performance over time due to acquired 

experiential knowledge. The fusion of image processing 

and machine learning can be considered the backbone of 

computer vision systems.  

Furthermore, there has been a significant change in the 

task required of computer vision systems recently; a sway 

from what can be considered ―heavy‖ image processing 

or feature extraction schemes and ―simple‖ machine 

learning tasks, to ―low‖ image processing or feature 

extraction schemes and ―heavy‖ machine learning tasks. 

i.e. demanding more of machine learning in applications. 

Lately, it can be seen that machine learning systems and 

paradigms which can explore almost raw data have 

received significant research attention, of course, this is 

evident when we expand the definition of intelligence. 

This research reviews some common and important 

constraints that occur in computer vision, pattern 

invariance, considering some neural networks which 

enjoy architectures inspired by the biological visual 

processing system. Intelligent recognition systems should 

be accommodating of moderate pattern invariances such 

as translation, rotation, and scale. Furthermore, it is 

desirable that such intelligent systems should have built-

in structure and ability to cope and understand these 

invariances. 

Convolutional neural network and convolutional auto 

encoder neural networks have been considered in this 

research for study, as to how their structures and learning 

algorithms affect the achievable level of built-in 

invariance. 

To validate the query of this research, Yoruba vowel 

characters have been used as patterns. The remaining 

sections in this paper present the structure, learning 

algorithms, training, testing, and analysis of achieved 

error rates for the considered networks. 

 

II.  LITERATURE REVIEW 

The three major approaches to the problem of invariant 

pattern recognition are discussed below. 

 

(a) Invariant feature extraction approach: This 

approach involves the extraction of features which are 

insensitive to pattern invariance. The features extracted 

remain fairly consistent even when patterns are 

moderately distorted. The success of this approach lies in 

extracting features that are robust to moderate pattern 

invariance, as different extracted features yield different 

levels of invariant pattern recognition. i.e. some features 
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are more stable or less sensitive to pattern invariance than 

others. Common techniques that are applied to invariant 

feature extraction include shape orientation, Fourier 

transforms, Wavelet transforms, Fourier-Mellin 

Descriptors, moment invariants, etc. [2] [3] [4] [5]. The 

extracted features are then used to train a classifier which 

learns the associative mapping of such features to the 

output classes. 

(b) Machine learning approach: In this approach, 

invariant pattern recognition is achieved in the learning 

system. Generally, the intelligent system is task with 

learning features that associate patterns with their 

corresponding target classes, even after the distortion of 

such patterns. Neural networks have been shown to 

suffice for such situations. However, only relatively 

moderate pattern invariance is achievable in these 

conventional networks. To significantly improve the 

performance of these systems on invariant pattern 

recognition, the two major techniques used are briefly 

discussed below. 

 

 Data manipulation: The intelligent system is 

trained with distorted copies of training examples 

of the invariant patterns; this allows the system to 

learn the association of such distorted patterns 

with the corresponding target classes [6]. This can 

be considered a trivial approach to achieving 

invariant pattern recognition [7]. It is obvious that 

the technique requires the collection of labelled 

distorted patterns for learning; this increases cost 

and the manual input required. 

 Hard coding:  In many works, invariant pattern 

recognition is achieved by configuring and 

constraining the structure and weights of neural 

networks in some fashion. This has proven quite 

successful in many works [8] [9]. 

 

(c) Hybrid approach: In other works, the first and 

second approaches discussed above are combined to 

achieve more invariant pattern recognition. Performances 

of neural networks with structures that are apt for pattern 

invariance learning are boosted by augmenting the 

original training data with manipulated data. 

 

III.  CONVOLUTIONAL NEURAL NETWORK (CNN) 

Convolutional neural networks benefit from some 

biologically inspired architectural build such as the 

concept of local receptive fields [10]; similarity in build 

can be associated with the neocognitron, by Fukushima 

[11]. These networks have built-in architectures that 

specially lend themselves to problems encountered in 

most computer vision systems. The characteristics of 

these networks leveraged on in computer vision are 

concepts of local connectivity, weight sharing, and sub-

sampling or pooling. It is somewhat obvious that in real-

life problems of computer vision, we often have to deal 

with high-dimensional images, thus requiring enormous 

network parameters for computation. Hence, the 

optimization of these parameters becomes a major 

constraint considering achievable error rates and 

associated costs of hardware suitable enough for 

performing such computations in reasonable time; also, 

required memory is yet another problem to be considered. 

