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Abstract—A parametric approach algorithm based on 

maximum likelihood estimation (MLE) method is 

proposed which can be exploited for high-resolution 

parameter estimation in the domain of signal processing 

applications. The array signal model turns out to be a 

superposition of two-dimensional sinusoids with the first 

component of each frequency doublet corresponding to the 

direction of the target and second component to the 

velocity. Numerical simulations are presented to illustrate 

the validity of the proposed algorithm and its various 

aspects. Also, the presented algorithm is compared with a 

subspace based technique, multiple signal classification 

(MUSIC) to highlight the key differences in performance 

under different circumstances. It is observed that the 

developed algorithm has satisfactory performance and is 

able to determine the direction of arrival (DOA) as well as 

the velocity of multiple moving targets and at the same 

time it performs better than MUSIC under correlated noise. 

 

Index Terms—Direction of arrival, high resolution, 

two-dimensional, velocity estimation. 

 

I. INTRODUCTION 

The applications of high-resolution parameters 

estimation span a wide domain ranging from detection to 

surveillance. The two methods used to accomplish this are 

spectral based approach and parametric approach [1]. 

Speaking in the context of MUSIC, it is a high-resolution 

subspace based technique falling under the category of 

spectral based approach which utilizes covariance matrix 

to estimate the parameters of interest. MUSIC [2,3] has a 

very high resolution and it assumes noise to be 

uncorrelated which leads to the diagonal correlation matrix. 

As a major drawback [4] MUSIC cannot be termed as a 

general approach as it requires advance information about 

the number of elements.  

Estimation of Signal Parameter via Rotational 

Invariance Matrix (ESPRIT) [5] is also based on 

subspace-based approach and is a key contributor to the 

estimation theory.  ESPRIT again is a high-resolution 

parameter estimation technique and has the additional 

advantage of lesser computational complexity. Its 

assumptions include sources to be centered at the same 

particular frequency and doublets of arrays that are not 

displaced rotationally [6,7].  

Parametric approach methods include Least Square 

Estimation (LSE) and Maximum Likelihood Estimation 

(MLE) [8,9]. The maximum-likelihood method unlike 

least square method which models the estimation problem 

as a deterministic procedure demands probabilistic 

interpretation of all the interferences rather than the 

information of the parameters. Also, MLE output the 

parameter that is most likely responsible for producing 

data while LSE shortlists the parameter that seems to be the 

closest interpretation of the received data. 

But, MLE estimates differ from LSE estimates when 

received data is not normally distributed and uncorrelated 

and different results are obtained depending upon the 

choice of the method between the two. However, in such a 

scenario MLE is preferred over LSE if probability 

distribution function description of the data is available. 

Also, both MLE and LSE arrive at same estimates if the 

data is normally distributed with constant variance [10-12].  

In this paper, a MLE based algorithm is proposed for the 

estimation of different parameters of moving targets using 

electromagnetic sensor array. MLE suffers the 

disadvantage of higher computational complexity because 

it spans the entire signal space but has the side advantage of 

high-resolution parameter estimation even when the 

received data is corrupted by correlated noise, a condition 

under which MUSIC fails. 

The rest of the paper is organized as follows. Section II 

deals with the problem formulation and derivation of the 

data model for the proposed algorithm. In section III, the 

developed data model is used for parameters estimation 

(DOA and velocity) using MLE. Section IV covers the 

simulations used for the verification of the algorithm. In 

section V, the MUSIC is discussed briefly and simulations 

are carried out to analyze the performance of the MUSIC 

under different circumstances with a motive of comparison 
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between MUSIC and developed algorithm. Section VI 

discusses the Cramer- Rao bound, its role in the 

classification of the different estimators and Cramer-Rao 

bound calculation for the present algorithm. Section VII 

finally concludes the observations and results of the paper.   

 

II. DATA MODEL 

For the illustration of the proposed algorithm, the 

discussion to be considered here is focused on DOA and 

velocity estimation. In signal processing, for solving such a 

problem, the sensors array is deployed to collect the data 

from the radiating sources for estimating their different 

parameters. Few assumptions are further invoked for the 

analytical compliance of the problem. The radiations from 

the sources are assumed to be propagating in straight lines. 

A dispersive and isotropic transmission medium is 

required to validate the above assumption. Also, the 

radiations striking the array can be considered as plane 

waves if sources are within the far-field of the array. The 

narrowband signals ( ( ))ks t  are assumed to have center 

frequency ( )o  so that the general wave equation is given 

as: 

 
( . )( , ) ( ) [ ]oj tE t s t Re e   k rr                   (1) 

 

where k is propagation vector and r is position vector.  

