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Abstract—This paper shows a method of tracking feature 

points to update camera pose and generating a 

synchronous map for AR (Augmented Reality) system. 

Firstly we select the ORB (Oriented FAST and Rotated 

BRIEF) [1] detection algorithm to detect the feature 

points which have depth information to be markers, and 

we use the LK (Lucas-Kanade) optical flow [2] algorithm 

to track four of them. Then we compute the rotation and 

translation of the moving camera by relationship matrix 

between 2D image coordinate and 3D world coordinate, 

and then we update the camera pose. Last we generate the 

map, and we draw some AR objects on it. If the feature 

points are missing, we can compute the same world 

coordinate as the one before missing to recover tracking 

by using new corresponding 2D/3D feature points and 

camera poses at that time. There are three novelties of 

this study: an improved ORB detection, which can obtain 

depth information, a rapid update of camera pose, and 

tracking recovery. Referring to the PTAM (Parallel 

Tracking and Mapping) [3], we also divide the process 

into two parallel sub-processes: Detecting and Tracking 

(including recovery when necessary) the feature points 

and updating the camera pose is one thread. Generating 

the map and drawing some objects is another thread. This 

parallel method can save time for the AR system and 

make the process work in real-time.  

 

Index Terms—Tracking, Synchronous map, Camera 

pose update, Parallel, Tracking recovery 

 

I.  INTRODUCTION 

In this section we will introduce the general 

implementation steps of the AR system and some similar 

systems. 

A.  General Implementation Steps 

Virtual reality (VR) and augmented reality (AR) are 

very hot topics nowadays, and the latter one has a 

brighter future because it is based on the real scene. There 

are two kinds of AR system classified by whether there 

are some markers or not. For marked AR, some signals or 

pictures will be the markers and detected by the system 

and then some virtual objects will be drawn on those 

markers. For unmarked AR, there are no signs defined at 

the beginning and what we should do is to find some 

feature points which can be markers, and then some 

virtual objects can be drawn on those markers.  

As mentioned above, the detection of feature points 

which can be tracked accurately and robustly is very 

important. In this paper, we use the improved ORB 

corner detection algorithm to detect feature points 

(corners). This kind of corner works fast and has three 

kinds of invariances. More details will be shown in 

SectionⅡ-A and Section Ⅲ-A. Then we use LK optical 

flow to track those corners and obtain the depth 

information by different distances of corners’ movement. 

After selecting some corners (the way to select non-

collinear but coplanar four feature points will be 

discussed in Section Ⅲ-B), we can use BF (Brute-Force) 

or FLANN (Fast Library for Approximate Nearest 

Neighbors) [4] match algorithm or optical flow algorithm 

to track them. By the position, size, direction and 

invariances of points, we can easily find out the same 

points in two frames. In this paper, LK optical flow 

algorithm is selected and we must consider several 

conditions which can make the process work well. More 

details will be shown  in Section Ⅲ-B. 

In AR system, the sense of reality is very important. 

For the virtual objects that we draw at some specified 

location, they must have rotation and translation along 

with the camera movement. It means they must look like 

that we see them with our own eyes. To realize this kind 

of effect, we should compute the camera pose by those 

tracked points. Firstly we obtain the internal parameters 

and distortions of the camera by Zhengyou Zhang 

calibration algorithm [5] [6]. Then we use corresponding 

2D/3D points and the intrinsic matrix composed by 

internal parameters to calculate the rotation and 

translation matrix, as the camera pose. More details will 

be shown in SectionⅡ-B and Section Ⅲ-C.  

Once we calculate the camera pose, we can swap the 

camera pose data, control the camera in OpenGL by the 

model view matrix, and make the virtual objects more 

realistic. The map generation and objects rendering will 

in shown in Section Ⅲ-D. If the tracked feature points are 

missing, we compute the 3D feature points in the world 

coordinate that is the same as the previous one before 
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missing by using the new 2D feature points and the 

camera pose at that time. Then we can continue to track 

and render AR objects at the specified location. More 

details will be shown in Section Ⅲ-E. 

B.  Similar Systems 

In robotic mapping, SLAM is the computational 

problem of constructing or updating the map of an 

unknown environment while simultaneously keeping 

track of an agent's location within it. Here we introduce 

two kinds of related system here: monoSLAM [7] 

(Monocular Simultaneous localization and mapping) and 

PTAM [3] (Parallel Tracking and Mapping), although 

there are also other tracking systems [8] [9] [10] [11] [12].  

The former, monoSLAM selects an invariant visual 

feature like SIFT (Scale-Invariant Feature Transform) [13] 

corner to track and use EKF (Extended Kalman Filter) to 

update the covariance matrix and filter feature points. 

Then it updates the camera pose and does the graphical 

rendering.  

