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Abstract—Medical data are characterized by complexity, 

inaccuracy, heterogeneity, the presence of hidden 

dependencies, often their distributions are unknown. 

Correlations between factors of disorders, including 

clinical data, parameters of time series, patient’s 

subjective assessments have a high complexity that 

cannot be fully comprehended by humans anymore. This 

problem is extremely important especially in case of the 

early detection of disorders. Machine learning methods 

are very useful for such detection task. Special area of 

interest is a problem of breathing disorders. In the paper, 

author demonstrates the potential use of computational 

intelligence tools for rhinologic data processing. 

Implementation of supervised learning techniques will 

allow improving accuracy of disorders detection as well 

as decrease medical insurance company expenses. 

Proposed intelligent-based approach makes it possible to 

process a variety of heterogeneous data in the medical 

domain. A combination of conventional and fractal 

features for time series of rhinomanometric data as well 

as inclusion of hydrodynamic characteristics of nasal 

breathing process provides the best accuracy. Such 

approach may be modified for other breathing disorders 

detection. 

 

Index Terms—Time series, early detection of disorders, 

classification algorithms, rhinomanometric signals, 

rhinology. 

 

I.  INTRODUCTION 

Early detection of disorders is an extremely important 

problem in medical practice. It allows avoiding an 

unnecessary treatment and reducing of insurance costs. 

According to statistics [1], specialists should especially 

pay attention to breathing disorders. These include a wide 

range of pulmonary system pathologies [2], lung cancer 

[3], disorders of nasal breathing [4] and others. A process 

of early detection is mostly based on analysis of clinical 

data and time series signals. A clinical dataset usually 

comprises specific features from a clinical aspect and it is 

in accordance with the current medical domain 

knowledge [5]. Breathing signals’ acquisition is based on 

well-known instrumental methods such spirometry, 

rhinomanometry, polysomnography, plethysmography. 

The pulmonary plethysmographs are widely used to 

measure a volume of the lungs for monitoring breath in 

clinical setups [3], polysomnography is considered as the 

standard method for sleep apnea detection [6].  

Results of measurements using such instrumental 

methods comprise an airflow rate, a differential pressure 

and acoustic signals. A wide range of techniques is used 

for signals processing for informative feature extraction. 

Most of them are based on the analysis of global integral 

statistical properties and significant parts of signal [7]. 

However, these methods are not suitable in practical 

sense in many cases. Signals mentioned above have 

common particularities. A dynamic nature of the 

breathing system causes them exhibit a nonstationary and 

quasi-periodical behavior. This may be explained by 

presence of chaotic properties. In [8], the analysis of 

signal’s fractal properties was performed. It was shown 

that such characteristics are indispensable features for 

detection of disorders. 

In this paper, we will focus on detection of rhinological 

disorders. Rhinological disorders mostly have a symptom 

of nasal obstruction. An overview of methods for 

diagnostics of nasal breathing function is given in [9]. All 

standard diagnostic coefficients obtained from 

measurements have a number of dimensions and depend 

on specific anatomico-physiological features of a person. 

This fact reduces the effectiveness of disorders detection. 

Many patients including patients who had surgery 

according to [10] evaluate results of diagnosis as 

unsatisfied. A special problem is the differential 

diagnosis between structural changes and mucosal 

disorders. In additional, for example, symptoms of 

vasomotor rhinitis [11] may come and go throughout a 

long period. So, this fact demands a long time period of 

observing by Ear, Nose, Throat (ENT) specialist. Thus, 

the task is to search new ways for overcoming these 

disadvantages. 

Considering specifics of the nasal breathing process, 

we should take into account a physics of the process. In 

[9, 12, 13, 14] a value of aerodynamic characteristics of 

the airflow has been proven.  
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A purpose of the current work is to develop a new 

approach for early detection of disorders in rhinology, 

which allow specialists to improve a quality of diagnosis 

in (ENT) domain. As a part of decision support system, 

the proposed approach should be accomplished through 

usage of features derived by a complex of methods. For 

detection of nasal breathing disorders it consists of the 

hydrodynamic characteristics, features extracted from 

time series and clinical data obtained from expert 

evaluations.  

To support the ENT specialist in his decisions, the 

intelligent decision support system was designed. 

System implements machine-learning algorithms to 

provide a recommendation, based on a history of 

cases analyzed by experts to each specific case. The 

major research challenge to address is how to 

extract meaningful features from a large amount of 

heterogeneous data (CT-scans and the associated 3D 

reconstruction, rhinomanometric time series, results 

of medical exams and other relevant information 

associated to the patient). These data appear to be 

very high dimensional, and needs to be suitably 

processed before being fed to a learning algorithm. 