 

 

Fig.1. Uniform linear array 

If we have a uniform linear array (ULA) [13] having 

L sensors and separation d between them (Fig. 1), then 

position vector at the 
thl  sensor is given as ( 1)l xl d r a . 

Consider the case of a source moving with velocity v and 

having a component along the direction of the line joining 

the origin and impinging angle   at the 
thl  sensor having 

a constant response ( ).ly  Then, 

s ncos ix y k a a and output of the sensor is given as: 

( ( 1) cos
x )(( , ) ( ) [ ]o

l l

j t k l dt y s t Re e    r         (2) 

 

Also, o  
will get shifted according to Doppler’s 

classical shift formulae i.e. (1 / )o v c  
 

Then, the output of 
thl  sensor after dropping the term 

oj t
e


 gets modified to: 

 
( 1) cos/( )( , ) ( ) jk l d

l l

j vt cex t y s t e   r        (3) 

 

In case of L  sensors ULA, having same response for all 

sensors i.e. ( ) ( ),ly y  the output can be represented 

as a vector 

 
/( ) ( ) ( )j vt ct s t e  x a                     (4) 

 

where, 
1 2( ) [ ( ) ( ) . . ( )]Lt x t x t x tx

 
and 

cos ( 1) cos( [ . ]) 1 .jkd j L kdy e e 

    a which is 

also called steering vector. Consider the case of p sources 

each located at an angle p . If the medium is considered to 

be linear then the output of each sensor can be written as: 
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If the sensor’s response is same for every source 

i.e.
1 2) ( ) ( ) ( )( py yy y       then the above equation 

can be written as: 
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It can be represented as: 

 

( ) ( ) ( )vt tx A s                           (5) 

 

Taking sensor’s noise into consideration: 

 

( ) ( ) ( ) ( )vt t t x A s n                    (6) 
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If the sensor’s output is sampled at t m  where 

0,1....... 1m k  then: 

 

( ) ( ) ( ) ( )vm m m    x A s n          (7) 

 

From above equation the output for the 
thl  sensor can 

be written as: 

 

( 1) cos /

1

( ) ( ) . nj
p

j m v c

l n

n

l dx m s m e e
   



      (8) 

 

If s ( )n nm s  , the above equation can be rewritten 

as:  

1

( ) ( )
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n n n
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l s e v


   lX f w                (9) 

 

here 
lX

 
represents the time samples of the sensor 

output lx .  
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This concept can be extended to all the sensors and the 

resulting output can be written as: 

 

1

( ) ( )n n n

p

n

s v


  X e f w               (10) 

 

here 

 
cos ( 1) cos

( ) [1 . . ]n njkd j L kd T

n e e
    

e  

 

The above equation can also be written as: 

 

1 21 2
[ ( ) ( ) ( ) ( ) . . ( ) ( )]

p p
v v v      X S e f e f e f W

 
where 

 

1 2[ . . ]T

ps s sS
 

 

We define  

 

1 21 2
[ ( ) ( ) ( )( ( ) . ( )]) . ) (

p p
v v v     A e f e f e f  

 

here S is 1p and ( )A is Lk p
 
matrix. Using above 

representations, the final form of the data model is: 

 

( ) X A S W                          (11) 

 

III. PARAMETER ESTIMATION 

In the data model signal waveforms are assumed to be 

deterministic but unknown and noise is modelled as i.i.d. 

spatio-temporal white Gaussian random process with 

constant variance i.e. 2

1Lk W I . As a result X is also a 

Gaussian random process with mean ( )A S and 

variance 2 I . The PDF of a Gaussian random variable is 

given by: 

 

2 2( )

2

/2( )
1

2

xx ep  



                (12) 

 

Here   and 
2  represent mean and variance of the 

random variable. Using (12), the PDF of observation 

vector X  is given by: 

 
2 2|| ( ) || /2Y Ce    X A S

                   (13) 

 

where, C is a constant and does not contribute to decision 

making. Taking log of both sides of (13), we get 

 

2

2
|| ( ) ||

2

C
Z 


  X A S                (14) 

 

Neglecting the term
22

C


 , we get PDF as: 

 
2|| ( ) ||Y  X A S                        (15) 

 

The maximum-likelihood estimation rule dictates that 

(15) is to be minimized with respect to . First, to obtain 

maximum-likelihood (ML) estimate of ,S  the derivative 

of (15) with respect  to S is set to zero. This will result in 

 
1' ( )H HS A A A X                      (16) 