The latter, PTAM selects FAST (Features from 

Accelerated Segment Test) [14][15] corner, which runs 

hundreds of times faster than SIFT corner to track, and 

uses the five-point algorithm to estimate initial camera 

pose. It obtains 3D points by triangulation and adds more 

3D points by epipolar search. Then PTAM uses 3D points 

to estimate a significantly plane decided by calculating 

the minimal reprojection error. At last PTAM draws the 

AR objects and it uses parallel method to save time. 

 

II.  BACKGROUND 

In this section we will introduce some basic knowledge 

about three kinds of feature detection and coordinate 

transformation. 

A.  Feature Detection 

In the field of computer vision and image processing, 

the feature detection is a basic but important issue. A 

feature is defined as an "interesting" part of an image and 

features are used as a starting point for many computer 

vision algorithms. Detecting good features is very 

important for tracking system [16] [17]. There are main 

three kinds of features: Edges, Corners and Blobs.  

Edges are points which compose a boundary (or an 

edge) between two image regions. In general, an edge can 

be many kinds of shape and may include the junctions by 

two or more edges. In practice, edges are usually defined 

as sets of points in the image which have a strong 

gradient magnitude. Corners are usually defined as point-

like features in an image and generally have a regional 

two-dimensional structure. We usually detect the corners 

by looking for high levels of curvature in the image 

gradient. Blobs provide a complementary description of 

image structures in terms of regions and the detector 

generally detects areas in an image which are too smooth. 

The corners can be detected and tracked easily and 

accurately in AR system, so we introduce several corner 

detection algorithms here.  

Table 1 shows the comparison of corner detection 

algorithms. The experiments based on these algorithms in 

Table 1 are coded by ourselves, and they are tested on 

some images with 640*480 resolution. Harris [18] and 

FAST algorithms cost less time. But considering the 

rotation invariance and the scale invariance, the latter 

three algorithms are better choices. SIFT and SURF 

(Speeded up Robust Features) [19] algorithms cost too 

more time than ORB algorithm to make the system work 

in real-time. So we think in general, ORB algorithm is the 

best choice because of its faster speed and good effects. 

More details about ORB detection algorithm will be 

shown in Section Ⅲ-A. 

 

B.  Coordinate Transformation  

As we know, 3D points in the real world will be 

projected to 2D points on the image by a camera. To 

estimate and update the camera pose, we must know the 

relationship between the world coordinate and the image 

coordinate. Then we can use corresponding point sets and 

the intrinsic matrix of the camera to calculate the camera 

poses like rotation and translation. So the coordinate 

transformation is introduced firstly 

The first coordinate introduced here is the image 

coordinate, which is shown in Fig. 1. The point O1 (u0, v0) 

is the principal point that is usually at the image center, 

and the point (u, v) in image coordinate can be expressed 

by following equations: 
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In (1) and (2), u and v are pixel coordinate and dx and 

dy are units of x-axis and y-axis. Equation (1) and (2) can 

be expressed by following matrix expression: 
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The second coordinate introduced is the camera 

coordinate, which is shown in Fig. 2. The distance of 

OCO is the focal length that will be presented by f in 

following two equations deduced by similar triangles rule: 

Table 1. Comparison of Corner Detection with 640*480 Resolution 

 Time 

cost 

(ms) 

Feature 

points 

Brightness 

invariance 

Rotation 

invariance 

Scale in-

variance 

Harris 23 230 yes yes no 

FAST 2 419 yes no no 

SIFT 812 691 yes yes yes 

SURF 160 1446 yes yes yes 

ORB 19 502 yes yes yes 
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Expression (4) and (5) can be expressed by the 

following matrix expression (6) which shows the 

relationship between the image coordinate and the camera 

coordinate: 

 

 

Fig.1. Image Coordinate 

  

Fig.2. Image/camera/world Coordinate 
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We also can see from Fig. 2 that the world coordinate 

can be easily rotated and translated to the image 

coordinate like the following relationship matrix equation: 
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In (7), R is the rotation matrix (3*3) and T is the 

translation matrix (3*1). Once we know both the 

relationship between the image coordinate and the camera 

coordinate by (3) and (6) and the relationship between the 

camera coordinate and the world coordinate by (7), we 

can deduce the relationship between the image coordinate 

and the world coordinate: 
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In the relationship matrix (8), fx and fy are the focal 

lengths expressed in pixel units. M1 is called intrinsic 

matrix (3*3) including four internal parameters: fx, fy, u0 

and v0. M2 is called extrinsic matrix (3*4) included two 

external parameters: rotation matrix R and translation 

matrix T. This relationship (8) can help us to compute 

camera pose rapidly and recover tracking. More details 

will be presented in Section Ⅲ-C and Section Ⅲ-E. 

