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Abstract—Thresholding in wavelet domain has proven 

very high performances in image denoising and 

particularly for homogeneous ones. Conversely, and in 

cases of relatively non-homogeneous scenes, it often 

induces the loss of some true coefficients; inducing so, to 

smoothing the details and the different features of the 

thresholded image. Therefore, and in order to overcome 

this shortcoming, we introduce within this paper a new 

alternative made by a combination of advantages of both 

spatial filtering and wavelet thresholding; that ensures 

well removing the noise effect while preserving the 

different features of the considered image. First, the 

degraded image is decomposed into wavelet coefficients 

via a 2-level 2D-DWT. Then, the finest detail sub-bands 

likely due to noise, are thresholded in order to maximally 

cancel the noise contribution. The remaining noise shared 

across the coarse detail subbands (LH2, HL2, and HH2) 

is cleaned by filtering these mentioned sub-bands via an 

adaptive wiener filter instead of thresholding them; 

avoiding so smoothing the acquired image. Finally, a 

joint bilateral filter (JBF) is applied to ensure the 

preservation of the different image features. Experimental 

results show notable performances of our new proposed 

scheme compared to the recent state-of-the-art schemes 

visually and in terms of (MSE), (PSNR) and correlation 

coefficient. 

 

Index Terms—2D-DWT, adaptive thresholding, image 

denoising, JBF, spatial filtering. 

 

I.  INTRODUCTION 

Signal processing applications in information and 

communication technologies are in permanent progress 

and play a central role in the development of numerical 

systems of telecommunication and automation; including 

mobile communications, Radar signals, medical images, 

satellite images, etc. Nowadays, one of the most 

important processing adopted in several and sensitive 

applications is the image processing for which; the 

employability is widespread in various applications such 

as recognition systems, meteorological previsions, 

geographical information systems, etc. The most 

important performance factors in such images come from 

their clearness, resolution and compressibility, the fact 

that the improvement of one of these criteria will 

intuitively increase the quality of the relating applications. 

In this paper, we‘ll limit to the denoising operation for 

opening soon the field to other applications in the future 

works [1].  

So, estimation of a signal acquired from its 

transmission channel was for a long time the interest in 

many research questions for both practical as well as 

theoretical reasons. Several traditional methods have 

employed linear methods where the most common choice 

was the wiener filtering. The challenge then, is, how to 

recover the original signal from the disturbed data so that 

the recovered one is nearer the original signal even more 

clearly and more precise while maintaining the most of its 

important properties [2]. Therefore, the revolution 

recorded in multi-resolution analysis from the beginning 

of the 1980s via the development of the wavelet 

transforms by GROSSMAN and MORLET (1984) [3-6] 

has opened a very important field of applications 

answering to these challenging requests thanks to a 

certain number of advantages over the traditional 

approaches. The principal challenges in such approaches 

consist in determining an optimal threshold value as well 

as to define a suitable thresholding strategy. 

Widely adopted in the wavelet domain, two most 

widespread thresholding strategies are soft [7] and hard 

thresholding that differ just by shrinking or maintaining 

the coefficients above the threshold value [2, 8-12]. So, 

and whereas each of them is favorable particularly in 

some cases [11, 13-15], several alternatives were 

proposed in order to extend these two strategies. Among 

them we mention: non-negative garrote shrinkage (NGS) 

[16], firm shrinkage (FS) [16], Trimmed thresholding 

(TT) [17], Customized thresholding (CT) [2], OLI-Shrink 

[9], etc.  

Although the idea of thresholding is simple and 

effective, the act of finding a good threshold is never an 

easy task [11]. Thus, and in order to denoise images 

generally modelled by (GGD) distribution, a multitude 

thresholds were set in several research questions 

including: Universal threshold [12-13, 18-19], Minimax 

threshold [12], SUREShrink [18, 20], BayesShrink (BS) 

[11, 18, 21], Modified BayesSrink (MBS) [21] and 

Rigorous BayesShrink (RBS) that differs from (BS) by a 

factor of √   (TRBS = √  TBS) [22], NormalShrink [19, 21, 

23], RegularShrink [24], ProbShrink [18], and other 

approaches mainly based on statistic analysis of the 

wavelet coefficients (like: standard deviation, arithmetic 

and geometric means) [25], and so on. 
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Moreover and in addition to the techniques quoted 

previously, a multitude of approaches were proposed in 

the literature based on combinations space filtering/ 

wavelet schemes. These combinations attending to 

benefit from advantages of such alternatives include: 

DWT with histogram equalization as a pre-processing 

stage [26], (JBF) using the denoised image as a reference 

image [27], (LMMSE) adopting an (OWE) instead of 

(WT) [28], (LMMSE) combined with (OWE) and (JBF) 

[29], combination of (LPG-CPA) procedure and (JBF) 

[30], fusion of bilateral filter (BF) into the wavelet 

thresholding (WT) to produce a reference image for the 

(JBF) [31] and so on. 