Thus, the proposed approach consists of the data 

preprocessing stage, feature extraction, feature 

selection and classification.  
The rest of this paper is organized as follows. In 

Section II, the author describes a process of data 

acquisition including signal processing, feature extraction, 

feature selection and a classification strategy. Section III 

shows a result of classification. Finally, Section IV 

concludes this paper. 

 

II.  MATHERIALS AND METHODS 

A.  Data acquisition 

Signals of the airflow rate and the differential pressure 

were recorded for volunteer subjects who had 

rhinomanometry procedure at Kharkiv Scientific-

Practical Center of ENT diseases. The system used in 

current research was originally designed to 

simultaneously measure the airflow rate and the 

differential pressure during a breath according to Active 

Anterior Rhinomanometry method. The system design 

has previously been described in detail [8]. It was 

certified in Ukraine, certificate of the state registration № 

14777/2015 from 06.12.2015. A measuring module based 

on two sensors: an ultralow pressure sensor and a low 

pressure drop digital flow meter. A sampling rate of 

signals’ measurement is 100 Hz. Signals are presented in 

Fig. 1.  

 

Fig.1. The airflow rate and the differential pressure as a function of time 

A measuring range of the differential pressure is ±1200 

Pa. A limit of a reduced error of the differential pressure 

measurement is %25,0p  . The digital flow meter is 

designed for high-volume applications. A measuring 

range of the airflow rate is ±1200 cm3/s. A limit of the 

relative error of the airflow rate measurement 

is %3p  . A preprocessing stage with filtering 

techniques for noise reduction was implemented 

according to [15]. The collected data set consists of 1076 

measurements of ENT patients. Each measurement 

comprises airflow rate and differential pressure signals. 

Procedure of measuring is carry out according to 

recommendations of ISCOANA [9]. An examples of 

measurements for rhinitis and for septal deviation are 

presented in Figs. 2 and 3. 

 

 
(a) 

 
(b)
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(c) 

 
(d) 

Fig.2. Rhinomanometric time series for “rhinitis” 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig.3. Rhinomanometric time series for “septal deviation” 

During this investigation, the author figured out that 

some meaningful information is concerned only in time 

series of the airflow rate. So, the further research will be 

connected with airflow rate signals processing. Author 

uses R for signal processing and feature extraction. 

Clinical data was derived from expert evaluation 

including description of CT-scans by radiologists, data of 

patient’s history and subjective assessments (VAS-visual 

analog scale) [9]. These data were analyzed using few 

preprocessing techniques: replacing missing values, 

discretization of attribute values, and normalization.  

B.  Feature extraction 

A principal task of the proposed approach is to identify 

hidden meaningful information in the initial data. Many 

features can be derived from a time series waveform. 

Extracted features will be derived from an initial signal 

using statistical, spectral and fractal analysis. For the first 

group, ten features were obtained: peak airflow rate PIF 

(cm3/s); average airflow rate AIF (cm3/s); maximum 

inspiration airflow rate acceleration MIFA (cm3/s2); total 

inspiration volume TIV (cm3). Also skewness 
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and kurtosis 
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were calculated, where   and  are the mean and the 

standard deviation of the signal respectively. A crest 

factor was obtained according to 
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where RMS stands for Root Mean Square of signal. A 

parameter rt, as a ratio of time at PIF / total time of 

inspiration phase; form factor Ff as a ratio RMS / mean of 

airflow rate of inspiration phase; the inverse power law 

1/f of the power spectrum were also defined. 

Rhinomanometric signals are quasi-periodical, 

nonstationary and nonlinear [8]. Taking into account this 

fact, the analysis relies on a model of time series 
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where ]n[x  is a sequence at the output of the causal 

filter 00  k,]k[h , ]n[u is an input sequence, ]k[a , 

]k[b  denote parameters of autoregressive model. A class 

of such models which use characteristics of the white 

noise process are described in [16]. The power spectral 

density is calculated using 
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where ]k[â  is linear prediction coefficients, p̂  

designates for the white noise variance estimation. Thus, 

we have a robust method with high frequency selectivity 

and a good noise reduction characteristic. Calculation 

results are shown in Figs. 4 and 5. 
 

 

Fig.4. The power spectral density for a patient without disorders 

 

Fig.5. The power spectral density for a patient with disorders 

(vasomotor rhinitis) 

We can observe a distinguishable spectral peak in Fig. 

