
I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12
Published Online June 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijigsp.2016.06.01

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

Feature Tracking and Synchronous Scene

Generation with a Single Camera

Zheng Chai
Graduate School of Information, Production and Systems, WASEDA University, Japan

Email: abner.sunny@moegi.waseda.jp

Takafumi Matsumaru
Graduate School of Information, Production and Systems, WASEDA University, Japan

Email: matsumaru@waseda.jp

Abstract—This paper shows a method of tracking feature

points to update camera pose and generating a

synchronous map for AR (Augmented Reality) system.

Firstly we select the ORB (Oriented FAST and Rotated

BRIEF) [1] detection algorithm to detect the feature

points which have depth information to be markers, and

we use the LK (Lucas-Kanade) optical flow [2] algorithm

to track four of them. Then we compute the rotation and

translation of the moving camera by relationship matrix

between 2D image coordinate and 3D world coordinate,

and then we update the camera pose. Last we generate the

map, and we draw some AR objects on it. If the feature

points are missing, we can compute the same world

coordinate as the one before missing to recover tracking

by using new corresponding 2D/3D feature points and

camera poses at that time. There are three novelties of

this study: an improved ORB detection, which can obtain

depth information, a rapid update of camera pose, and

tracking recovery. Referring to the PTAM (Parallel

Tracking and Mapping) [3], we also divide the process

into two parallel sub-processes: Detecting and Tracking

(including recovery when necessary) the feature points

and updating the camera pose is one thread. Generating

the map and drawing some objects is another thread. This

parallel method can save time for the AR system and

make the process work in real-time.

Index Terms—Tracking, Synchronous map, Camera

pose update, Parallel, Tracking recovery

I. INTRODUCTION

In this section we will introduce the general

implementation steps of the AR system and some similar

systems.

A. General Implementation Steps

Virtual reality (VR) and augmented reality (AR) are

very hot topics nowadays, and the latter one has a

brighter future because it is based on the real scene. There

are two kinds of AR system classified by whether there

are some markers or not. For marked AR, some signals or

pictures will be the markers and detected by the system

and then some virtual objects will be drawn on those

markers. For unmarked AR, there are no signs defined at

the beginning and what we should do is to find some

feature points which can be markers, and then some

virtual objects can be drawn on those markers.

As mentioned above, the detection of feature points

which can be tracked accurately and robustly is very

important. In this paper, we use the improved ORB

corner detection algorithm to detect feature points

(corners). This kind of corner works fast and has three

kinds of invariances. More details will be shown in

SectionⅡ-A and Section Ⅲ-A. Then we use LK optical

flow to track those corners and obtain the depth

information by different distances of corners’ movement.

After selecting some corners (the way to select non-

collinear but coplanar four feature points will be

discussed in Section Ⅲ-B), we can use BF (Brute-Force)

or FLANN (Fast Library for Approximate Nearest

Neighbors) [4] match algorithm or optical flow algorithm

to track them. By the position, size, direction and

invariances of points, we can easily find out the same

points in two frames. In this paper, LK optical flow

algorithm is selected and we must consider several

conditions which can make the process work well. More

details will be shown in Section Ⅲ-B.

In AR system, the sense of reality is very important.

For the virtual objects that we draw at some specified

location, they must have rotation and translation along

with the camera movement. It means they must look like

that we see them with our own eyes. To realize this kind

of effect, we should compute the camera pose by those

tracked points. Firstly we obtain the internal parameters

and distortions of the camera by Zhengyou Zhang

calibration algorithm [5] [6]. Then we use corresponding

2D/3D points and the intrinsic matrix composed by

internal parameters to calculate the rotation and

translation matrix, as the camera pose. More details will

be shown in SectionⅡ-B and Section Ⅲ-C.

Once we calculate the camera pose, we can swap the

camera pose data, control the camera in OpenGL by the

model view matrix, and make the virtual objects more

realistic. The map generation and objects rendering will

in shown in Section Ⅲ-D. If the tracked feature points are

missing, we compute the 3D feature points in the world

coordinate that is the same as the previous one before

2 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

missing by using the new 2D feature points and the

camera pose at that time. Then we can continue to track

and render AR objects at the specified location. More

details will be shown in Section Ⅲ-E.

B. Similar Systems

In robotic mapping, SLAM is the computational

problem of constructing or updating the map of an

unknown environment while simultaneously keeping

track of an agent's location within it. Here we introduce

two kinds of related system here: monoSLAM [7]

(Monocular Simultaneous localization and mapping) and

PTAM [3] (Parallel Tracking and Mapping), although

there are also other tracking systems [8] [9] [10] [11] [12].

The former, monoSLAM selects an invariant visual

feature like SIFT (Scale-Invariant Feature Transform) [13]

corner to track and use EKF (Extended Kalman Filter) to

update the covariance matrix and filter feature points.

Then it updates the camera pose and does the graphical

rendering.

The latter, PTAM selects FAST (Features from

Accelerated Segment Test) [14][15] corner, which runs

hundreds of times faster than SIFT corner to track, and

uses the five-point algorithm to estimate initial camera

pose. It obtains 3D points by triangulation and adds more

3D points by epipolar search. Then PTAM uses 3D points

to estimate a significantly plane decided by calculating

the minimal reprojection error. At last PTAM draws the

AR objects and it uses parallel method to save time.