In this paper, and motivated by improving the 

performances of image denoising via wavelet-based 

thresholding – that often induces the smoothing effect of 

the processed image mainly due to the thresholding of all 

detail sub-bands – we introduce a new alternative that 

overcomes the shortcoming quoted previously by 

adopting an interesting combination of spatial and 

transform domains that allow well benefiting from the 

advantages of both wavelet thresholding and spatial 

filtering. So, the acquired image from the transmission 

channel being degraded by Gaussian noise (with respect 

to the central limit theorem (CLT)) is decomposed into 

wavelet coefficients via a two-level 2D-DWT. Then, the 

finest detail sub-bands (LH1, HL1, HH1) being nearly 

constituted by only the noise coefficients, an adaptive 

thresholding is applied to cancel nearly the entire effect 

of the noise in the processed image. Moreover, the 

residual noise being mixed within the true coefficients of 

the coarse detail subbands (LH2, HL2, HH2); an adaptive 

wiener filtering is adopted to clean those coefficients 

from the residual noise instead of thresholding them; 

avoiding so the smoothing effect of the resulting image. 

Finally, and in order to well preserve the different 

features of the processed image, a joint bilateral filter 

(JBF) is performed to the resulting image.   

The rest of this paper is organized as follows. In the 

next section, the wavelet thresholding based image 

denoising is discussed. Section III describes the new 

proposed approach with some explanation of its principal 

components. Simulation results, as well as their suitable 

comments, are presented in section IV. Finally, a 

conclusion and perspectives are given at the end of this 

paper. 

 

II.  WAVELET THRESHOLDING 

Denoising and estimation of functions based on 

wavelet thresholding lead to simple and powerful 

algorithms that are often easier to fine-tune than the 

traditional methods of functional estimation [32]. Multi-

resolution property and sparse representation of the 

wavelets are undoubtedly the key factors of an enormous 

progress recorded in nonlinear thresholding estimations 

[4]. Moreover, restoring signals and images from their 

contaminated versions requires strongly taking advantage 

of the prior knowledge of the whole system and 

particularly the type of the degradation and its relative 

information. In this paper, a zero-mean additive Gaussian 

noise with variance (σ
2
) is considered. The choice of this 

degradation has been extensively discussed in the 

literature, and is principally made with respect to the 

(CLT) interpreting so, the fact that this kind of noise is 

found widely occurring in practice [1, 33].   

Let us consider a free-noise image F(x, y) corrupted by 

an additive Gaussian noise W(x, y) ~ N (0, σ
2
) as follows: 

 

     yxWyxFyxG ,,,          (1) 

 

From the noisy image G(x, y), we try to find an 

estimate of the original image by removing as much as 

possible the additive noise W(x, y), so that the recovered 

image being as much as nearer the original one. 

Therefore, thresholding in multi-resolution expansions 

and wavelet, in particular, has proven to be very powerful 

in such problems.  

Thus, thresholding in wavelet domain consists 

principally of three basic steps [1,7,18,32,34] (see Fig. 2): 

decomposition, thresholding, and reconstruction.  

 

 In the first stage, the image of interest is decomposed 

via an l-level orthogonal wavelet transform leading so 

to an approximation image from the low pass channel 

and three directional detail sub-bands (horizontal, 

vertical and diagonal ±45°) from the high pass 

channels.  

 The wavelet transform being orthogonal, the additive 

Gaussian noise is rightly translated from the spatial to 

the transform domain [20], and it is mainly 

concentrated in the finest detail sub-bands. So, 

discrimination of the noise from the true coefficients 

is done in two main steps. 

 

 Threshold computation that allows fixing a level 

for which the wavelet coefficients below this value 

are considered to be pure noise. In consequent, 

this step is often based on the noise level 

estimation that will be discussed soon in this paper.  

 Thresholding estimation that consists of choosing 

an appropriate strategy to be applied to the 

coefficients above the threshold value. Indeed, the 

coefficients below the threshold value likely due 

to noise are often set to zero; while the remaining 

important coefficients are either maintained 

without any modifications or shrunk towards zero 

by some amount. Therefore, two well-known 

schemes are adopted in the literature: hard and soft 

thresholding that are depicted in Fig. 1 and 

defined as follows (for the wavelet coefficients d 

and the threshold T):  
 

   
 

    













TdifTdsignddsoft

Tdifddhard

Tdifdsoftdhard 0
     (2) 

 

 Finally, the processed coefficients are subjected to an 

inverse wavelet transform to get the desired image.   
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Fig.1. Thresholding Function.  

 

Fig.2. Wavelet Thresholding Algorithm. 