Inasmuch as conventional feedforward networks can be 

drafted for this purpose, some structural constraints found 

in these networks make their adaptability for invariant 

pattern recognition and therefore use only second 

convolutional networks. Furthermore, it is observable that 

feedforward networks ignore the 2D topology of data as it 

is found in image applications. [12]. i.e. the training data 

elements or attributes can be offset consistently through a 

data set without affecting the performance of the network 

significantly. Conversely, images have attributes (pixel 

values) that are strongly local, as neighbouring pixels are 

usually related, hence, the need for architectures that 

better simulate the human visual processing of images. 

Also, the architecture of convolutional neural networks 

makes possible the realization of some built-in invariance 

during the learning phase of these networks. The way 

attributes are learned from input images using local 

receptive fields, weight sharing and pooling  operations 

incorporate a better understanding of features that make 

input images different from one another. A convolutional 

network can be ―roughly‖ considered as a feedforward 

network with alternating convolution and pooling layers, 

while the last layer is usually a fully connected multi-

layer network or any other classifier. The following 

subsections describe briefly convolution and pooling 

operations. 

3.1  Convolution 

The first convolution layer generally succeeds the 

input layer in a convolutional neural network, this layer 

can be viewed as 2D planes of units (neurons); each plane 

of units is called a feature map or plane. 

Each feature map has units in 2D arrangement and 

these units share a common set of weights depending on 

the size of the receptive field. 

The receptive field is a region (patch) of the input 

captured by each unit in any feature map; generally, a 

constant receptive field is used at any particular 

convolution layer. i.e. all feature maps for each unit have 

the same size of receptive field. The receptive field is 

measured in pixels along both axes of an input image. e.g. 

for an input image of size 64 × 64, the receptive field 

could be of size 9 × 9. The receptive field is usually 

considered as a filter or kernel which is used to convolve 

the whole input image for the convolution layer operation. 

It is also noteworthy that each feature map in the 

convolution layer extracts a distinct feature about the 

input image depending on the particular kernel that is 

applied on a feature map. Thus, it is possible that a 

feature map may extract horizontal edges, another 

extracts vertical edges, while still, another extracts points, 

etc. It can therefore be inferred that the number of 

different kernels used in the convolution layer will be the 

number of the feature maps in that particular convolution  
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Fig.1. Convolutional neural network 

 

layer. Also, all feature maps have the same number of 

units. All units in a feature map have interconnections to 

the input through the receptive field, with the number of 

interconnections being the size of the kernel used. e.g. if 

the kernel size is 4 × 4, then each unit has 16 

interconnections. The values of the kernel used are the 

connection weights of units when the network has just 

been initialized. 

The idea of convolving a distinct kernel all over the 

input image for a particular feature map is such that the 

same feature may be extracted all over the image for that 

feature map, and that parameter sharing can also be 

achieved. This operation also greatly reduces the number 

of trainable weights, and therefore computation that 

would have been required as is evident in conventional 

feedforward network; since, there is full interconnection 

between layers. In contrast, convolutional networks use 

local connectivity and parameter sharing.  

To illustrate this significance, consider an input image 

of size 120 × 120, the typical feedforward network, with 

say 60 hidden neurons will require (14,400 × 60 + 60) or 

864,060 trainable weights including the biases of the 

hidden layer, while a convolutional neural network with 

local receptive field of size 10 × 10 and 15 feature maps 

in the convolution layer will require (100 × 15 + 15) or 

1,515 trainable weights, including the biases during 

computation.  

Fig. 1 above shows a typical convolutional neural 

network; this paper has opted for the denotation of 

grouping corresponding convolution and pooling layers 

together as a layer, as can be seen in fig.1. 

From Fig.1, it is assumed that the input image is of size 

K × L, a kernel of size a × a is used for  convolution 

operation in C1 (first convolution layer), the number of 

feature maps is n, and the number of units in each feature 

map is i × i, as conceived in 2D. There are two 

approaches to shifting the kernels all over the image 

during convolution. 

 

 

(a) No padding approach: In this approach, the kernel 

is shifted all over the image, without allowing the 

kernel to go outside the image borders. This 

means that some pixels that are close to the edges 

of the images will be left out during the 

convolution operation, depending on the size of 

the kernel used. Hence, the size of each resulting 

feature map is smaller than the input image. 