II. BACKGROUND

In this section we will introduce some basic knowledge

about three kinds of feature detection and coordinate

transformation.

A. Feature Detection

In the field of computer vision and image processing,

the feature detection is a basic but important issue. A

feature is defined as an "interesting" part of an image and

features are used as a starting point for many computer

vision algorithms. Detecting good features is very

important for tracking system [16] [17]. There are main

three kinds of features: Edges, Corners and Blobs.

Edges are points which compose a boundary (or an

edge) between two image regions. In general, an edge can

be many kinds of shape and may include the junctions by

two or more edges. In practice, edges are usually defined

as sets of points in the image which have a strong

gradient magnitude. Corners are usually defined as point-

like features in an image and generally have a regional

two-dimensional structure. We usually detect the corners

by looking for high levels of curvature in the image

gradient. Blobs provide a complementary description of

image structures in terms of regions and the detector

generally detects areas in an image which are too smooth.

The corners can be detected and tracked easily and

accurately in AR system, so we introduce several corner

detection algorithms here.

Table 1 shows the comparison of corner detection

algorithms. The experiments based on these algorithms in

Table 1 are coded by ourselves, and they are tested on

some images with 640*480 resolution. Harris [18] and

FAST algorithms cost less time. But considering the

rotation invariance and the scale invariance, the latter

three algorithms are better choices. SIFT and SURF

(Speeded up Robust Features) [19] algorithms cost too

more time than ORB algorithm to make the system work

in real-time. So we think in general, ORB algorithm is the

best choice because of its faster speed and good effects.

More details about ORB detection algorithm will be

shown in Section Ⅲ-A.

B. Coordinate Transformation

As we know, 3D points in the real world will be

projected to 2D points on the image by a camera. To

estimate and update the camera pose, we must know the

relationship between the world coordinate and the image

coordinate. Then we can use corresponding point sets and

the intrinsic matrix of the camera to calculate the camera

poses like rotation and translation. So the coordinate

transformation is introduced firstly

The first coordinate introduced here is the image

coordinate, which is shown in Fig. 1. The point O1 (u0, v0)

is the principal point that is usually at the image center,

and the point (u, v) in image coordinate can be expressed

by following equations:

 ⁄ (1)

 ⁄ (2)

In (1) and (2), u and v are pixel coordinate and dx and

dy are units of x-axis and y-axis. Equation (1) and (2) can

be expressed by following matrix expression:

(

) (

)(

) (3)

The second coordinate introduced is the camera

coordinate, which is shown in Fig. 2. The distance of

OCO is the focal length that will be presented by f in

following two equations deduced by similar triangles rule:

Table 1. Comparison of Corner Detection with 640*480 Resolution

 Time

cost

(ms)

Feature

points

Brightness

invariance

Rotation

invariance

Scale in-

variance

Harris 23 230 yes yes no

FAST 2 419 yes no no

SIFT 812 691 yes yes yes

SURF 160 1446 yes yes yes

ORB 19 502 yes yes yes

 Feature Tracking and Synchronous Scene Generation with a Single Camera 3

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

⁄ (4)

⁄ (5)

Expression (4) and (5) can be expressed by the

following matrix expression (6) which shows the

relationship between the image coordinate and the camera

coordinate:

Fig.1. Image Coordinate

Fig.2. Image/camera/world Coordinate

 (

) (

)(

) (6)

We also can see from Fig. 2 that the world coordinate

can be easily rotated and translated to the image

coordinate like the following relationship matrix equation:

(

) = () (

) (7)

In (7), R is the rotation matrix (3*3) and T is the

translation matrix (3*1). Once we know both the

relationship between the image coordinate and the camera

coordinate by (3) and (6) and the relationship between the

camera coordinate and the world coordinate by (7), we

can deduce the relationship between the image coordinate

and the world coordinate:

 (

) = (

)(

) ()(

)

= (

) () (

)= (

) (8)

In the relationship matrix (8), fx and fy are the focal

lengths expressed in pixel units. M1 is called intrinsic

matrix (3*3) including four internal parameters: fx, fy, u0

and v0. M2 is called extrinsic matrix (3*4) included two

external parameters: rotation matrix R and translation

matrix T. This relationship (8) can help us to compute

camera pose rapidly and recover tracking. More details

will be presented in Section Ⅲ-C and Section Ⅲ-E.

III. PROPOSED ALGORITHM

In this section we will detail the proposed algorithm by

five parts: corner detection, corner tracking, camera pose

update, map generation and tracking recovery.

Fig.3. Architecture of Proposed Algorithm

Fig. 3 has shown the architecture of the proposed

algorithm. Firstly, images are captured by moving camera

(ⓐ in Fig. 3) and the data of images are extracted (ⓑ) to

generate a synchronous map (ⓒ) in the whole process.

The ORB corners are detected (ⓓ) and tracked by LK

optical flow to obtain the depth information (ⓔ). Then

4 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

we can select four feature points (ⓕ) which are on the

same plane (we select one point to be the center and the

system selects other three points which have same depth

automatically). Those four points are tracked again (ⓖ),

and if the tracking is successful we use these 2D corners

and corresponding 3D points initialized at the beginning

to compute the camera pose including rotation and

translation (ⓗ). The pose data is converted to the model

view matrix in OpenGL to adjust the perspective (ⓘ),

and then some AR objects are rendered (ⓙ) in a real

scene. If the tracking is failed, we save the camera pose at

that time and detect the ORB corners again (ⓚ). Select

four of them to compute new corresponding 3D points

(ⓛ), and then we use these pairwise points to compute

the new camera pose to continue tracking and draw AR

objects again, which is tracking recovery process.