 

III.  PROPOSED APPROACH 

The principal idea behind the realization of this work 

can be summarized as follows. Although the idea of 

thresholding in wavelet domain has proven very high 

performances in resolving many problems related to 

image restoration from its noisy version, the shrinkage of 

the wavelet coefficients through all detail sub-bands via 

this mechanism often leads to considerable losses in fine 

details of the processed image like edges and the different 

features inducing so, to smoothing the acquired image. 

And as a solution, we propose in this paper a new 

alternative taking advantage of the benefits of both 

wavelet thresholding and spatial filtering. 

A.  Adaptive Wavelet Thresholding 

The simplest thresholding methods work by applying 

the same threshold to process at least all the wavelet 

coefficients above a primary resolution level below which 

no thresholding at all is carried out. However, if the noise 

in the data is stationary and correlated, then the variance 

of the wavelet coefficients will depend on the level of the 

wavelet decomposition but will be constant within each 

level. Therefore it will be natural to deal differently with 

the coefficients at each level and to use a level-dependent 

approach [13]. So, one of the most attractive level-

dependent thresholds developed in the literature is one 

proposed by S. G. Chang et al; namely, BayesShrink (BS) 

which is an adaptive data-driven threshold for image 

denoising via wavelet soft-thresholding. It is derived in a 

Bayesian framework, and the prior used on the wavelet 

coefficients is the generalized Gaussian distribution 

(GGD) widely used in image processing applications. It 

is typically within 5% of the (MSE) of the best soft-

thresholding benchmark [11].  

Let us rewrite the model of (1) by its expression in the 

wavelet domain as:  

 

VXY               (3) 

 

Where X and Y are the wavelet coefficients of the free-

noise and noisy images F and G of the model (1), while V 

is the wavelet transformed of the additive Gaussian noise 

W described in (1) which is also Gaussian.  
While X and V are mutually independent, the variances: 

  
 ,   

  and    of X, Y and V are related to each other as 

follows:  

 
222   XY
         (4) 

 

Moreover, since Y is modeled as zero-mean,   
  can be 

found empirically by:  
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Where (n x n) is the size of the considered subband.  

Thus, from equation (4), the free-noise variance can be 

derived as follows: 

 

 0,ˆˆmaxˆ 22   YX
     (6) 

 

From equations (4 – 6), the most challenging task 

marking the process of threshold computation via 

BayesShrink is undoubtedly the noise level estimation. 

Indeed, D.L. DONOHO and I.M. JOHNSTONE [20] 

stipulated that is, for practical use, it is important to 

estimate the noise level ( ̂) from the data rather than to 

assume that the noise level is known. They believed that 

is important to use a robust estimator like the median, in 

case the fine-scale wavelet coefficients contain a small 

proportion of strong ―signals‖ mixed in with ―noise‖. In 

practice, they pioneered the derivation of an estimate 

from the finest scale empirical wavelet coefficients: 

 

   6745.0/1:ˆ
,, HHsubbandYYmedian jiji     (7) 

 

Ever since, most of the works established in the field of 

wavelet-based signal and image thresholding are built 

upon this estimator thanks to its robustness, near-

optimality, fast and simple computation. 

So, the data-driven, sub-band dependent threshold 

BayesShrink (BS) is given by [11]: 
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B.  Adaptive Wiener Filter (AWF):  

One of the first methods developed to reduce additive 

random noise in images is based on wiener filtering 

which is firstly considered for image restoration in the 

early 1960s. It is originally derived by minimizing the 

mean square error between the original and the processed 

image. One drawback related to the original wiener filter 

is the blur effect marking the filtered image mainly due to 

the use of fixed filter throughout the entire image, under 

the assumption that the characteristics of the signal and 

noise do not change over the different regions of the 

image. But, while these assumptions are not really true in 

practice, it is more reasonable to adapt the processing to 

the changing characteristics of the image and degradation. 

One alternative is then, to adaptively design and 

implement the filter by locally estimating its parameters, 

leading so to a space-variant wiener filter or adaptive 

wiener filter [33].  

Therefore, for a particular pixel location (n1, n2), the 

adaptive wiener-based filtered pixel is given by [33, 35]:  
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Where the local statistics (mean   and variance (  ) 
are locally estimated from the set   of (   )  local 

neighbourhood of each pixel in the image I. They are 

estimated as: 
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and (n) is the noise variance.  

C.  Joint Bilateral Filter (JBF):  

Filtering is one of the most fundamental operations of 

image processing where the resulting filtered image at a 

given location is generally a function of the values of the 

input image in a small neighborhood of the same location. 