(b) Zero padding approach: This approach allows the 

kernel to go over all pixels in the input, by 

padding with zeros, regions that fall outside the 

border of the input image during convolution. 

Hence, the whole input pixels can be convolved. 

 

The relationship between the number of units in each 

feature map and the size of the kernel used in the 

convolution operation is given below. 
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Where, (
L

xM  , 
L

yM ) is the feature map size of each 

plane, (
L

xK ,
l

yK ) is the kernel size shifted over the valid 

input image region, (
L

xS , 
L

yS ) is the skipping factor of 

kernels in x and y-directions between subsequent 

convolutions, and L indicates the layer. Each map in Ln is 

connected to at most ML-1 maps in layer L-1 [13]. 

The convolution operation outcome, g(i,j), for a 2D 

input function f(i,j), and kernel, v, also in 2D can be 

achieved using Equation 3. 
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The convolution, combination and implementation of 

feature maps can be achieved by using the relation in 

Equation 4. 
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Where j is the particular convolution feature map, Mj is 

a selection of input maps, kij is the convolution kernel, bj 

is the bias of each feature map, l is the layer in the 

network, and f is the activation function [14]. 

In layer 2 of the network (Fig.1), convolution operation 

is performed on sub-sampling layer S1, as we go deeper 

into the network, the number of feature maps 

implemented in each successive convolution layer 

increases. i.e. m > n. This compensates for the fact that 

spatial pooling operation reduces the dimensionality of 

the convolution feature maps each time. The particular 

sub-sampling feature maps that the convolution kernels 

will be convolved with in the layer preceding the 

classifier stage may be determined by building a 

convolution table, since there are now so many possible 

inputs (sub-sampling maps) to the convolution layer C3. 

3.2  Pooling/Sub-sampling 

Generally, this layer directly follows the convolution 

layer, its basic functions are to further reduce the 

dimensions of the feature maps and aggregate some 

features from the preceding layer. It is in this layer that 

the network develops some built-in invariance and 

covariance to features that are present in the input. 

Pooling is the primary source of dimension reduction and 

of local translation invariance in convolutional networks 

[15]. In pooling, a mask size determining what region of 

the preceding layer feature map is captured and operated 

on is chosen. There are as many sub-sampling maps as 

the convolution feature maps in any layer. i.e. each 

convolution feature map has its corresponding sub-

sampling map or plane. The sub-sampling layer can be 

seen as S1 in Fig.1. 

There are two common pooling operations, and are 

briefly described below. 

 

 Average pooling: This method involves taking the 

average of the activation values of units in the 

preceding convolution feature map masked by the 

pooling window. 

 Max pooling: This method involves taking the 

maximum value of the activation values of units in 

the preceding convolution feature map masked by 

the pooling window. 

 

This research also aligns with the idea that the max 

pooling method aggregates features that are less sensitive 

to moderate invariance in the inputs;  position invariance 

is achieved over larger local regions and the input image 

dimension is reduced along each direction [16]. Max-

pooling leads to faster convergence rate by selecting 

superior invariant features which improve generalization 

performance [17]. 

Since overlap is usually not allowed in pooling 

operations, it therefore follows that  dimension of sub-

sampling feature maps is a fraction of the preceding 

convolutional feature map size by the pooling mask size. 

From Fig.1, it can be said that the size of sub-sampling 

maps in S1 is i/b × i/b, where i × i is the dimension or 

size of the preceding convolution feature maps and b × b 

is the size of the pooling window or mask. Furthermore, 

we can now infer that the number of units in each sub-

sampling feature map can be obtained as i/b multiplied 

with i/b in 2D. 

The last layer in convolutional neural networks is a 

regular classifier, which accepts the aggregated features 

of the preceding layer; the operation of the classifier is as 

obtains with any supervised learning classifier. For this 

research, a single hidden layer feedforward neural 

network is used in the classifier layer (module). 