A. Corner Detection (ⓐⓓⓔ in Fig. 3)

We have introduced several corner detection

algorithms in SectionⅡ -A and selected the ORB [1]

corner detection algorithm. From the name of ORB

(Oriented FAST and Rotated BRIEF) we can see that it is

a combination and improvement of FAST detection and

BRIEF (Binary Robust Independent Elementary Features)

[20] description. It works faster than SIFT and SURF and

it is free for business.

Firstly ORB uses FAST detector to detect feature

points and then it uses a response function of Harris to

select N feature points which have maximal response.

Then it builds a Gaussian pyramid to solve the scale-

invariance problem. For the rotation-invariance problem,

we have following calculation to compute direction of

feature points [21]:

 () (9)

The m is defined like following:

 ∑ () (10)

This I(x, y) is the scale value of point (x, y).

After obtaining the FAST feature points, we need to

describe them by BRIEF descriptor. BRIEF generate a

binary code string whose length is 256 from 31*31 pieces

around feature points. For each 31*31 piece, we use an

average scale of a 5*5 block instead of one pixel’s scale

to remove interference of noise. There are totally (31-

5+1)*(31-5+1) sub-blocks, and we use some methods to

decide the way to select 256 pairs of sub-blocks to

generate a binary code string. Here we introduce ORB

detection algorithm simply because we just use it with a

little change. More details are in the paper [1]. In our

system, we remove the close feature points by a loop

algorithm which make the distance between two feature

points at least 10 pixels. It is useful to select other three

feature points automatically after we select one center,

which will be introduced in Section Ⅲ-B.

After the detection of feature points, we obtain many

ORB corners and we have to select four points which are

on the same plane to compute the camera pose. Here we

use LK optical flow algorithm to track those corners and

compare the motion of corners after the camera moved a

little distance. (The LK optical flow is introduced in the

next Section Ⅲ-B.) Firstly, we select one frame as the

initial frame including many corners. Then we move the

camera a little in a straight line at a suitable speed while

keeping the frame after the movement. We count the

distance for each feature points from the initial frame to

the end frame to find the minimal and maximal distance,

and then we save the depth data by the following method:

 (
 ⁄) (11)

In (11), d is the distance of one point from the initial

frame to the end frame. And e is expanding multiples for

drawing the feature points on the image with a suitable

size. If the depth is less than 1, we set it to 1. Fig. 4

shows the corner detection in some practical scenes.

The corner detection process costs 24 milliseconds

including ORB corner detection (19 milliseconds), LK

optical flow tracking (4 milliseconds) and depth

information calculation (1 milliseconds). Although it is a

little time-consuming, we need not worry about that,

because the corner detection process only occur at the

beginning and the tracking recovery process. We can see

it from Fig. 3 (the architecture of proposed the algorithm).

B. Corner Tracking (ⓕⓖ in Fig. 3)

In the previous part we use LK optical flow [2] [22] to

track all corners which are detected. The approximate

distance between corners and the camera is calculated by

the corners’ movement. LK optical flow is also used to

track four corners which are selected by manual operation.

In this part, we introduce this tracking algorithm.

LK optical flow algorithm is an improvement for

optical flow algorithm [23] [24]. At the beginning, we

build the Gaussian pyramids for two frames (image I and

image J) which need to be tracked and the initialize the

guess estimation of each pyramid:

 (12)

Then we define the location of point u on image I:

 (13)

We calculate the partial derivative I(x, y) for coordinate

x and y respectively:

 ()
 () ()

 (14)

 ()
 () ()

 (15)

And we build spatial gradient matrix G:

 ∑ ∑

 () () ()

 () ()
 ()

 (16)

 Feature Tracking and Synchronous Scene Generation with a Single Camera 5

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

Then we initialize the iterative for the first level and

calculate the image difference and the image mismatch

vector ̅ to obtain the optical flow and guess for each

level:

 () () (

)

(17)

 ̅ ∑ ∑
 () ()

 () ()

 (18)

Last we add the d0 and g0 to be the final optical flow

vector d. So the location of corresponding point v on

image J is like following:

 (19)

Here we introduce LK optical flow tracking algorithm

simply because we just use it without any change. More

details are in the paper [2]. After a certain number of tests,

we obtain the time cost of tracking process using LK

optical flow algorithm, which costs 4 milliseconds. Fig. 5

shows some results of tests.

 (a) (b) (c)

 (d) (e) (f)

Fig.4. ORB Corners with Depth Information (depth is sorted by color:
pink>yellow>cyan>blue>green>red) (a) scene 1, (b) scene 2, (c) scene

3, (d) scene 4, (e) scene 5, and (f) scene 6.

 (a) (b) (c)

 (d) (e) (f)

Fig.5. Four Tracking Feature Points (a) the frame obtained ORB corners
with depth information, (b) one center detected by ourselves and other

three corners detected by the system automatically, (c) moving the

camera to the right a little, (d) moving right again, (e) approaching to
corners a little, and (f) approaching closer again.