This process is established upon the assumption that 

images typically vary slowly over space (near pixels are 

likely to have similar values), and it is, therefore, 

appropriate to manipulate them together. This assumption 

is notably violated at edge locations and particularly 

when low pass filtering is applied, which lead in 

consequent to blur them. Therefore, many efforts have 

been devoted to reducing this undesirable effect [36].     

Bilateral filtering is a technique to smooth images 

while preserving edges by means of a nonlinear 

combination of nearby image values. It can be traced 

back to 1995 with the work of Aurich and Weule on 

nonlinear Gaussian filters and was later rediscovered by 

Smith and Brady as part of their SUSAN framework, and 

Tomasi and Manduchi who gave it its current name [37]. 

The method is noniterative, local, and simple. It combines 

gray levels or colors based on both their geometric 

closeness and their photometric similarity and prefers 

near values to distant values in both domain and range. It 

has been used in several contexts such as denoising, 

texture editing and relighting, tone management, optical-

flow estimation and so on [36-37].   

Mathematically, at a particular pixel location ‗p‘, the 

bilateral filter (BF) output is given as follows:  
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Where: 
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And:  ( ) is a spatial neighbourhood of p. While the 

coefficients (s) and (r) represent respectively the spatial 

and range parameters that control and specify the amount 

of filtering for the image I. In practice, it is shown that in 

the context of denoising, adapting the range parameter (r) 

to the estimate of the local noise level yields more 

satisfying results [37].   

The main drawback of the classic bilateral filter in 

image denoising is that the edge stopping function      

could not be estimated accurately based on the noisy 

image. Also, and going from the fact that the wavelet-

based denoising image proves very high performances in 

preservation of the most important image features, a some 

modification is introduced to the original bilateral filter 

by adopting the wavelet-based denoised image as a 

reference image instead of the noisy one [27, 38], leading 

so to a new variant of the bilateral filter, namely ‗cross 

bilateral filter‘ or ‗joint bilateral filter (JBF)‘. In this 

alternative, the filter smoothes the image to be processed 

‗I‘ while preserving the edges of the reference image ‗E‘ 

[37]. So, for a wavelet-based denoised image ‗E‘ taken as 

a reference image, the joint bilateral filter (JBF) is 

described as follows: 
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Where the different components are as defined in (10). 

D. Proposed Algorithm:  

As can be clearly drawn from the previous sections, 

both the spatial filtering and wavelet thresholding prove 

very high performances in image restoration, making us, 

so very interesting and highly motivated to take 

advantage of their efficiencies while keeping all the 

reserves to take into account the correction of their some 
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relative shortcomings. Indeed, while the wavelet based 

image denoising has proven very high performances in a 

wide range of natural images and particularly in case of 

homogeneous ones, some limits and shortcomings are 

often present at the resulting images such as artefacts and 

smoothing effects; mainly due to the thresholding 

operation and particularly when the processed scenes are 

relatively dominated by non-homogeneous regions like 

edges and textures.  

In another hand, and opposing to the wavelet theory 

where the treatments are accomplished in the transform 

domain, the linear and non-linear filtering (wiener and 

JBF filtering) processing in the spatial domain have 

proven to be very powerful in image restoration 

particularly when the visual criterion is adopted; since the 

human eye is very sensitive to the overall and the coarse 

features of the processed scenes more than their intrinsic 

constitution. However, these spatial approaches also 

suffer from certain deficiencies and limitations at very 

low and higher noise levels making them so unfavorable 

to use them alone in such conditions.   

Therefore, and taking advantage of the complementary 

performances of spatial filtering and wavelet thresholding 

according to the noise level, we propose within the 

present paper a new arrangement made by a combination 

of the advantages of both spatial and wavelet domains; 

allowing so well denoising the degraded image while 

preserving the maximum of its details and features. The 

corresponding algorithm is depicted in Fig. 3 and 

explained as follows.    

  

 

Fig.3. The Proposed Algorithm. 

1. First, split the image to be processed into wavelet 

coefficients via a 2-level (2D-DWT); which results in 

the first level detail sub-bands (LH1, HL1, and HH1), 

the second level details (LH2, HL2, and HH2) and the 

coarse approximation (LL2). 

2. From the finest detail sub-band (HH1), compute the 

estimated level ( ̂ )  of the additive Gaussian noise 

using the robust median estimator given in equation 

(7).  

3. As well known the efficiency of the adaptive wavelet 

thresholding (and particularly BayesShrink) at 

extremely lower noise levels, we adopt this scheme in 

our algorithm for all estimated values of ( ̂ ) below a 

some level    (      ).  
From the next steps, we consider only the cases of 
( ̂ ) higher than(      ). 

4. Since the detail coefficients of the finest sub-bands 

(LH1, HL1, and HH1) are very small and are likely 

due to noise, an adaptive wavelet thresholding 

(BayesShrink) is applied to these sub-bands in order 

to cancel approximately the entire effect of the noise 

in the processed image without affecting its sharpness 

and its representative details and features.  