 

IV.  AUTO ENCODER 

An auto encoder is a generative neural network model; 

it can be used to explore underlying features that are 

present in data. These networks are ‗grossly‘ feedforward 

networks, but in contrast, are not discriminative. They 

employ an unsupervised learning algorithm; hence, the 

fact that most data in real life are unlabelled can be 

leveraged on. In these networks, the input data also serve 

as the target data correspondingly; an auto encoder is 

required to learn the reconstruction of input data in the 

output layer. Thus, these networks build prior knowledge 

of features that do contribute to the successful 

reconstruction of the input data. i.e. the network is 

sensitive to redundant features in the input data. The auto 

encoder network can be seen as an encoder-decoder 

module; the encoder being the input-hidden layer 

interconnection, and the decoder, hidden-output layer 

interconnection [18]. 

 

 

Fig.2. Auto encoder [18] 

Fig. 2 shows an auto encoder, the equations relating 

the activations in the hidden and output layers are given 

below in Equations 5 & 6 [18].  

Encoder:  
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( 1) ( 1)1( ) ( ( )) ( )L L

encoderL x g m x sigm b W x          (5) 

 

Decoder: 

 
( ) ( 1)( ( )) ( 1( ))y L

decodery z n x sigm b W L x        (6) 

 

Where, m(x) and n(x) are the pre-activations of the 

hidden and output layers L1 and y respectively; b
(L1)

 and 

b
(y)

 are biases of the hidden and output layers, L1 and y 

respectively. Sometimes, ( 1)L

encoderW and ( 1)L

decoderW are tied using 

the relation ( 1) ( 1)( )L L T

decoder encoderW W , where T is the transpose 

function. 

The network can be constrained, similar to what is 

achieved in the sparse coding approach, by making the 

number of neurons in the hidden layer smaller than the 

number of neurons in the output. i.e.  the input features 

are compressed into the hidden layer, and thereafter 

expanded into the output layer again. 

Learning is achieved by minimizing a cost function; 

for binary input variables, the sum of Bernoulli cross 

entropies is used as described by the equation 7. 
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Where, xk is the k-th binary variable of the input data, 

and yk is the corresponding network output, k is the 

number of elements in the input and reconstructed output 

data. The MSE (Measn Squared Error) function can be 

used for real value inputs. 

Auto encoders have significant usefulness in hybrid 

networks, where they are used as a pre-training technique 

in the initialization of feedforward network weights. It 

has been shown that the pre-training of multilayer 

networks initializes such networks in a weights space that 

is favourable for convergence to a better local minimum; 

this effect is important, and suffices even more in deep 

networks [19]. 

 

V.  CONVOLUTIONAL AUTO ENCODER (CAE) 

These networks leverage on the structure of 

conventional convolutional neural networks and auto 

encoders in overcoming the problems associated with 

either of the individual networks. i.e. as discussed in the 

section 2 and 3. Convolutional networks are well adapted 

to computer vision problem, while auto encoders are 

suited to optimization and regularization of deep 

networks through greedy layer-wise training. These two 

main features are combined in convolutional auto encoder. 

In contrast to typical convolutional neural networks, 

where the weights are initialized randomly, a 

convolutional auto encoder network initializes it weights 

through an auto encoder. All features such as local 

connectivity, weight sharing, and pooling found in the 

conventional convolutional neural network remain valid 

in convolutional auto encoder networks. Hence, we can 

adapt some of the previous equations on convolutional 

neural networks and auto encoders to the learning of 

convolutional auto encoders using the tied weights 

approach. 
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Where, n denotes the n-th feature map in a convolution 

layer L1, and ( 1)L

encoderW is the kernel weight matrix, while 

( 1)( )L nb  and ( )( )y nb  are the biases of the n-th feature map 

for auto encoder convolution layer L1 [20]. 

 

VI.  NETWORK TRAINING AND TESTING 

6.1  Data analysis 

The two neural network architectures described above 

are trained on databases of Yoruba vowel characters. 

Hundreds of handwritten images of the characters are 

collected employing different people; they are then 

processed into the respective databases described below 

[18].  

 

-Training database of Yoruba vowel characters:    A1 

-Validating database of Yoruba vowel characters: A2 

-Translated database of Yoruba vowel characters: A3 

-Rotated database of Yoruba vowel characters:      A4 

-Scale different database of Yoruba vowel characters: 

A5 

 

Images in all the databases are processed as necessary. 

Networks are trained and validated on processed 

databases A1 and A2 respectively. Furthermore, we 

simulated or tested all the different trained networks with 

databases A3, A4, and A5 to obtain networks‘ 

performances on pattern invariance learning. 