5 which means a disorder. It was investigated the area of 

interest АRP̂ : [0.005,0.05] is a special frequency range 

corresponding to sympathetic and parasympathetic 

activity. Spectral harmonic with a high amplitude  

indicates such rhinological disorders as vasomotor 

rhinitis and may be calculated using a step on frequency 

and a sampling frequency. This relationship should be 

proved with the help of big statistics. In our case, such 

spectral harmonic was observed in 44 % cases of the data 

set. 

As a result of such analysis, we obtained the following 

group of features: SC={PIF, AIF, MIFA, TIV, ka, ke, kam, 

rt, Ff, , }. 

The nonlinear approach to extract the hidden features 

from time series was applied at the next stage. Nonlinear 

time series analysis was based on calculation of the Hurst 

parameter 
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where )(R  is a range of cumulative time series 
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The Lyapunov exponent was calculated using 
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where  is a step of sampling. 

A correlation dimension D2 is 
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and y are m-dimensional delay vectors, N denotes a 

number of points, and   is the Heaviside function: 

)x( equals zero for x<0 and one for x0 [17, 18]. 

The box-counting dimension was obtained as 
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where ( )L k  computed a curve length for different 

k and it is related to the fractal dimension D 
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Calculation results for the fractal dimension is D∊

[1.77,1.84], H ∊ [0.13,0.2] is for the Hurst parameter, L

∊ [0.17,0.19] is for high Lyapunov exponent. A group of 

features consists of FC={H,CD,BCD,HD}. 

A next step is obtaining significant features from 

various models of fitting rhinomanometric curves [9, 12, 

19]. So the dataset consists of parameters which describe 

aerodynamic characteristics of the breath HC={Reff, k2, 

R100,VR,  ,R2,deq}, where Reff an Effective Resistance, 

k2 a coefficient of the turbulent flow, R100 a nasal 

resistance coefficient on a level of the differential 

pressure 100 Pa, VR a Vertex Resistance, R2 a parameter 

of the Broms model [9],  a coefficient of hydrodynamic 

resistance of nasal cavity, deq an equivalent diameter [12].   

Another group of significant features was obtained as a 

result of a patient' history, expert evaluation and 

subjective data assessment according to the Visual 

Analogue Scale test. This group can be expressed as 

EC={CTD, PH, SM, AL, VAS}, where CTD a 

description of CT-scans, PH a patient history, SM a factor 

of smoking, AL allergies, VAS –the Visual Analogue 

Scale. 

C.  Feature selection 

As soon as we assemble four sets of features, we feed 

it further as an input vector to the classification algorithm. 

Feature selection is regarded as a classic method to 

prevent overfitting by eliminating redundant features. In 

real-time detection scenario, it is also an effective way to 

reduce the computational load by requiring less signal 

processing in feature extraction, to lower the rate of data 

transmission and energy consumption, to shorten the time 

required for model building during the training process. 

Selection of the most informative features in groups 

SC={PIF, AIF, MIFA, TIV, ka, ke, kam, rt, Ff, , } and 

FC={H,CD,BCD,HD} was performed by means of 

Correlation-based Feature Selector (CFS) 
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where sM  stands for a correlation coefficient, cfr  is a 

mean correlation between features and a class attribute, 

ffr  designates for an average correlation between 

features [20]. 

Selection of the most informative parameters in a 

group HC={Reff, k2, R100,VR,  ,R2,deq} was obtained 

according to [21]. This approach to feature selection uses 

a fuzzy regression model based on the least-angle 

regression (LARS) method for significant feature 

selection. Such method allows reducing a number of 

input parameters of the model, which avoids the model’s 

overfitting. The results allow us to distinguish two 

significant model coefficients that affect the predicted 

degree of obstruction. 

A group of features EC={CTD, PH, SM, AL, VAS} 

was analyzed using the Gain Ratio (GR) metric [20]. This 

metric is based on the Information Gain (IG) method and 

eliminates its weakness, which appear in case of large 

numbers of unique values. GR divides IG by entropy of 

the considered feature 
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where ( )H CIA  is the entropy of a feature C. 

As a result of implementation of these methods, an 

input vector for the classification algorithm was obtained 

MC = {k2,  , PIF, ke, kam, , H, BCD, CTD, VAS}. 

Before the classification procedure starts the data 

normalization should be implemented. To bring variables 

into the range {+h, -l} an expression Xn = (x - min(x)) / 

(max(x) - min(x)) * (h - l) + l was applied.  