 

III.  PROPOSED ALGORITHM 

In this section we will detail the proposed algorithm by 

five parts: corner detection, corner tracking, camera pose 

update, map generation and tracking recovery. 

 

 

Fig.3. Architecture of Proposed Algorithm 

Fig. 3 has shown the architecture of the proposed 

algorithm. Firstly, images are captured by moving camera 

(ⓐ in Fig. 3) and the data of images are extracted (ⓑ) to 

generate a synchronous map (ⓒ) in the whole process. 

The ORB corners are detected (ⓓ) and tracked by LK 

optical flow to obtain the depth information (ⓔ). Then 
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we can select four feature points (ⓕ) which are on the 

same plane (we select one point to be the center and the 

system selects other three points which have same depth 

automatically). Those four points are tracked again (ⓖ), 

and if the tracking is successful we use these 2D corners 

and corresponding 3D points initialized at the beginning 

to compute the camera pose including rotation and 

translation (ⓗ). The pose data is converted to the model 

view matrix in OpenGL to adjust the perspective (ⓘ), 

and then some AR objects are rendered (ⓙ) in a real 

scene. If the tracking is failed, we save the camera pose at 

that time and detect the ORB corners again (ⓚ). Select 

four of them to compute new corresponding 3D points 

(ⓛ), and then we use these pairwise points to compute 

the new camera pose to continue tracking and draw AR 

objects again, which is tracking recovery process. 

A. Corner Detection (ⓐⓓⓔ in Fig. 3) 

We have introduced several corner detection 

algorithms in SectionⅡ -A and selected the ORB [1] 

corner detection algorithm. From the name of ORB 

(Oriented FAST and Rotated BRIEF) we can see that it is 

a combination and improvement of FAST detection and 

BRIEF (Binary Robust Independent Elementary Features) 

[20] description. It works faster than SIFT and SURF and 

it is free for business. 

Firstly ORB uses FAST detector to detect feature 

points and then it uses a response function of Harris to 

select N feature points which have maximal response. 

Then it builds a Gaussian pyramid to solve the scale-

invariance problem. For the rotation-invariance problem, 

we have following calculation to compute direction of 

feature points [21]: 

 

         (       )                     (9) 

 

The m is defined like following: 
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This I(x, y) is the scale value of point (x, y). 

After obtaining the FAST feature points, we need to 

describe them by BRIEF descriptor. BRIEF generate a 

binary code string whose length is 256 from 31*31 pieces 

around feature points. For each 31*31 piece, we use an 

average scale of a 5*5 block instead of one pixel’s scale 

to remove interference of noise. There are totally (31-

5+1)*(31-5+1) sub-blocks, and we use some methods to 

decide the way to select 256 pairs of sub-blocks to 

generate a binary code string. Here we introduce ORB 

detection algorithm simply because we just use it with a 

little change. More details are in the paper [1]. In our 

system, we remove the close feature points by a loop 

algorithm which make the distance between two feature 

points at least 10 pixels. It is useful to select other three 

feature points automatically after we select one center, 

which will be introduced in Section Ⅲ-B. 

After the detection of feature points, we obtain many 

ORB corners and we have to select four points which are 

on the same plane to compute the camera pose. Here we 

use LK optical flow algorithm to track those corners and 

compare the motion of corners after the camera moved a 

little distance. (The LK optical flow is introduced in the 

next Section Ⅲ-B.) Firstly, we select one frame as the 

initial frame including many corners. Then we move the 

camera a little in a straight line at a suitable speed while 

keeping the frame after the movement. We count the 

distance for each feature points from the initial frame to 

the end frame to find the minimal and maximal distance, 

and then we save the depth data by the following method: 
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In (11), d is the distance of one point from the initial 

frame to the end frame. And e is expanding multiples for 

drawing the feature points on the image with a suitable 

size. If the depth is less than 1, we set it to 1. Fig. 4 

shows the corner detection in some practical scenes. 

The corner detection process costs 24 milliseconds 

including ORB corner detection (19 milliseconds), LK 

optical flow tracking (4 milliseconds) and depth 

information calculation (1 milliseconds). Although it is a 

little time-consuming, we need not worry about that, 

because the corner detection process only occur at the 

beginning and the tracking recovery process. We can see 

it from Fig. 3 (the architecture of proposed the algorithm). 

B. Corner Tracking (ⓕⓖ in Fig. 3) 

In the previous part we use LK optical flow [2] [22] to 

track all corners which are detected. The approximate 

distance between corners and the camera is calculated by 

the corners’ movement. LK optical flow is also used to 

track four corners which are selected by manual operation. 

In this part, we introduce this tracking algorithm. 