Next we talk about how to obtain these four feature

points. Firstly, we can select one point from those points

like Fig. 4 after we get the depth information. Then the

system sort the depth which is computed by (11) with

ascending order for all points. We find the point which

we select before in the sequence, and we extract another

three points around that point. We make sure that these

four points are different by comparing their x-coordinate

and y-coordinate. In the next part about the camera pose

calculation process, any three points in tracked four

points must be non-collinear. So here we must make sure

it. There are three kinds of combination: (p1, p2, p3), (p1,

p2, p4), (p2, p3, p4) for four points and we inspect each

combination. As we know, a line will be expressed by

p1(x1, y1) and p2(x2, y2) like following:

() () (20)

If the point p3(x3, y3) is on the line (20), it must satisfy

the following equation:

() () (21)

By using (21) we can judge whether three points are

collinear or not and we must make sure that above three

kinds of combination are all non-collinear, in other words,

any three points in tracked four points is non-collinear.

This part selects four non-collinear feature points

which have similar or the same depth, and we uses LK

optical flow to track them. Next part we talk about how to

find the corresponding 3D points and calculate the

rotation and translation of moving camera.

C. Camera Pose Update (ⓗ in Fig. 3)

In this section we talk about the update of camera pose

by the intrinsic matrix of the camera, the 2D points which

are tracked and the corresponding 3D points. Firstly, we

talk about the intrinsic matrix and the corresponding 3D

points. Then we introduce how to compute the camera

pose.

Fig.6. Distortion of Lenses

In the Section Ⅱ -B, we introduced the relationship

between the image coordinate and the world coordinate.

M1 in (8) is called intrinsic matrix including four internal

parameters: fx, fy, u0 and v0. These four parameters are

changed by the resolution of the image captured by the

camera. In this paper, we calibrate the camera by using

Zhengyou Zhang calibration algorithm [5] to obtain the

internal parameters and distortions of lenses. Real lenses

usually have distortion, mostly radial distortion and slight

tangential distortion like dr and dt in Fig. 6. Real point

location x’ and y’ can be expressed like following:

6 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

 (

) (22)

 (

) (23)

The distortion parameters p1, p2, k1 to k6 can be also

calibrated by Zhengyou Zhang calibration algorithm.

Next, we introduce how to obtain the corresponding

3D points from the 2D points which are tracked by LK

optical flow algorithm. The four 2D points which we

select in the previous part is as in Fig. 7 and we make the

first selected point as the center of the world coordinate.

Fig.7. Correspongding 3D Points

According to the difference of x-coordinate and y-

coordinate between the rest of the three 2D points and the

center, we calculate x-coordinate and y-coordinate of the

rest of the three 3D points. As we know, these four 3D

points are on the same plane because they have similar or

the same depth so that we set the z-coordinate to zero.

We just compute the coordinate of the 3D points only

once at the beginning of tracking.

Last we talk about how to compute the camera pose by

the 2D points which are tracked and the corresponding

3D points. We give a transformation of (8) like following:

 (

) = (

)(

)(

) (24)

We use x and y instead of u and v to express the pixel

coordinate. R is a 3*3 rotation matrix and T is a 3*1

translation matrix. They are expressed by 9 elements R11

to R33 and 3 elements T1 to T3. After expanding (24), we

get following three equations:

 () (

) () (25)

 () (

) () (26)

 (27)

We set Zw to zero and bring (27) into (25) and (26),

then we get the following equations after extracting Xw

and Yw:

{

 ()

 ()

 ()

 ()

 (28)

In (28), fx, fy, u0 and v0 are internal parameters and (Xw,

Yw, Zw) and (x, y) are 3D and 2D points’ coordinates.

There are only 9 unknown variables: R11, R12, R13, R21, R22,

R23, T1, T2 and T3. For rotation matrix R, there is a rule

that value of sum of squares in each row is 1:

∑

 (29)

So R13 and R23 can be expressed by R11, R12, R21 and

R22. After that, we have only 7 unknown variables and

they can be solved by at least 7 equations. From (28) we

find that one group of corresponding 3D (Xw, Yw, Zw) and

2D (x, y) points provide 2 equations so that 4 groups can

provide 8 equations to solve those 7 unknown variables.

Then we use (29) to calculate R13 and R23. Because Zw is

zero, R31, R32 and R33 cannot be solved by (29). But for

rotation matrix R, there is another rule that value of sum

of squares in each column is also 1:

∑

 (30)

So R31, R32 and R33 can be expressed by R11, R21, R12,

R22 R13 and R23.

(a) (b) (c)

(d)

 (e) (f) (g)

(h)

Fig.8. Camera Pose Update cene 1: (a) AR object rendering, (b) four
tracked corners, (c) world coordinate (red points are corners and yellow

point is camera), and (d) camera pose under scene 1. cene 2: (e) AR
object rendering, (f) four tracked corners, (g) world coordinate (red

points are corners and yellow point is camera), and (h) camera pose

under scene 2

 Feature Tracking and Synchronous Scene Generation with a Single Camera 7

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

The above shows the calculation process about camera

pose including 9 parameters of rotation and 3 parameters

of translation, which costs only 1 ms. The four 3D points

will not be changed until they are missing and the four

2D points will always be changed in the update process

because of the camera movement. Fig. 8 shows the

camera pose in two different scenes.