D.  Classification 

The effectiveness of the proposed approach is analyzed 

considering a binary classification procedure, i.e., 

classifying the results into two groups: structural 

disorders and vasomotor disorders. The classifier should 

be trained using features extracted from set of supervised 

cases, namely cases associated to the disorders and their 

treatment recommended by an expert.  
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A classifier implemented in this research is the support 

vector machine (SVM) [22]. The SVM algorithm has 

already been used for rhinomanometric data classification 

[15]. Since the data in our case are linearly inseparable, 

the SVM with the radial basis function (RBF) kernel was 

chosen. The polynomial kernel always gave higher 

accuracy than the linear kernel classification. In this case, 

a problem of constructing a separating hyperplane 

transforms into a dual search for the saddle point of the 

Lagrange function and reduces to the quadratic 

programming problem containing only dual variables 
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where i  is a dual variable, iz  means an object of a 

training data set, iy  is a value “-1” or “+1”, it 

characterizes whether an object belongs to one of the 

classes, ( , )ik z z  kernel function, C denotes a 

regularization parameter, S stands for a number of objects 

in a training data set S,i 1 . The kernel function is 

calculated using 

 

2

1

( ) exp , / (2 )
S

i i i i

i

f z y z z z z b  


       . 

 

The implementation of such classifier depends on two 

parameters: the regularization parameter C  and the RBF 

inverse parameter   
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The parameters C  and   must be tuned to achieve an 

acceptable trade-off between performance and overfitting. 

A decision about belonging of the object z to the "-1" or 

the "+1" is adopted according to: 
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Experimental results are presented in the next Section. 

 

III.  EXPERIMENTAL RESULTS 

We compare the results obtained by the SVM and 

Random Forest (RF) [23, 24, 25] classifiers.  

The optimal parameters for SVM with the FBF kernel 

using a ten-fold cross validation procedure: 11C  and 

010,  were obtained. 

The data set was divided into learning and test data sets. 

Learning data set takes 85% and test set takes 15% from a 

general quantity. For classification, we used three set of 

features: all features, features excluding nonlinear 

parameters and features excluding parameters which 

describe the hydrodynamic characteristics of data. Thus 

we can estimate the influence of these groups of data 

properties. Classification results are presented in Table 1. 

Table 1. Classification results for all features and with groups of 

features excluded 

Feature set 

Learning 

RF 

[%] 

Learning 

SVM 

[%] 

Test 

RF 

[%] 

Test 

SVM 

[%] 

All features 91,6 94,1 82,5 87,0 

Nonlinear features 

excluded 
82,1 84,2 72,4 75,1 

Hydrodynamic 

features excluded 
79,2 81,0 64,2 67,4 

 

The classification results were obtained for the initial 

data set of 1076 patients with selected ten features for 

each record. Data were preliminarily classified by 

otolaryngologists into two classes of disorders: rhinitis 

and septal deviation. 

When the nonlinear features were excluded and only 

conventional, hydrodynamic and patient’ s anamnesis 

features were used the classification performance 

decreased as is shown in Table 1. When the 

hydrodynamic features were excluded, the classification 

performance dramatically decreased. Thus, we can 

conclude that these features have the greatest impact on 

detection of disorders. The best results were achieved 

using the SVM classifier with full data set. 

 

IV.  CONCLUSION 

In the current research, the new intelligent-based 

approach for the early detection of disorders is proposed. 

The application of the method on rhinological data is 

realized. It is novel automated technique for classifying 

of structural and vasomotor disorders. The early detection 

of nasal breathing disorders will allow avoiding 

unnecessary surgery and reducing the costs on treatment. 

It was shown that signals of breath have common 

particularities, because of nonstationary quasi-periodical 

behavior of breathing process. The different groups of 

informative features were obtained and influence of few 

groups on classification accuracy was investigated. 

The new method integrates a multitude of 

heterogeneous data. When the nonlinear features as well 

as hydrodynamic features were excluded and only 

conventional features were used the classification 

performance decreased. So we can conclude that a 

combination of different groups of features which 

describe the physics of breathing process can increase a 

quality of disorders detection. Both fractal and 



 New Intelligent-based Approach for the Early Detection of Disorders: Use on Rhinological Data 7 

Copyright © 2017 MECS                                                            I.J. Image, Graphics and Signal Processing, 2017, 8, 1-8 

hydrodynamic characteristics of rhinological data affect 

accuracy of classification. Further investigation in this 

direction will allow investigating the procedure of 

detection for other classes of disorders. 

The proposed approach can be used for postoperative 

evaluation to estimate the efficiency of the different 

methods. The postoperative evaluation in the functional 

surgery has a significant meaning for the clinical trials. 

ENT specialist chooses between surgery and conservative 

treatment using the different diagnostic tools: CT, 

Acoustic Rhinometry, Rhinomanometry, CFD, VAS. The 

proposed approach will provide an improvement of the 

prediction of human risks related to surgery. 
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