 

where A  is a function of  . Using (15) and (16), we get 

 
2

( )Y X P X                             (17) 
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where 1( ) ( ) .H HP A A A A   The above expression can be 

rewritten as: 

 

 
2 2

( )Y X P X                       (18) 

 

Minimizing the above expression implies 

maximizing
2

( ) .P X  So, the ML estimate of parameter 


 
is given by: 

 
2' max ( )Arg P X                      (19) 

 

The MLE estimate can be determined by exploiting the 

non-linear optimization algorithms. The basic principle 

behind non-linear optimization is to find the optimal 

parameters so that log-likelihood function is maximized 

[14]. This can be achieved by dividing the 

multi-dimensional parameter space into smaller sub-sets 

and applying trial and error approach such that for next 

iteration parameters value is modified so that it leads to 

better performance than that for previous parameters 

values. 

 

IV. SIMULATIONS 

Many simulations have been conducted to explore the 

various aspects of above discussed algorithm. The 

numbers of sensors on the array were chosen to be five with 

uniform spacing between them. Also, the centre frequency 

was chosen as 100* c , where c  the velocity of light. The 

sampling interval  was chosen to be equal to the 

wavelength ( )  of the signal. The spacing ( )d  between 

sensors was chosen to be /10 . Also, the numbers of 

targets were chosen to be two and it was also assumed that 

numbers of targets are known in advance. The noise was 

assumed to be additive white Gaussian noise with zero 

mean and unit variance. Also, the velocity of targets was 

restricted between 1/50 to 1/10 m/sec i.e. 1 1
,

50 10
v

 
  
 

 

m/sec., however, no restriction was made in the direction 

of targets i.e. [0,2 ]   radians. 

A. Direction Estimations of Targets 

Two targets were located at π/4 and π/2 radians 

respectively and were of unequal power. Also, the signal to 

noise ratio (SNR) for each target was 10dB and 51 

iterations were conducted, one for estimation under the 

ideal condition and other 50 for estimation when the noise 

was present. In each trial noise was different. Estimations 

are illustrated in Fig.2 and Fig.3.  
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Fig.2. Direction estimation of the first target at 10dB 
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Fig.3. Direction estimation of the second target at 10dB 

B. Velocity Estimations of the Targets 

Targets were having a velocity of 1/40 and 1/20 m/s. 

Other conditions were same as for direction estimation. 

Estimations are illustrated in Fig.4 and Fig.5.  
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Fig.4. Velocity estimation of the first target
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Fig.5. Velocity estimation of the second target 

Another 51 iterations were made for these two targets 

with SNR of 20 dB. Results are shown in Fig.6, Fig.7, 

Fig.8 and Fig.9. 
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Fig.6. Direction estimation of the first target at 20 dB 
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Fig.7. Direction estimation of the second target at 20 dB 
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Fig.8. Velocity estimation of the first target at 20 dB 
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Fig.9. Velocity estimation of the second target at 20 dB 

Simulations depict the validity of the algorithm for ideal 

case and to a greater extent for practical scenario as well 

(presence of noise). Also, it can be observed that effect of 

noise is less prominent in case of velocity estimation as 

compared with the case of direction estimation. Further, 

the average error in estimations for different SNR is 

summarized in table 1.  

Table 1. Average error in parameters estimation 

SNR 
Error in direction 

estimation 

Error in velocity 

estimation 

10dB .65 .034 

20dB .011 .033 

 

C. Effect of enhanced SNR on estimation error 

Fig.10 and Fig.11 depict the effect of SNR on error in 

estimations.
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Fig.10. Effect on direction estimation 
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Fig.11. Effect on velocity estimation 

It is observed from Fig.10 and Fig.11 that performance 

of the algorithm is improving drastically with improvement 

in SNR and theoretically at very high SNR the algorithm 

will achieve noise immunity.  

 

V. MUSIC ESTIMATOR 

For the sake of completeness and for demonstrating the 

pragmatic aspect of the developed algorithm, a comparison 

with MUSIC estimator is made in this section.  MUSIC 

was introduced as a most effective DOA estimation 

technique which proceeds by decomposition of covariance 

matrix and forming a spectrum using steering vector. 

MUSIC works well for ideal case and uncorrelated noise 

but fails for the correlated noise.  