D. Map Generation (ⓑⓒⓘⓙin Fig. 3)

In the previous part, we have calculated the camera

pose of moving camera by a group of the 2D feature

points in the image coordinate and the corresponding 3D

points in the world coordinate. In this part, we load the

textures of images captured by camera firstly and then

adjust the model view matrix in every frame by the vector

of rotation and the vector of translation. Finally some AR

objects are rendered on this map.

In this paper, we use OpenGL to render the map and

AR objects. We must firstly transform the coordinate

space from OpenCV to OpenGL. As we know, it’s right-

handed Cartesian coordinate in OpenGL. But in OpenCV,

the X-axis turns towards right, Y-axis turns towards

down, and Z-axis turns towards the inside of screen like

Fig. 9. So we must rotate it by 180 degrees around X-axis.

Then we make a scaling in OpenGL according to the size

of the image captured by the camera. We extract the data

to make it into a texture and load the texture. Last we

adjust the translation transformation and render the

texture at a specified location.

(a) (b)

Fig.9. Different Coordinates in OpenCV and OpenGL a) OpenCV, (b)
OpenGL(Right-handed Cartesian Coordinates)

For rendering of AR objects, we can draw it by

OpenGL’s functions or just load some 3D models. Here

we develop a box pushing game Sokoban by OpenGL’s

functions and we render it around the center of the world

coordinate. In the rendering process, we need to adjust

the perspective by loading the model view matrix which

can control the OpenGL’s camera. Notice that the matrix

elements are stored in a column-major order in OpenGL

like following matrix:

[

] (31)

After adjustment in OpenGL about the camera pose,

we can render the AR objects with a specific perspective

which is the same as the camera in real world. Fig. 10

shows the result of the map generation and the AR

objects rendering in three different scenes.

(a)

(b)

(c)

Fig.10. Map Generating and AR Object Rendering (right – original
image with four corners. left – same scene with AR objects rendered) (a)

keyboard of laptop, (b) newspaper in sundries, and (c) mouse pad.

This process has two sub-processes: map generating

and objects rendering. Extracting texture data from the

image captured by the camera and rendering the map are

the map generation sub-process which cost 1.5

milliseconds. Adjusting the perspective and rendering the

AR objects are the objects rendering sub-process which

cost 0.5 milliseconds. So the whole process costs 2

milliseconds. Considering about loading 3D model files

costs more time (here we just draw the AR objects by

OprnGL and sometimes the 3D model will improve the

effect), so we divide the system into two parallel threads:

tracking and rendering. It is easy and convenient for us to

do more things like loading some 3D model files in

rendering thread, and this way could save time for the

whole system. Each thread will wait for another thread

and start a new loop together, which is as shown in Fig. 3

(the architecture of the proposed algorithm).

E. Tracking Recovery (ⓚⓛ in Fig. 3)

In the past four parts, we have introduced the main

process of AR tracking system in detail. Next we talk

about the case that the tracked feature points are missing.

Because the camera is always moved, those four feature

points will be out of image frequently. One idea about

tracking recovery is the corner matching, which means

we can detect new corners on the new images and use

some matching algorithm to find out those four corners

before missing. But this method need accurate and fast

8 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

matching algorithm. BF algorithm and FLANN [4]

algorithm have been tried but the results are not good in

terms of speed and accuracy. We must give up this way

and try another idea which uses the relationship between

the image coordinate and the world coordinate like (24).

It means we can detect new corners on new images, select

four feature points, and compute their corresponding 3D

points. Then we can use the new corresponding 2D and

3D points to compute the camera pose again, and the new

world coordinate is the same as the old world coordinate

before missing because we use the camera pose from the

old world coordinate to compute the 3D points in the new

world coordinate by new 2D feature points.

From (25), (26) and (27), we can obtain following

equations after sorting:

{

 ()

 ()

 ()

 ()

 ()

 ()

 (32)

As we can see from (32), computing the 2D point

coordinate is very easy if we know the 3D point

coordinate, but the reverse is not true. Fortunately, those

3D point are on the same plane whose Zw is zero. So we

can easily calculate the 3D point coordinate if we know

the 2D point coordinate by following equations which is

the matrix transformation of (32) when Zw is zero:

[

]

 [

] *

+ (33)

Solving the 3D point coordinate problem equals to find

the unique solution of non-homogeneous linear equations.

Like the following equation:

*

+ [

] *

 + (34)

We define D is determinant of coefficient like

following:

 |

| (35)

We also define d1 and d2 like following:

Fig.11. Tracking Recovery (right – original image with corners, left – same scene with AR objects rendered) (a) corners

are going to miss (blue one is the center), (b) having missed and detecting feature points again, and (c) selecting four

feature points and recovering tracking (the blue center appears again), (d) the recovered corners are going to miss, (e)
having missed and detecting feature points again, and (f) selecting four corners and recover tracking again (the blue

center appears at the same location).