 

 

Fig.3. Unprocessed character images 

Fig. 3 above shows the 7 unprocessed handwritten 

Yoruba vowel characters. These images are processed 

through the sequence: binarization of images, conversion 

to negatives, 10 × 10 median filtering, rescaling to 32 × 

32 pixels using pattern averaging, and cropping of pattern 

occupied region of images. i.e. patterns centered. See Fig 

4. 

 

 

Fig.4. Processed characters
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 Database A1: 

The database samples used for the training of networks 

is shown in Fig. 5; the original handwritten characters are 

rotated in order to generate more samples for training. 

 

 

Fig.5. Training database characters 

 Database A2: 

This database is created to observe if over-fitting 

occurred during training of the networks. The database 

contains similar sample character images as in the 

training database A1. It is to be noted that none of the 

images found in this database is part of the training 

database A1. Samples of the characters in this database 

are shown in Fig.6.  

 

 

Fig.6. Validation database characters 

 Database A3: 

Fig. 7 show samples of the training and validation 

characters, but now translated spatially, vertically and 

more significantly horizontally in the images.  

 

 

Fig.7. Translated characters database 

This database is meant to test the performance of the 

trained networks on translation tolerance. i.e. built-in 

capability in recognizing translated versions of training 

samples. It is to be noted that the number of image pixels 

remains 32 × 32, as for all other databases within this 

work. 

 Database A4: 

 

In order to further investigate the built-in capability of 

the trained networks in recognizing rotated copies of the 

character samples, database A4, which is not part of the 

training and validation sets is used for testing. i.e. Fig.8. 

 

 

Fig.8. Rotated database characters 

 Database A5: 

This database contains characters essentially in the 

training and validation databases, but now with various 

different scalings; the characters in this database have 

either been blown up or scaled down, as can be seen in 

Fig.9. 

 

 

Fig.9. Scale variant database characters 

6.2  CNN training 

Input images are of size 32×32, and a kernel size or 

receptive field of 5×5 pixels is used in the first 

convolution layer (C1) to extract local features; 6 feature 

maps are extracted. The number of pixels for each feature 

map can be calculated as 28 × 28 using Equations 1 & 2 

from section 3.1. A 2 × 2 sub-sampling mask with max 

pooling is used in the pooling layer of the first layer (S1). 

The same kernel size and sub-sampling mask as above 

are used for convolution maps (C2) and sub-sampling 

feature maps (S2) in the second layer. 12 convolution 

maps of size 5 × 5 are used in the layer preceding the 

classifier module. Many experiments were carried out to 

determine the suitable training parameters. A dual core, 

intel (R) Pentium (R) (2.00 GHz) CPU with 3GB RAM is 

used for all trainings and simulations. The final training 

parameters for the network are shown below in Table 1. 

Table 1. Training parameters of CNN 

Number of training samples 14,000 

Activation function Log-Sigmoid 

Learning rate 0.65 

Epochs 4,758 

Training time (secs) 308 

Mean Squared Error (MSE) 0.010 

 

14,000 training samples are used, and after 4758 epochs, 

the network converged to a MSE of 0.010. The learning 

curve is shown in Fig. 10. 

Also, a 10-fold cross-validation scheme is used to stop 

training. i.e. reducing the chances over-fitting. 
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Fig.10. CNN learning curve 

6.3  CAE training 

The convolutional auto encoder network learnable 

weights are initialized as discussed in section 5, and the 

training parameters are shown below. A 5×5 filter was 

used for convolving the input and sub-sampling window 

of size 2×2 for pooling; 12 feature maps are extracted for 

the hidden layer. 

Table 2. Training parameters of CAE 

Number of training samples 14,000 

Activation function Log-Sigmoid 

Learning rate 0.58 

Epochs 1,189 

Training time (secs) 158 

Mean Squared Error (MSE) 0.008 

 

The CAE is later fine-tuned discriminately for 

classification of the characters using the back propagation 

algorithm. The learning curve is shown in Fig 11. Also, a 

10-fold cross-validation scheme is used to stop training. 

 

 

Fig.11. CAE learning curve 

6.4  Network testing and discussion 

The performances of the CNN and CAE are presented 

in this section. The networks are trained as described 

above using training database A1, validated using 

database A2; and then simulated with databases A3, A4, 

and A5, with each containing images with a particular 

invariance of interest as described in section 5. Table 3 

summarizes the error rates achieved by the trained 

networks, including run times to simulate all databases 

for each network. Error rates (E.R) can be calculated 

using Equation 10. 