5. Moreover, the residual noise being mixed within the 

true coefficients of the coarse detail subbands (LH2, 

HL2 and HH2) that are more likely due to image 

details than the additive noise; an adaptive wiener 

filtering is adopted to clean those coefficients from 

the residual noise instead of thresholding them 

avoiding so smoothing the resulting image. The main 

challenge in this phase is the appropriate choice of the 

window size containing the neighborhood pixels used 

in the adaptive wiener filter (AWF). In this paper, we 

adopted three windows (3x3, 5x5 and 7x7) for lower, 

medium and higher noise levels respectively. This 

classification is relative and varies from one image 

type to another and even from one image to another. 

For images considered in this paper where their 

constitution is made by a lot of small homogeneous 

regions separated by great amount of edges, the three 

noise intervals are given approximately as follows: 

lower noise level (            ) , medium noise 

level (            ) , higher noise level (    
           ). These values can be drawn from the 

intuition and the experience of the executor.      

6. (LL2) sub-band being representative of the coarse 

approximation of the image from the 2-level 

decompositions, a small proportion of the noise is 

probably propagated into this sub-band, and an 

adaptive wiener filter is applied similarly as done in 

the previous step. This step allows us to cancel nearly 

all the residual noise remaining from the last two 

steps.  

7. Finally, and in order to well preserve the different 

features of the image processed, a joint bilateral filter 

(JBF) is performed to the resulting image taken as a 

reference image for the edge preservation, while the 

smoothed image is altered – according to the noise 

level estimated – between the noisy image at lower 

levels below (      ) and adaptive wiener filtered 

image – with windows as defined in the two last steps 

– otherwise.   

8. At the end of the proposed algorithm, all the 

processed coefficients resulting from the precedent 

steps are recombined again to be inverse transformed 

via a 2-level (2D-IDWT). Hence, the image acquired 

will be more pleasant by cleaning the additive noise 

while preserving the most details and important 

features.
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IV.  SIMULATION RESULTS AND DISCUSSIONS 

The experiments carried out in this paper are 

conducted in some relatively non-homogeneous images 

(512x512) like the satellite image of West-Concord city, 

a landscape image of a lake and walk-bridge scenes, and 

a brain MRI image shown in Fig. 4. In our tests, Gaussian 

noise with different levels (σ = 5, 10, 15, 20, 25, 30, 40, 

50, 60, 70) is added to the original scenes to simulate the 

noisy images. ―Symlet‖ wavelet with eight vanishing 

moments is employed in the wavelet decomposition and 

reconstruction steps. (JBF) with parameters (s = 1.0) and 

(r = 0.1) is adopted at the last phase of our algorithm.  

Performances of the denoising scheme introduced in 

this paper are evaluated in terms of (MSE), (PSNR) and 

correlation coefficient. The first two assessments being 

quantitative measures give information about the quantity 

of the noise remaining in the denoised image, and they 

are formulated for an image of size (M x N) by: 
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The second measure represented by the correlation 

coefficient (ρ) can be viewed as a qualitative measure; it 

informs about the similarity and the correlation between 

the original and the denoised image. It is given by:  
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Where:  (   ) and  ̂(   ) present the original and the 

denoised image respectively.  

 

 

Fig.4. Test images used in the comparison studies of this paper. 

To evaluate the performances of the present work, its 

comparison with the best and recent state-of-the-art 

approaches relating to the wavelet theory like (BS) with 

two level decompositions (with analogy to our scheme) 

and five levels (used as a benchmark comparator) as well 

as the spatial filtering like the adaptive wiener filter (5x5) 

is accomplished. The results obtained from the different 

schemes are reported and compared in Tables 1–5. The 

better ones among these are highlighted in bold font for 

each test set. 

 

Table 1. PSNR (dB) results for West-Concord Satellite Image 

West-Concord Satellite Image (512x512) 

Noise 
Level (σn) 

Noisy Signal 
Wiener Filter  

(5 x 5) 

BayesShrink 

(2 levels) 

BayesShrink 

(5 levels) 
Proposed 

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

05 25.06 34.14 110.01 27.72 17.77 35.63 17.76 35.64 17.77 35.63 

10 100.23 28.12 121.43 27.29 47.59 31.35 47.49 31.36 47.59 31.35 

15 225.51 24.60 138.62 26.71 80.64 29.06 80.23 29.09 67.44 29.84 

20 400.91 22.10 159.87 26.09 113.94 27.56 112.69 27.61 89.66 28.61 

25 626.42 20.16 183.97 25.48 147.71 26.44 144.83 26.52 117.15 27.44 

30 902.04 18.56 210.50 24.90 182.88 25.51 177.22 25.65 146.71 26.47 

40 1603.63 16.08 271.33 23.80 257.26 24.03 241.60 24.30 198.72 25.15 

50 2505.68 14.14 343.73 22.77 337.16 22.85 303.82 23.30 270.77 23.81 

60 3608.17 12.56 428.59 21.81 422.97 21.87 362.28 22.54 315.17 23.14 

70 4911.12 11.22 526.12 20.92 516.97 21.00 417.86 21.92 365.61 22.50 

 