(a)

(b)

(c)

(d)

(e)

(f)

 Feature Tracking and Synchronous Scene Generation with a Single Camera 9

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

 |

 | (36)

 |

 | (37)

According to Cramer's rule [25], if D is not zero and

not both e and f are zero, non-homogeneous linear

equations like (34) has the unique solution like:

{

 ⁄

 ⁄
 (38)

So when the tracked feature points are missing, we

lock the frame and detect the new ORB corners and select

four corners which on the same plane by ourselves. We

calculate the camera pose from the previous frame and

use (33) to (37) to calculate the 3D point coordinates (Xw,

Yw, 0) by the camera pose and the internal parameters of

camera for each of those four 2D points.

Once we obtain the corresponding 3D feature points,

we can track 2D corners again and use (25) to (30) in

Section Ⅲ-C to calculate the new camera pose. This way

can find the center of the world coordinate before missing

and render the AR objects again, which is the tracking

recovery. Fig. 11 shows the experimental results of two

consecutive tracking recovery.

The results shows the tracking recovery works well in

limited number of times. We find there is a little error

after repeated calculations because we use the camera

pose at the previous frame before missing and 2D points

at the next frame. More about the data analisis is shown

in Section Ⅳ-C. The tracking recovery process includes

ORB corners detection which costs 19 milliseconds and

3D points calculation which costs 0.5 milliseconds. So

the whole process costs 19.5 milliseconds but it only

occurs when feature points are missing.

IV. SIMULATION EXPERIMENT AND RESULT ANALYSIS

We have given simulation experiments and analyzed

the result for each part of the previous section. Here we

give a demonstration of the whole process of our system.

Table 2. Depth Distribution of Corners

Moving distance (depth: pixel) Number (total: 194)

14.835 (minimal) – 20 29

20 – 25 20

25 – 30 21

30 – 35 94

35 – 38.778 (maximal) 30

Table 3. Processed Depth Distribution of Corners

Depth distribution size / color Number (total: 194)

1 (0 – 19.624) 1 / red 28

1 – 2 (19.624 – 24.412) 3 / green 18

2 – 3 (24.412 – 29.201) 5 / blue 21

3 – 4 (29.201 – 33.989) 7 / cyan 93

4 – 5 (33.989 – 38.778) 9 / yellow 33

5 (38.778) 10 / pink 1

A. Corner detection and selection

Firstly we detect ORB corners like Fig. 12, and then

we get the different number of depth corners by the

moving distance like Table 2. Then we set the expanding

multiples to 5 and use (11) to obtain processed depth

data, which are shown in Table 3. We also set different

sizes and colors for points to show the depth information

of points clearly, which are shown in Fig .12 and Table 3.

Last we select four corners whose depth data are shown

in Fig. 13_(c) and render the initial AR object around the

center of the world cooedinate which is decided by those

four corners.

 (a) (b) (c)

Fig.12. Depth ORB Corners Detection (a) ORB corners detection, (b)
LK optical flow tracking, and (c) obtain the depth information after

calculation.

 (a) (b) (c)

Fig.13. Corner Selection and Object Rendering (a) select four corners to
track (blue one is the center), (b) render AR objects around the blue

center, and (c) the depth data of four corners.

Table 4. Camera Pose of Specific Perspective

Perspective

Camera Pose

Rotation Translation

1 in Fig. 14

0.7920751 -0.149264 0.5918927 0.4616123

-0.193632 0.8581277 0.4755242 -1.709866

-0.578898 -0.491260 0.6507992 9.7796952

2 in Fig. 14

0.8432300 0.1511578 -0.515862 0.8800349

0.0256208 0.9472583 0.3194450 -1.627832

0.5369419 -0.282582 0.7948839 10.19600

3 in Fig. 14

0.8659636 0.1697859 0.4704037 -1.024721

-0.000671 0.9410001 -0.338405 -1.306448

-0.500106 0.2927310 0.8149858 7.5661901

10 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

This experiment demonstrates that we can obtain ORB

corners with approximate depth information successfully.

The selection about four non-collinear but coplanar

feature points also works well, and it is necessary for later

experiments.

B. Corner tracking & Camera pose updating

After obtaining feature points, we can move the camere

and use LK optical flow to track them. Then we use (24)

to (30) to compute the camera pose consecutively. We

control the OpenGL’s camera to adjust the perspective by

swapping the camera pose data.

 (a) (b) (c)

 (c) (d) (e)

 (f) (g) (h)

Fig.14. Camera Pose Update Perspective 1: (a) track four corners, (b)

render AR objects, and (c) four corners (pink) and camera (yellow) in

OpenGL coordinate.Perspective 2: (d) track four corners, (e) render AR

objects, and (f) four corners (pink) and camera (yellow) in OpenGL
coordinate.Perspective 3: (g) track four corners, (h) render AR objects,

and (i) four corners (pink) and camera (yellow) in OpenGL coordinate.

 (a) (b) (c)

 (d) (e) (f)

 (g) (h) (i)

 (j) (k) (l)

 (m) (n) (o)

Fig.15. Tracking Recovery (a) tracked four corners are going to miss, (b)

AR object is going to miss, (c) detect now feature points after missing,
(d) no object is rendered, (e) select new four corners, (f) AR object is

rendered again, (g) the blue center does not change, (h) AR object is

rendered at the same location like before missing, (i) four new corners
(pink) and camera (yellow) in OpenGL coordinate, (j) make the camera

farther away, (k) render AR object, (l) show them in OpenGL

coordinate (m) tracking missed and detect new corners again, (n) select
four of them and the blue center appears again, and (o) AR object is

rendered again

Fig. 14 shows the results of three consecutive

perspectives when we move the camera. Table 4 shows

the camera pose data of above three perspectives.