 

samplestestofNo

samplesiedmisclassifofNo
RE

.

.
.           (10) 

 

Table 3. Error rates for network testing 

Networks Samples CNN CAE 

Validation data: A2 2,500 2.78% 1.51% 

Translated data: A3 700 67.14% 65.29% 

Rotated data: A4 700 13.71% 12.71% 

Scale varied data: A5 700 28.00% 26.57% 

Run time (s) 4,600 8.67 5.58 

 

For comparative analysis, we have compared the 

results obtained in this work with network performances 

achieved in an earlier published work on Yoruba 

character recognition using the same databases. The 

results obtained in the earlier work are given in Table 4 

[18]. 

Table 4. Error rates for other networks [18] 

Networks Samples BPNN DAE SDAE DBN 

Validation 

data 

2,500 6.39% 6.79% 5.67% 3.77% 

Translated 

data 

700 82.86% 80.00% 74.29% 81.43% 

Rotated 

data 

700 27.29% 24.86% 22.14% 19.86% 

Scale varied 
data 

700 36.58% 30.57% 27.43% 23.29% 

 

Where, BPNN is a back propagation neural network 

with 2 hidden layers, DAE is a denoising auto encoder, 

SDAE is a stacked denoising auto encoder with 2 hidden 

layers, and DBN is a deep belief network with 2 hidden 

layers. 

It will be seen from table 3 & 4 that the CAE and CNN, 

on the average, outperform other networks in the earlier 

work, considering achieved error rates.  Also, from Table 

3, it can be seen that the CAE slightly outperforms the 

CNN on all the invariances considered; and has a lower 

average run time for testing compared to the CNN. 

Since the training database, A1, contains rotated 

images, it follows that some prior knowledge about 

character rotation was built into the networks during the 

training phase of the networks due to the data 

manipulation just described above. Nevertheless, 

networks were still tested on rotational invariance using 
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database A4. In contrast, all the networks have no prior 

knowledge on translation and scale invariance. 

It can be explained that CNN and CAE, which 

implement convolution operations, achieved more 

invariance learning in comparison to BPNN, DAE, and 

SDAE, due to learning paradigms  such as local receptive 

fields, weight sharing, and pooling operations. 

In CNN, kernel weights are initialized randomly, hence, 

the weights may start out in a weight space that makes 

convergence less favourable. In contrast, the kernel 

weights in the CAE are learned by the auto encoder 

through an unsupervised pre-training scheme described in 

sections 3 and 4. The kernels learned in this manner have 

weights that are favourable to achieving both better 

optimization and regularization effects during training 

[19] [21], hence, the observed lower error rates obtained 

from the CAE network. Furthermore, it will be seen that 

the CAE took lesser training epochs and time for proper 

learning of the characters, compared to the CNN. Also, 

the run time for the CAE is lesser than the CNN. i.e. 

Table 3. 

 

VII.  CONCLUSION 

This work investigates invariance learning in pattern 

recognition, an important constraint in many applications. 

We explore the achievable built-in invariance in neural 

networks which implement convolution operations, CNN 

(Convolutional Neural Network) and CAE 

(Convolutional Auto Encoder). Presented results show 

that CNN and CAE achieve better invariance learning 

compared to BPNN (Back Propagation Neural Network), 

DAE (Denoising Auto Encoder), SDAE (Stacked 

Denoising Auto Encoder) and DBN (Deep Belief 

Network). 

Furthermore, we show that by leveraging on learned 

kernels through pre-training, better results can be 

obtained for the CAE as against the CNN. 

It is to be noted that the classification task described in 

this work is quite hard considering that the characters to 

be recognized have diacritical marks, hence, an increase 

in the number of variations or achievable samples from 

each character; which when combined with the different 

writing styles of people, the problem may be seen as 

exponentially complex. The use of convolution based 

networks is more suited since the relative positions of 

diacritical marks can be captured during learning. 

Lastly, it is the hope that advances in biological visual 

processing may suggest modifications or new 

architectures of neural networks that better lend 

themselves to intelligent recognition, and pattern 

invariance learning. 
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