LK optical flow algorithm is an improvement for 

optical flow algorithm [23] [24]. At the beginning, we 

build the Gaussian pyramids for two frames (image I and 

image J) which need to be tracked and the initialize the 

guess estimation of each pyramid: 
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Then we define the location of point u on image I: 

 

          
                             (13) 

 

We calculate the partial derivative I(x, y) for coordinate 

x and y respectively: 
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And we build spatial gradient matrix G: 
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Then we initialize the iterative for the first level and 

calculate the image difference    and the image mismatch 

vector  ̅  to obtain the optical flow and guess for each 

level: 
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Last we add the d0 and g0 to be the final optical flow 

vector d. So the location of corresponding point v on 

image J is like following: 

 

                                    (19) 

 

Here we introduce LK optical flow tracking algorithm 

simply because we just use it without any change. More 

details are in the paper [2]. After a certain number of tests, 

we obtain the time cost of tracking process using LK 

optical flow algorithm, which costs 4 milliseconds. Fig. 5 

shows some results of tests.  

 

       
 (a) (b) (c) 

       
 (d) (e) (f) 

Fig.4. ORB Corners with Depth Information  (depth is sorted by color: 
pink>yellow>cyan>blue>green>red) (a) scene 1, (b) scene 2, (c) scene 

3, (d) scene 4, (e) scene 5, and (f) scene 6. 

       
 (a) (b) (c) 

       
 (d) (e) (f) 

Fig.5. Four Tracking Feature Points (a) the frame obtained ORB corners 
with depth information, (b) one center detected by ourselves and other 

three corners detected by the system automatically, (c) moving the 

camera to the right a little, (d) moving right again, (e) approaching to 
corners a little, and (f) approaching closer again. 

Next we talk about how to obtain these four feature 

points. Firstly, we can select one point from those points 

like Fig. 4 after we get the depth information. Then the 

system sort the depth which is computed by (11) with 

ascending order for all points. We find the point which 

we select before in the sequence, and we extract another 

three points around that point. We make sure that these 

four points are different by comparing their x-coordinate 

and y-coordinate. In the next part about the camera pose 

calculation process, any three points in tracked four 

points must be non-collinear. So here we must make sure 

it. There are three kinds of combination: (p1, p2, p3), (p1, 

p2, p4), (p2, p3, p4) for four points and we inspect each 

combination. As we know, a line will be expressed by 

p1(x1, y1) and p2(x2, y2) like following: 

 

(     )    (     )                  (20) 

 

If the point p3(x3, y3) is on the line (20), it must satisfy 

the following equation: 

 

(     )     (     )                  (21) 

 

By using (21) we can judge whether three points are 

collinear or not and we must make sure that above three 

kinds of combination are all non-collinear, in other words, 

any three points in tracked four points is non-collinear.  

This part selects four non-collinear feature points 

which have similar or the same depth, and we uses LK 

optical flow to track them. Next part we talk about how to 

find the corresponding 3D points and calculate the 

rotation and translation of moving camera. 

C. Camera Pose Update (ⓗ in Fig. 3) 

In this section we talk about the update of camera pose 

by the intrinsic matrix of the camera, the 2D points which 

are tracked and the corresponding 3D points. Firstly, we 

talk about the intrinsic matrix and the corresponding 3D 

points. Then we introduce how to compute the camera 

pose. 

 

 

Fig.6. Distortion of Lenses 

In the Section Ⅱ -B, we introduced the relationship 

between the image coordinate and the world coordinate. 

M1 in (8) is called intrinsic matrix including four internal 

parameters: fx, fy, u0 and v0. These four parameters are 

changed by the resolution of the image captured by the 

camera. In this paper, we calibrate the camera by using 

Zhengyou Zhang calibration algorithm [5] to obtain the 

internal parameters and distortions of lenses. Real lenses 

usually have distortion, mostly radial distortion and slight 

tangential distortion like dr and dt in Fig. 6. Real point 

location x’ and y’ can be expressed like following: 
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The distortion parameters p1, p2, k1 to k6 can be also 

calibrated by Zhengyou Zhang calibration algorithm. 

Next, we introduce how to obtain the corresponding 

3D points from the 2D points which are tracked by LK 

optical flow algorithm. The four 2D points which we 

select in the previous part is as in Fig. 7 and we make the 

first selected point as the center of the world coordinate. 

 

 

Fig.7. Correspongding 3D Points 

According to the difference of x-coordinate and y-

coordinate between the rest of the three 2D points and the 

center, we calculate x-coordinate and y-coordinate of the 

rest of the three 3D points. As we know, these four 3D 

points are on the same plane because they have similar or 

the same depth so that we set the z-coordinate to zero. 

We just compute the coordinate of the 3D points only 

once at the beginning of tracking. 