From the results of image restoration reported in 

Tables 1–4, we can clearly notice the effectiveness of our 

new proposed algorithm in noise-removal from the 

relatively non-homogeneous images by providing very 

interesting (MSE) and (PSNR) performances compared to 

those of the best literature such the adaptive wiener filter 

and BayesShrink and exceeding them most of the time. 

Indeed, even if the application of BayesShrink – with 

high decomposition levels – in that process provides the 

best results at lower noise levels,  our approach remains 

very competitive which is within  0.05 dB of  (PSNR) 

and 0.8% of  the (MSE)  of  the best  adaptive wavelet  

(a) Satellite Image of West-Concord City (b) Landscape Image of Walk-bridge

(c) Landscape Image of Lake (d) Brain MRI Image
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thresholding benchmark (BayesShrink with 5 levels) and 

outperforms it again interestingly in terms of the 

implementation cost and complexity the fact that our 

scheme requires only two decompositions for all the 

denoising process opposing to the benchmarked-

BayesShrink that adopts generally more than three 

decompositions. Also, at these lower noise levels, our 

scheme is built solely upon 2-level BayesShrink for 

which the (MSE) and (PSNR) results of the denoised 

images show that this approach is well adequate for weak 

noise-levels the fact that the computation of the value of 

the threshold and consequently the shrinkage rate of the 

coefficients often depends on the level of the additive 

noise, from where the effect of shrinkage will be 

appreciably weak on these levels. 

Table 2. PSNR (dB) results for Walk-bridge Image 

Walk-bridge image (512x512) 

Noise 
Level (σn) 

Noisy Signal 
Wiener Filter  

(5 x 5) 

BayesShrink 

(2 levels) 

BayesShrink 

(5 levels) 
Proposed 

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

05 25.06 34.14 142.23 26.60 25.45 34.07 25.44 34.08 25.45 34.07 

10 100.23 28.12 154.25 26.25 68.35 29.78 68.14 29.80 68.35 29.78 

15 225.51 24.60 172.02 25.78 113.53 27.58 112.61 27.61 102.91 28.01 

20 400.91 22.10 193.58 25.26 157.91 26.15 155.39 26.22 130.44 26.98 

25 626.42 20.16 217.87 24.75 199.61 25.13 194.17 25.25 160.66 26.07 

30 902.04 18.58 244.68 24.25 238.29 24.36 228.24 24.55 198.33 25.16 

40 1603.63 16.08 306.38 23.27 312.60 23.18 287.12 23.55 252.99 24.10 

50 2505.67 14.14 379.48 22.34 390.00 22.22 339.30 22.82 311.40 23.20 

60 3608.17 12.56 464.61 21.46 473.21 21.38 385.58 22.27 353.54 22.65 

70 4911.12 11.22 562.33 20.63 564.61 20.61 427.90 21.82 401.81 22.09 

Table 3. PSNR (dB) results for Lake Image 

Lake image (512x512) 

Noise 
Level (σn)  

Noisy Signal 
Wiener Filter  

(5 x 5) 

BayesShrink 

(2 levels) 

BayesShrink 

(5 levels) 
Proposed 

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

05 25.06 34.14 56.35 30.62 21.91 34.72 21.86 34.73 21.91 34.72 

10 100.23 28.12 67.78 29.82 47.35 31.38 46.92 31.42 47.35 31.38 

15 225.51 24.60 84.72 28.85 74.74 29.40 73.22 29.48 58.47 30.46 

20 400.91 22.10 105.28 27.91 101.07 28.08 97.30 28.25 78.37 29.19 

25 626.42 20.16 128.43 27.04 127.74 27.07 120.31 27.33 103.29 27.99 

30 902.04 18.58 154.11 26.25 155.88 26.20 143.09 26.57 134.04 26.86 

40 1603.63 16.08 213.96 24.83 217.35 24.76 187.66 25.40 165.10 25.95 

50 2505.67 14.14 285.66 23.57 287.26 23.55 230.67 24.50 202.52 25.07 

60 3608.17 12.56 369.60 22.45 365.57 22.50 271.88 23.79 245.40 24.23 

70 4911.12 11.22 466.34 21.44 453.15 21.57 310.63 23.21 291.71 23.48 

Table 4. PSNR (dB) results for Brain MR Image 

Brain MR Image (512x512) 

Noise 

Level 

(σn)  