Combining the data of translation matrix, we draw the

camera in the world coordinate by OpenGL, which is

shown in Fig. 14_(c)(f)(i).

The average time cost of the calculation for camera

pose update is only 1 ms, which is less than it in

monoSLAM (5 ms) and PTAM (3.7 ms). This experiment

demonstrates that our algorithm about rapid update of

camera pose works well.

C. Tracking Recovery

Here we do the experiment about tracking recover,

which is shown in Fig. 15. When the feature points are

missing, we detect and select the corners again. Then we

use the camera pose at the previous frame and the new

2D corners to compute the new 3D points. Last we use

these new corresponding 2D and 3D points to calculate

the camera pose again.

To test the performance of the tracking recovery, we

calculate the new center by new camera pose and the 3D

center coordinate (0, 0, 0) of the world coordinate. Then

we draw it on the 2D image and calculate the error

between the new center and the initial center by distance

of pixels. The result is shown in Fig. 16. As we said

before, the error is very small although it will be

increased slowly.

(a)

 Feature Tracking and Synchronous Scene Generation with a Single Camera 11

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

(b)

(c)

Fig.16. Error between Initial Center and New Center after Tracking

Recovery(a), (b) error in sequential 20 frames (① before missing ②

first recovery ③ second recovery), the red curve is initial center pose

and the other colorful curves are center pose after calculation, and (c)

error comparison between ①, ② and ③.

This experiment demonstrates that our tracking recover

has a good performance in limited number of times.

D. Comparison with other System

We compare our system (Table 7) with monoSLAM

(Table 5) and PTAM (Table 6) that are introduced in

SectionⅠ-B in terms of calculation speed. Here we give

the cost of sub-process in each thread. We ignored the

time cost of ORB corners detection with approximate

depth information and the tracking recovery in time

statistics, because the former only occurs at the beginning

and the latter only occurs when the feature points are

missing. We can see from above tables that our system

saves much time meanwhile also has a good result.

E. AR objects rendering & Application

 (a) (b) (c)

 (d) (e) (f)

Fig.17. AR Game(a) four points are tracked (sequential with the
previous figure), (b) AR game is rendered, and (c), (d), (e), (f) different

levels of Sokoban.

Here we design an AR game named Sokoban, a box

pushing game as in Fig. 17, while using OpenGL to

render the texture. The rendering process is implemented

in an independent thread, and it runs with the main thread

at the same time. Any kinds of objects can be rendered on

this map, and the time cost of rendering is increased with

the increasing of complexity of AR objects.

Table 5. The Cost of Sub-process in MonoSLAM [7]

Sub-process Time cost

Image loading and administration 2 ms

Image correlation searches 3 ms

Kalman Filter update 5 ms

Feature initialization search 4 ms

Graphical rendering 5 ms

Total 19 ms

Table 6. The Cost of Camera Pose Update in PTAM [3]

Sub-process Time cost

Keyframe preparation 2.2 ms

Feature projection 3.5 ms

Patch search 9.8 ms

Iterative pose update 3.7 ms

Total 19.2 ms

Table 7. The Cost of Sub-process in Our System

 Sub-process Time cost

 (ORB corners detection with depth) (24 ms)

Tracking Feature tracking 4 ms

thread Camera pose update 1 ms

 (Tracking recovery) (19.5 ms)

Rendering Map generation 1.5 ms

thread AR objects rendering 0.5 ms

 Total 5 ms

V. CONCLUTION

This work presents a method of tracking feature points

with depth information to update the camera pose and

generating a synchronous map for AR system with a

certain tracking recovery ability.

The ORB corners with depth information works well

and it is easily for us to select some feature points on the

same plane. LK optical flow algorithm tracks feature

points robustly, which is very important for calculating

the camera pose later. Calculating rotation and translation

of moving camera by four non-collinear but coplanar

feature points also works well. Sometimes three of them

are almost collinear, which make the pose unstable. To

avoid this kind of cases, we can select those four points

by ourselves instead of the system as what we do in

tracking recovery. In rendering process, the map and AR

objects are rendered well and objects can rotate and

translate together with the camera accurately. The parallel

method saves time successfully so that more complex AR

objects can be rendered. For tracking recovery, it has a

good result after calculation in limited number of times.

When the number of missing times is increased, the

calculation error will become larger because we use the

-1
0
1
2
3
4
5

1 3 5 7 9 11 13 15 17 19

ER
R

O
R

(p
ix

el
)

FRAME

before missing first recovery
second recovery

12 Feature Tracking and Synchronous Scene Generation with a Single Camera

Copyright © 2016 MECS I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12

camera pose at the frame before missing. In the future

work, the system will be improved more in stability and

accuracy.

ACKNOWLEDGMENT

This research is supported partially by Waseda

University (2014K-6191, 2014B-352, 2015B-346),

Kayamori Foundation of Informational Science

Advancement (K26kenXIX-453) and SUZUKI

Foundation (26-Zyo-I29), to which we would like to

express our sincere gratitude.

REFERENCES

[1] Rublee, Ethan, et al. "ORB: an efficient alternative to

SIFT or SURF." Computer Vision (ICCV), 2011 IEEE

International Conference on. IEEE, 2011.