Last we talk about how to compute the camera pose by 

the 2D points which are tracked and the corresponding 

3D points. We give a transformation of (8) like following: 
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We use x and y instead of u and v to express the pixel 

coordinate. R is a 3*3 rotation matrix and T is a 3*1 

translation matrix. They are expressed by 9 elements R11 

to R33 and 3 elements T1 to T3. After expanding (24), we 

get following three equations: 
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We set Zw to zero and bring (27) into (25) and (26), 

then we get the following equations after extracting Xw 

and Yw: 

{
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        (28) 

 

In (28), fx, fy, u0 and v0 are internal parameters and (Xw, 

Yw, Zw) and (x, y) are 3D and 2D points’ coordinates. 

There are only 9 unknown variables: R11, R12, R13, R21, R22, 

R23, T1, T2 and T3. For rotation matrix R, there is a rule 

that value of sum of squares in each row is 1: 

 

∑    
  

                                         (29) 

 

So R13 and R23 can be expressed by R11, R12, R21 and 

R22. After that, we have only 7 unknown variables and 

they can be solved by at least 7 equations. From (28) we 

find that one group of corresponding 3D (Xw, Yw, Zw) and 

2D (x, y) points provide 2 equations so that 4 groups can 

provide 8 equations to solve those 7 unknown variables. 

Then we use (29) to calculate R13 and R23. Because Zw is 

zero, R31, R32 and R33 cannot be solved by (29). But for 

rotation matrix R, there is another rule that value of sum 

of squares in each column is also 1: 

 

∑    
  

                                 (30) 

 

So R31, R32 and R33 can be expressed by R11, R21, R12, 

R22 R13 and R23.  

 

    
(a)                                (b)                                (c) 

 
(d) 

       
 (e)                                   (f)                                (g)  

 
(h) 

Fig.8. Camera Pose Update cene 1: (a) AR object rendering, (b) four 
tracked corners, (c) world coordinate (red points are corners and yellow 

point is camera), and (d) camera pose under scene 1. cene 2: (e) AR 
object rendering, (f) four tracked corners, (g) world coordinate (red 

points are corners and yellow point is camera), and (h) camera pose 

under scene 2 



 Feature Tracking and Synchronous Scene Generation with a Single Camera 7 

Copyright © 2016 MECS                                                          I.J. Image, Graphics and Signal Processing, 2016, 6, 1-12 

The above shows the calculation process about camera 

pose including 9 parameters of rotation and 3 parameters 

of translation, which costs only 1 ms. The four 3D points 

will not be changed until they are missing and the four 

2D points will always be changed in the update process 

because of the camera movement. Fig. 8 shows the 

camera pose in two different scenes. 

D. Map Generation (ⓑⓒⓘⓙin Fig. 3) 

In the previous part, we have calculated the camera 

pose of moving camera by a group of the 2D feature 

points in the image coordinate and the corresponding 3D 

points in the world coordinate. In this part, we load the 

textures of images captured by camera firstly and then 

adjust the model view matrix in every frame by the vector 

of rotation and the vector of translation. Finally some AR 

objects are rendered on this map. 

In this paper, we use OpenGL to render the map and 

AR objects. We must firstly transform the coordinate 

space from OpenCV to OpenGL. As we know, it’s right-

handed Cartesian coordinate in OpenGL. But in OpenCV, 

the X-axis turns towards right, Y-axis turns towards 

down, and Z-axis turns towards the inside of screen like 

Fig. 9. So we must rotate it by 180 degrees around X-axis. 

Then we make a scaling in OpenGL according to the size 

of the image captured by the camera. We extract the data 

to make it into a texture and load the texture. Last we 

adjust the translation transformation and render the 

texture at a specified location. 

 

 
(a)  (b) 

Fig.9. Different Coordinates in OpenCV and OpenGL a) OpenCV, (b) 
OpenGL(Right-handed Cartesian Coordinates) 

For rendering of AR objects, we can draw it by 

OpenGL’s functions or just load some 3D models. Here 

we develop a box pushing game Sokoban by OpenGL’s 

functions and we render it around the center of the world 

coordinate. In the rendering process, we need to adjust 

the perspective by loading the model view matrix which 

can control the OpenGL’s camera. Notice that the matrix 

elements are stored in a column-major order in OpenGL 

like following matrix: 

 

[

      

      

    
    

      

    

    
   

]                         (31) 

 

After adjustment in OpenGL about the camera pose, 

we can render the AR objects with a specific perspective 

which is the same as the camera in real world. Fig. 10 

shows the result of the map generation and the AR 

objects rendering in three different scenes. 

 

 
(a) 

 
(b) 

 
(c) 

Fig.10. Map Generating and AR Object Rendering (right – original 
image with four corners. left – same scene with AR objects rendered) (a) 

keyboard of laptop, (b) newspaper in sundries, and (c) mouse pad. 