Noisy Signal 
Wiener Filter  

(5 x 5) 

BayesShrink 

(2 levels) 

BayesShrink 

(5 levels) 
Proposed 

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR 

05 25.06 34.14 21.84 34.74 11.72 37.44 11.65 37.47 11.72 37.44 

10 100.23 28.12 30.94 33.23 31.09 33.21 30.50 33.29 21.43 34.82 

15 225.51 24.60 45.11 31.59 54.11 30.80 52.05 30.97 49.70 33.24 

20 400.91 22.10 63.36 30.11 80.44 29.08 75.47 29.35 42.91 31.80 

25 626.42 20.16 84.94 28.84 108.54 27.78 98.86 28.18 58.03 30.49 

30 902.04 18.58 109.75 27.73 137.60 26.74 121.06 27.30 76.31 29.30 

40 1603.63 16.08 170.06 25.82 199.38 25.13 161.96 26.04 103.79 27.97 

50 2505.67 14.14 244.89 24.24 270.06 23.82 201.12 25.10 138.02 26.73 

60 3608.17 12.56 333.36 22.90 353.88 22.64 242.61 24.28 177.57 25.64 

70 4911.12 11.22 434.85 21.75 450.66 21.59 285.83 23.57 222.24 24.66 
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In another hand, and as expected theoretically for 

medium and higher noise levels, the new proposed 

approach clearly marked the best results compared to the 

best literature of wavelet thresholding and spatial filtering. 

Indeed, and compared to (BS) with the same number of 

decompositions, we notice well that our approach 

generally exceeds it for all the levels of the additive noise 

by an improvement reaching or exceeding the 1dB of 

(PSNR). This efficiency is still retained in comparison 

with the benchmarked (BS) by an enhancement of about 

0.27 ~ 1 dB of (PSNR) for the West-Concord, lake and 

walk-bridge images, for reaching and even exceeding the 

2 dB for the brain image. Our approach also outperforms 

notably the adaptive wiener filter by an improvement of 

nearly 1dB of (PSNR) and 10% of (MSE) along all the 

noise levels and considerably exceeding them sometimes.  

Furthermore, in addition to the numerical criteria of 

(MSE) and (PSNR) used above, a qualitative evaluation 

via the correlation coefficient (ρ) is also set in this paper 

in order to study the similarity and the correlation of the 

restored image to the original free-noise one. The relating 

results are well summarized in Table 5. Therefore, the 

obtained results show that our proposed scheme proves 

better performances in terms of closeness and similarity 

of the recovered image to the noise-free one thanks to the 

preservation of its maximum descriptive and sharp details 

like edges and the different features. Indeed, our new 

proposed algorithm succeed to bring a notable 

enhancement of the noisy image by an improvement 

reaching the 30% of its initial state and even exceeding it 

for attaining sometimes the 50% at higher noise levels. 

Moreover, our algorithm also outperforms the other 

restoration methods like the benchmarked (BS) by an 

amount of approximately 0.1% ~ 0.5%, wiener filter and 

2-level (BS) by nearly: 0.1% ~ 1.5% for brain MRI image, 

0.2% ~ 2% for lake landscape image, reaching and 

sometimes exceeding the 2% for walk-bridge landscape 

image and West-Concord satellite image. 

Table 5. Correlation (%) results for all the test images  

Noise 

Level 

(σn)  

West-Concord Satellite Image (512x512) Walk-bridge image (512 x 512) 

Noisy 

Signal 

Wiener 

Filter 

BayesShrink 
Proposed 

Noisy 

Signal 

Wiener 

Filter 

BayesShrink 
Proposed 

(2levs) (5levs) (2levs) (5levs) 

05 99.59 98.25 99.70 99.70 99.70 99.58 97.60 99.57 99.57 99.57 

10 98.37 98.01 99.20 99.21 99.20 98.34 97.39 98.83 98.84 98.83 

15 96.45 97.74 98.65 98.66 98.88 96.38 97.07 98.06 98.07 98.25 

20 93.93 97.36 98.09 98.11 98.50 93.82 96.68 97.29 97.33 97.77 

25 90.97 96.93 97.52 97.56 98.03 90.82 96.24 96.57 96.65 97.24 

30 87.70 96.45 96.93 97.01 97.54 87.51 95.76 95.90 96.05 96.58 

40 80.75 94.59 95.69 95.90 96.64 80.49 94.67 94.62 95.01 95.62 

50 73.86 94.13 94.38 94.81 95.43 73.53 93.41 93.32 94.07 94.58 

60 67.43 92.71 93.00 93.78 94.63 67.07 92.00 91.96 93.23 93.82 

70 61.63 91.14 91.55 92.80 93.73 61.27 90.44 90.52 92.46 92.97 

Noise 

Level 
(σn)  