Reconsider the data model  

 

( ) ( ) ( ) ( )vt t t x A s n
 

 

We define spatial-covariance matrix as: 
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If noise is assumed to be spatio-temporal white with 

common variance 
2  then 

 
2{ ( ) =) }( HE tt n n I

 
 

and if ( ) }{ ( )H

v vtE tP s s then R will become  

 
2( ) ( )H  R A PA I  

 

R can be factored as HU U R  with 

1 2[ . . ]Ldiag     is a diagonal matrix of 

eigen values 1 2, ,... L   and U is a unitary matrix having 

eigen vectors corresponding to eigen values 
1 2, ,. . .. L    

R can also be written as  

 
H

n n

H

s n s nU U U U  R                 (20) 

 

with 2

n   I . In practise, an estimate of R  is found as 
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Hence,  

 
H

s s s s

H

n nnU U U U   R             (22) 

 

The projector operators onto signal subspace are defined 

as: 

 
1( )( ( ) ( )) ( )H

s

H

s

HU U      A θ A A A       (23) 

 

Similarly, projection onto noise signal subspace is 

defined as: 

 
1( )( ( ) ( )) ( )H H

n n

HU U      I A θ A A A   (24) 

 

The MUSIC spatial spectrum is then defined as: 

 

( ) ( )
( )

( ) ( )

H

M H
P

 


 




a a

a a
                 (25) 

 

Where, ( )a  is steering vector.  

( )MP 
 
is not a true spectrum but instead gives a peak 

at the point of direction of arrival (DOA).  

A. Simulations
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Several simulations were carried out to analyse the 

performance of MUSIC algorithm and to compare it with 

the developed algorithm for the case of (DOA) estimation. 

Two sources were chosen in the far field of sensors array 

which were located at π/3 and π/2 radians. Also, the 

numbers of sensors were chosen to be five. Few 

simulations were carried under ideal conditions (absence 

of noise) and then under uncorrelated noise conditions. 

Simulations were also carried for correlated noise with 

different SNR. 
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Fig.12. Ideal estimation 
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Fig.13. Estimation under uncorrelated noise 
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Fig.14. Estimation under correlated noise for different SNR 

It can be inference from the simulations that MUSIC and 

proposed algorithm are contrasting for the case of 

correlated noise. The performance of MUSIC is 

compromised drastically for this case but for ideal case and 

uncorrelated noise MUSIC is always way ahead of the 

proposed algorithm considering its affordable 

computational complexity. Table 2 further highlights the 

key differences between MUSIC and proposed algorithm. 

Table 2. Comparison of proposed algorithm and MUSIC 

Parameter Proposed algorithm MUSIC 

Principle Parametric approach 
Spectral 

decomposition 

Performance under 

uncorrelated noise 
Good Good 

Performance under 

correlated noise 
Good Degraded 

Computational 

complexity 
High Less 

Consistency Yes Yes 

Effect of enhanced 

SNR 

Improved 

performance 

Improved 

performance 

 

VI. CRAMER-RAO BOUND CALCULATION 

The purpose of an estimation algorithm is to map the 

message iS  to iS . The adjacency of iS  and iS  can be 

used to specify the integrity of the receivers. For a 

probabilistic problem the PDF and variance are used to 

measure the deviation from ideal estimater. A suitable 

measure of the performance for an unbiased estimation [15] 

is Cramer-Rao bound. The Cramer-Rao bound [16] is 

given as: 
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where x is the observation vector. The unbiased estimator 

for which Cramer-Rao bound is satisfied with equality is 

called efficient estimator. In this section we proceed with 

the Cramer-Rao bound calculation for the developed 

algorithm. 

Again, consider the data model 
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where we have assumed
R Ij S S S .  

Now, we calculate the following derivatives: 
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and similarly, we can calculate  

2 2 2 2( ) ( )
and
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Fisher-Information matrix [17] is given as: 
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This matrix has to be written for parameter i.e.  
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After calculating all these terms, the results are 

substituted in (26) which will provide the Cramer-Rao 

bound of the developed algorithm.  

 

VII. CONCLUSION 

We proposed and investigated an algorithm based on 

MLE and also contrasted it with MUSIC algorithm.  

During simulations, it was found that for the case of 

uncorrelated noise both the algorithms had the same 

performance, MUSIC, in addition, had the advantage of 

low computational complexity but for the case of 

correlated noise MUSIC algorithm had a degraded 

performance while ML based algorithm continued to work 

satisfactorily. However, the price paid for this advantage 

was increased computational complexity as ML uses 

multidimensional search to find the estimates. For the case 

of correlated noise, even at high SNR, the performance of 

MUSIC estimator was not satisfactory while ML based 

algorithm was showing a significant performance 

improvement with SNR. Also, the improvement for 

velocity estimation was more pronounced than for DOA 

estimation. 
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