This process has two sub-processes: map generating 

and objects rendering. Extracting texture data from the 

image captured by the camera and rendering the map are 

the map generation sub-process which cost 1.5 

milliseconds. Adjusting the perspective and rendering the 

AR objects are the objects rendering sub-process which 

cost 0.5 milliseconds. So the whole process costs 2 

milliseconds. Considering about loading 3D model files 

costs more time (here we just draw the AR objects by 

OprnGL and sometimes the 3D model will improve the 

effect), so we divide the system into two parallel threads: 

tracking and rendering. It is easy and convenient for us to 

do more things like loading some 3D model files in 

rendering thread, and this way could save time for the 

whole system. Each thread will wait for another thread 

and start a new loop together, which is as shown in Fig. 3 

(the architecture of the proposed algorithm).  

E. Tracking Recovery (ⓚⓛ in Fig. 3) 

In the past four parts, we have introduced the main 

process of AR tracking system in detail. Next we talk 

about the case that the tracked feature points are missing. 

Because the camera is always moved, those four feature 

points will be out of image frequently. One idea about 

tracking recovery is the corner matching, which means 

we can detect new corners on the new images and use 

some matching algorithm to find out those four corners 

before missing. But this method need accurate and fast 
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matching algorithm. BF algorithm and FLANN [4] 

algorithm have been tried but the results are not good in 

terms of speed and accuracy. We must give up this way 

and try another idea which uses the relationship between 

the image coordinate and the world coordinate like (24). 

It means we can detect new corners on new images, select 

four feature points, and compute their corresponding 3D 

points. Then we can use the new corresponding 2D and 

3D points to compute the camera pose again, and the new 

world coordinate is the same as the old world coordinate 

before missing because we use the camera pose from the 

old world coordinate to compute the 3D points in the new 

world coordinate by new 2D feature points. 

From (25), (26) and (27), we can obtain following 

equations after sorting: 

 

{
 
 
 
 

 
 
 
 

   (                   )

    (                   )

    (                   )
                 

   (                   )

    (                   )

    (                   )

                 

            (32) 

 

 
 

As we can see from (32), computing the 2D point 

coordinate is very easy if we know the 3D point 

coordinate, but the reverse is not true. Fortunately, those 

3D point are on the same plane whose Zw is zero. So we 

can easily calculate the 3D point coordinate if we know 

the 2D point coordinate by following equations which is 

the matrix transformation of (32) when Zw is zero: 

 

[
                                      

                                      
] 

 [
  

  
]  *

                   

                
+                (33) 

 

Solving the 3D point coordinate problem equals to find 

the unique solution of non-homogeneous linear equations. 

Like the following equation: 

 

*
  
  

+  [
  

  
]  *

 
 +                          (34) 

 

We define D is determinant of coefficient like 

following: 

 

  |
  
  

|                            (35) 

 

We also define d1 and d2 like following: 

Fig.11. Tracking Recovery (right – original image with corners, left – same scene with AR objects rendered) (a) corners 

are going to miss (blue one is the center), (b) having missed and detecting feature points again, and (c) selecting four 

feature points and recovering tracking (the blue center appears again), (d) the recovered corners are going to miss, (e) 
having missed and detecting feature points again, and (f) selecting four corners and recover tracking again (the blue 

center appears at the same location). 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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   |
  
  |                                 (36) 

 

   |
  
  |                                 (37) 

 

According to Cramer's rule [25], if D is not zero and 

not both e and f are zero, non-homogeneous linear 

equations like (34) has the unique solution like: 

 

{
   

  
 ⁄

   
  

 ⁄
                                   (38) 

 

So when the tracked feature points are missing, we 

lock the frame and detect the new ORB corners and select 

four corners which on the same plane by ourselves. We 

calculate the camera pose from the previous frame and 

use (33) to (37) to calculate the 3D point coordinates (Xw, 

Yw, 0) by the camera pose and the internal parameters of 

camera for each of those four 2D points. 

Once we obtain the corresponding 3D feature points, 

we can track 2D corners again and use (25) to (30) in 

Section Ⅲ-C to calculate the new camera pose. This way 

can find the center of the world coordinate before missing 

and render the AR objects again, which is the tracking 

recovery. Fig. 11 shows the experimental results of two 

consecutive tracking recovery. 

The results shows the tracking recovery works well in 

limited number of times. We find there is a little error 

after repeated calculations because we use the camera 

pose at the previous frame before missing and 2D points 

at the next frame. More about the data analisis is shown 

in Section Ⅳ-C. The tracking recovery process includes 

ORB corners detection which costs 19 milliseconds and 

3D points calculation which costs 0.5 milliseconds. So 

the whole process costs 19.5 milliseconds but it only 

occurs when feature points are missing. 