Lake image (512 x 512) Brain MR Image (512x512) 

Noisy 
Signal 

Wiener 
Filter 

BayesShrink 
Proposed 

Noisy 
Signal 

Wiener 
Filter 

BayesShrink 
Proposed 

(2levs) (5levs) (2levs) (5levs) 

05 99.71 99.36 99.75 99.75 99.75 99.86 99.88 99.93 99.93 99.93 

10 98.85 99.22 99.44 99.45 99.44 99.43 99.83 99.82 99.83 99.89 

15 97.48 99.02 99.13 99.15 99.32 98.73 99.74 99.69 99.70 99.84 

20 95.64 98.77 98.82 98.86 99.08 97.78 99.64 99.54 99.57 99.78 

25 93.42 98.50 98.51 98.59 98.79 96.59 99.51 99.38 99.43 99.71 

30 90.92 98.19 98.18 98.32 98.43 95.19 99.37 99.21 99.30 99.63 

40 85.34 97.49 97.47 97.79 98.07 91.90 99.02 98.86 99.07 99.46 

50 79.48 96.65 96.67 97.28 97.62 88.12 98.59 98.45 98.84 99.29 

60 73.73 95.69 95.79 96.79 97.11 84.09 98.08 97.98 98.60 99.03 

70 68.32 94.62 94.84 96.32 96.56 79.96 97.51 97.44 98.35 98.82 

 

  
Fig.5. Denoising results of Walk-bridge landscape image at (σn=40).

Noisy Image Wiener Filtred Image 5-levels Bayes Shrinked Image Proposed Denoising Approach
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Fig.6. Denoising results of West-Concord Satellite image at (σn=40). 

Visually, however, the proposed denoising method has 

proven to perform better in image restoration of relatively 

non-homogeneous scenes by recovering the different fine 

details constituting generally the basic building of those 

classes. Therefore, Fig. 5 shows clearly the superior 

performances of the proposed approach in application to 

the walk-bridge landscape image which results in visually 

more pleasant images than the other methods. Another 

visual example is depicted in Fig. 6, which illustrates part 

of the West-Concord satellite image. Again, we can see 

that in addition to the best recovering of the smooth 

regions, the details over the contours, ridges and edge 

points are also well and better recovered using our hybrid 

scheme. Note also that according to Fig.5–7, (BS) 

produces more visible artifacts around strong edges, 

while the adaptive wiener filter smoothes them. And in 

order to show the contribution of our new proposed 

algorithm in overcoming these shortcomings, Fig. 7 

depicts another example with the Brain (MRI) image 
(     ) where the artefacts often introduced due to the 

thresholding processes around edges are well cancelled 

using our approach. So, the proposed method provides 

very high performances in preserving edges and fine 

details while removing noise. These improvements are 

reached thanks to the effective exploitation of the 

advantages of spatial filtering in collaboration with the 

adaptive wavelet thresholding, which assign it the 

effectiveness character by preserving the edges and the 

various important details of the image in the best way 

during the noise removal process.  

 

 
Fig.7. Denoising results of Brain MRI image at (σn=40). 

 

V.  CONCLUSION 

In this paper, a simple and effective approach for 

image restoration of relatively non-homogeneous images 

combining the advantages of spatial filtering and adaptive 

wavelet thresholding is presented. Thus, this hybrid 

approach is tested successfully on several relatively non-

homogeneous images where preservation of edges is the 

greatest challenge during their processing, and 

consequently, it is well recommended as a best qualified 

and effective model for denoising of such kinds of images. 

The key factors of the effectiveness of this approach can 

be summarized in two principal points. The first being the 

restriction of the application of the adaptive wavelet 

thresholding – adopting only two level decompositions – 

to just the finest detail sub-bands likely due to the 

additive noise, allowing so to maximally clean the noise 

effect from the degraded image while minimize the high 

computational and implementation costs often due to the 

multi-decompositions of the conventional denoising 

approaches. The second point of this approach is the 

application of an appropriate spatial filter for the 

remaining sub-bands, allowing so to remove and cancel 

the residual noise of the first stage avoiding so the 

smoothing effect generally accompanying the 

thresholding mechanism, and thus guarantee a maximum 

edge and details preservation of the processed image. So, 

our new proposed restoration algorithm is highly 

recommended when either visual pleasant, quantitative 

improvement or computation/implementation costs are 

desired. It is also possible to improve the performances of 

this approach by generalizing it to other flexible 

multiresolution transforms ensuring the best descriptions 

of the different features and descriptive details of the 

images.  

Noisy Image Wiener Filtred Image

5-levels Bayes Shrinked Image Proposed Denoising Approach

Noisy Image Wiener Filtred Image

5-levels Bayes Shrinked Image Proposed Denoising Approach
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