[2] Bouguet, Jean-Yves. "Pyramidal implementation of the

affine lucas kanade feature tracker description of the

algorithm." Intel Corporation 5 (2001): 1-10.

[3] Klein, Georg, and David Murray. "Parallel tracking and

mapping for small AR workspaces." Mixed and

Augmented Reality, 2007. ISMAR 2007. 6th IEEE and

ACM International Symposium on. IEEE, 2007.

[4] Marius Muja and David G. Lowe, "Fast Approximate

Nearest Neighbors with Automatic Algorithm

Configuration", in International Conference on Computer

Vision Theory and Applications (VISAPP'09), 2009.

[5] Zhang, Zhengyou. "Flexible camera calibration by

viewing a plane from unknown orientations." Computer

Vision, 1999. The Proceedings of the Seventh IEEE

International Conference on. Vol. 1. IEEE, 1999.

[6] Zhang, Zhengyou. "A flexible new technique for camera

calibration." Pattern Analysis and Machine Intelligence,

IEEE Transactions on 22.11 (2000): 1330-1334.

[7] Davison, Andrew J., et al. "MonoSLAM: Real-time single

camera SLAM." Pattern Analysis and Machine

Intelligence, IEEE Transactions on 29.6 (2007): 1052-

1067.

[8] Davison, Andrew J., Walterio W. Mayol, and David W.

Murray. "Real-time localization and mapping with

wearable active vision." Mixed and Augmented Reality,

2003. Proceedings. The Second IEEE and ACM

International Symposium on. IEEE, 2003.

[9] Bailey, Tim, et al. "Consistency of the EKF-SLAM

algorithm." Intelligent Robots and Systems, 2006

IEEE/RSJ International Conference on. IEEE, 2006.

[10] Chekhlov, Denis, et al. "Real-time and robust monocular

SLAM using predictive multi-resolution descriptors."

Advances in Visual Computing. Springer Berlin

Heidelberg, 2006. 276-285.

[11] Davison, Andrew J. "Real-time simultaneous localisation

and mapping with a single camera." Computer Vision,

2003. Proceedings. Ninth IEEE International Conference

on. IEEE, 2003.

[12] Rao, G. Mallikarjuna, and Ch Satyanarayana. "Visual

object target tracking using particle filter: a survey."

International Journal of Image, Graphics and Signal

Processing 5.6 (2013): 1250.

[13] D.G. Lowe, "Object Recognition from Local Scale-

Invariant Features" Proc. Seventh Int’l Conf. Computer

Vision, pp. 1150-1157, 1999.

[14] Rosten, Edward, and Tom Drummond. "Fusing points and

lines for high performance tracking." Computer Vision,

2005. ICCV 2005. Tenth IEEE International Conference

on. Vol. 2. IEEE, 2005.

[15] Rosten, Edward, and Tom Drummond. "Machine learning

for high-speed corner detection." Computer Vision–

ECCV 2006. Springer Berlin Heidelberg, 2006. 430-443.

[16] Castle, Robert O., Georg Klein, and David W. Murray.

"Wide-area augmented reality using camera tracking and

mapping in multiple regions." Computer Vision and

Image Understanding 115.6 (2011): 854-867.

[17] Castle, Robert O., and David W. Murray. "Keyframe-

based recognition and localization during video-rate

parallel tracking and mapping." Image and Vision

Computing 29.8 (2011): 524-532.

[18] Harris C, Stephens M. A combined corner and edge

detector[C]//Alvey vision conference. 1988, 15: 50.

[19] Bay H, Tuytelaars T, Van Gool L. Surf: Speeded up

robust features[M]//Computer vision–ECCV 2006.

Springer Berlin Heidelberg, 2006: 404-417.

[20] M. Calonder, V. Lepetit, C. Strecha, and P. Fua. Brief:

Binary robust independent elementary features. In In

European Conference on Computer Vision, 2010.

[21] P. L. Rosin. Measuring corner properties. Computer

Vision and Image Understanding, 73(2):291 – 307, 1999.

[22] B. D. Lucas and T. Kanade, ―An iterative image

registration technique with an application to stereovision,‖

Int. Joint Conf. on Artificial Intelligentc, pp. 674-679,

1981.

[23] Horn B K, Schunck B G. Determining optical

flow[C]//1981 Technical symposium east. International

Society for Optics and Photonics, 1981: 319-331.

[24] Brandt J W. Improved accuracy in gradient-based optical

flow estimation[J]. International Journal of Computer

Vision, 1997, 25(1): 5-22.

[25] Cramer, Gabriel (1750). "Introduction à l'Analyse des

lignes Courbes algébriques" (in French). Geneva:

Europeana. pp. 656–659. Retrieved 2012-05-18.

Authors’ Profiles

Zheng Chai, male, is currently working

toward the Master degree at the Bio-

Robotics & Human-Mechatronics

Laboratory in the Graduate School of

Information, Production and Systems

Department, WASEDA University. His

research interests include Computer

Vision, Image Processing, Augmented

Reality and Software Development.

Takafumi Matsumaru, male, is a

Professor at the Bio-Robotics &

Human-Mechatronics Laboratory in the

Graduate School of Information,

Production and Systems Department,

WASEDA University. His research

interests are mainly on Human-Robot

Interaction both physically and

informatively.