 

IV.  SIMULATION EXPERIMENT AND RESULT ANALYSIS 

We have given simulation experiments and analyzed 

the result for each part of the previous section. Here we 

give a demonstration of the whole process of our system. 

Table 2. Depth Distribution of Corners 

Moving distance (depth: pixel) Number (total: 194) 

14.835 (minimal) – 20 29 

20 – 25 20 

25 – 30 21 

30 – 35 94 

35 – 38.778 (maximal) 30 

 

 

Table 3. Processed Depth Distribution of Corners 

Depth distribution size / color Number (total: 194) 

1 (0 – 19.624) 1 / red 28 

1 – 2 (19.624 – 24.412) 3 / green 18 

2 – 3 (24.412 – 29.201) 5 / blue 21 

3 – 4 (29.201 – 33.989) 7 / cyan 93 

4 – 5 (33.989 – 38.778) 9 / yellow 33 

5 (38.778) 10 / pink 1 

A. Corner detection and selection 

Firstly we detect ORB corners like Fig. 12, and then 

we get the different number of depth corners by the 

moving distance like Table 2. Then we set the expanding 

multiples to 5 and use (11) to obtain processed depth 

data, which are shown in Table 3. We also set different 

sizes and colors for points to show the depth information 

of points clearly, which are shown in Fig .12 and Table 3. 

Last we select four corners whose depth data are shown 

in Fig. 13_(c) and render the initial AR object around the 

center of the world cooedinate which is decided by those 

four corners. 

 

 
                     (a)                               (b)                               (c) 

Fig.12. Depth ORB Corners Detection (a) ORB corners detection, (b) 
LK optical flow tracking, and (c) obtain the depth information after 

calculation. 

 
                     (a)                               (b)                               (c) 

Fig.13. Corner Selection and Object Rendering (a) select four corners to 
track (blue one is the center), (b) render AR objects around the blue 

center, and (c) the depth data of four corners. 

Table 4. Camera Pose of Specific Perspective 

 

Perspective 

Camera Pose 

Rotation Translation 

 

1 in Fig. 14 

0.7920751 -0.149264 0.5918927 0.4616123 

-0.193632 0.8581277 0.4755242 -1.709866 

-0.578898 -0.491260 0.6507992 9.7796952 

 

2 in Fig. 14 

0.8432300 0.1511578 -0.515862 0.8800349 

0.0256208 0.9472583 0.3194450 -1.627832 

0.5369419 -0.282582 0.7948839 10.19600 

 

3 in Fig. 14 

0.8659636 0.1697859 0.4704037 -1.024721 

-0.000671 0.9410001 -0.338405 -1.306448 

-0.500106 0.2927310 0.8149858 7.5661901 
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This experiment demonstrates that we can obtain ORB 

corners with approximate depth information successfully. 

The selection about four non-collinear but coplanar 

feature points also works well, and it is necessary for later 

experiments. 

B. Corner tracking & Camera pose updating  

After obtaining feature points, we can move the camere 

and use LK optical flow to track them. Then we use (24) 

to (30) to compute the camera pose consecutively. We 

control the OpenGL’s camera to adjust the perspective by 

swapping the camera pose data. 

 

 
                     (a)                               (b)                               (c) 

 
                     (c)                              (d)                              (e) 

 
                     (f)                              (g)                              (h) 

Fig.14. Camera Pose Update Perspective 1: (a) track four corners, (b) 

render AR objects, and (c) four corners (pink) and camera (yellow) in 

OpenGL coordinate.Perspective 2: (d) track four corners, (e) render AR 

objects, and (f) four corners (pink) and camera (yellow) in OpenGL 
coordinate.Perspective 3: (g) track four corners, (h) render AR objects, 

and (i) four corners (pink) and camera (yellow) in OpenGL coordinate. 

       
 (a) (b) (c) 

       
 (d) (e) (f) 

       
 (g) (h) (i) 

       
 (j) (k) (l) 

       
 (m) (n) (o) 

Fig.15. Tracking Recovery (a) tracked four corners are going to miss, (b) 

AR object is going to miss, (c) detect now feature points after missing, 
(d) no object is rendered, (e) select new four corners, (f) AR object is 

rendered again, (g) the blue center does not change, (h) AR object is 

rendered at the same location like before missing, (i) four new corners 
(pink) and camera (yellow) in OpenGL coordinate, (j) make the camera 

farther away, (k) render AR object, (l) show them in OpenGL 

coordinate (m) tracking missed and detect new corners again, (n) select 
four of them and the blue center appears again, and (o) AR object is 

rendered again 

Fig. 14 shows the results of three consecutive 

perspectives when we move the camera. Table 4 shows 

the camera pose data of above three perspectives. 

Combining the data of translation matrix, we draw the 

camera in the world coordinate by OpenGL, which is 

shown in Fig. 14_(c)(f)(i).  

The average time cost of the calculation for camera 

pose update is only 1 ms, which is less than it in 

monoSLAM (5 ms) and PTAM (3.7 ms). This experiment 

demonstrates that our algorithm about rapid update of 

camera pose works well. 

C. Tracking Recovery 

Here we do the experiment about tracking recover, 

which is shown in Fig. 15. When the feature points are 

missing, we detect and select the corners again. Then we 

use the camera pose at the previous frame and the new 

2D corners to compute the new 3D points. Last we use 

these new corresponding 2D and 3D points to calculate 

the camera pose again.  

To test the performance of the tracking recovery, we 

calculate the new center by new camera pose and the 3D 

center coordinate (0, 0, 0) of the world coordinate. Then 

we draw it on the 2D image and calculate the error 

between the new center and the initial center by distance 

of pixels. The result is shown in Fig. 16. As we said 

before, the error is very small although it will be 

increased slowly.  

 

 
(a)
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(b) 

 
(c) 

Fig.16. Error between Initial Center and New Center after Tracking 

Recovery(a), (b) error in sequential 20 frames (① before missing ② 

first recovery ③ second recovery), the red curve is initial center pose 

and the other colorful curves are center pose after calculation, and (c) 

error comparison between ①, ② and ③. 

This experiment demonstrates that our tracking recover 

has a good performance in limited number of times. 

D. Comparison with other System 

We compare our system (Table 7) with monoSLAM 

(Table 5) and PTAM (Table 6) that are introduced in 

SectionⅠ-B in terms of calculation speed. Here we give 

the cost of sub-process in each thread. We ignored the 

time cost of ORB corners detection with approximate 

depth information and the tracking recovery in time 

statistics, because the former only occurs at the beginning 

and the latter only occurs when the feature points are 

missing. We can see from above tables that our system 

saves much time meanwhile also has a good result. 

E. AR objects rendering & Application 

       
 (a) (b) (c) 

       
 (d) (e) (f) 

Fig.17. AR Game(a) four points are tracked (sequential with the 
previous figure), (b) AR game is rendered, and (c), (d), (e), (f) different 

levels of Sokoban. 

Here we design an AR game named Sokoban, a box 

pushing game as in Fig. 17, while using OpenGL to 

render the texture. The rendering process is implemented 

in an independent thread, and it runs with the main thread 

at the same time. Any kinds of objects can be rendered on 

this map, and the time cost of rendering is increased with 

the increasing of complexity of AR objects.  

Table 5. The Cost of Sub-process in MonoSLAM [7] 

Sub-process Time cost 

Image loading and administration 2 ms 

Image correlation searches 3 ms 

Kalman Filter update 5 ms 

Feature initialization search 4 ms 

Graphical rendering 5 ms 

Total 19 ms 

Table 6. The Cost of Camera Pose Update in PTAM [3] 

Sub-process Time cost 

Keyframe preparation 2.2 ms 

Feature projection 3.5 ms 

Patch search 9.8 ms 

Iterative pose update 3.7 ms 

Total 19.2 ms 

Table 7. The Cost of Sub-process in Our System 

 Sub-process Time cost 

 (ORB corners detection with depth) (24 ms) 

Tracking  Feature tracking 4 ms 

thread Camera pose update 1 ms 

 (Tracking recovery) (19.5 ms) 

Rendering Map generation 1.5 ms 

thread AR objects rendering 0.5 ms 

 Total 5 ms 

 

V.  CONCLUTION 

This work presents a method of tracking feature points 

with depth information to update the camera pose and 

generating a synchronous map for AR system with a 

certain tracking recovery ability.  

The ORB corners with depth information works well 

and it is easily for us to select some feature points on the 

same plane. LK optical flow algorithm tracks feature 

points robustly, which is very important for calculating 

the camera pose later. Calculating rotation and translation 

of moving camera by four non-collinear but coplanar 

feature points also works well. Sometimes three of them 

are almost collinear, which make the pose unstable. To 

avoid this kind of cases, we can select those four points 

by ourselves instead of the system as what we do in 

tracking recovery. In rendering process, the map and AR 

objects are rendered well and objects can rotate and 

translate together with the camera accurately. The parallel 

method saves time successfully so that more complex AR 

objects can be rendered. For tracking recovery, it has a 

good result after calculation in limited number of times. 

When the number of missing times is increased, the 

calculation error will become larger because we use the 
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camera pose at the frame before missing. In the future 

work, the system will be improved more in stability and 

accuracy.  
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