ISSN: 2074-904X (Print)
ISSN: 2074-9058 (Online)
DOI: https://doi.org/10.5815/ijisa
Website: https://www.mecs-press.org/ijisa
Published By: MECS Press
Frequency: 6 issues per year
Number(s) Available: 136
IJISA is committed to bridge the theory and practice of intelligent systems. From innovative ideas to specific algorithms and full system implementations, IJISA publishes original, peer-reviewed, and high quality articles in the areas of intelligent systems. IJISA is a well-indexed scholarly journal and is indispensable reading and references for people working at the cutting edge of intelligent systems and applications.
IJISA has been abstracted or indexed by several world class databases: Scopus, Google Scholar, Microsoft Academic Search, CrossRef, Baidu Wenku, IndexCopernicus, IET Inspec, EBSCO, JournalSeek, ULRICH's Periodicals Directory, WorldCat, Scirus, Academic Journals Database, Stanford University Libraries, Cornell University Library, UniSA Library, CNKI Scholar, ProQuest, J-Gate, ZDB, BASE, OhioLINK, iThenticate, Open Access Articles, Open Science Directory, National Science Library of Chinese Academy of Sciences, The HKU Scholars Hub, etc..
IJISA Vol. 17, No. 2, Apr. 2025
REGULAR PAPERS
This research investigation utilizes deep learning object detection algorithms to achieve accurate recognition of birds near airports, thereby addressing the limitations of manual bird detection at airports, including low accuracy slow speed, and the high cost of radar detection. The ultimate goal is to ensure the safe operation of civil aviation. The following are the primary enhancements: First, an ECA (Efficient Channel Attention) attention mechanism was added to the Neck to enhance the network's emphasis on important characteristics. This resulted in a notable improvement in accuracy while only changing a few parameters. Second, by adding branches with various receptive fields, the MBC3 (Muti Branch C3) module was created to improve the expressiveness of the model. Thirdly, the model's right width and depth parameters will be chosen by investigating the effects of various network widths and depths on model performance. Fourth, to solve the problem of feature loss in recognizing tiny bird targets, the SF-PAN (Shallow Feature - Path Aggregation Network) structure was proposed. The model was evaluated using metrics such as mAP@50, FPS, precision, recall, and computational complexity on a test set derived from the dataset. Results show that the enhanced YOLOv8 achieves a mAP@50 of 83.1% and a speed of 31 FPS, a 2.5% improvement in accuracy and a 7 FPS increase over the baseline YOLOv8, while reducing parameters and weight size by approximately 48%. Comparative experiments further validate the model’s superiority over existing algorithms in terms of accuracy and resource efficiency. This upgraded YOLOv8 provides a novel, real-time solution for precise bird detection in challenging airport environments, ensuring safer civil aviation operations.
[...] Read more.Supply chain fraud, a persistent issue over the decades, has seen a significant rise in both prevalence and sophistication in recent years. In the current landscape of supply chain management, the increasing complexity of fraudulent activities demands the use of advanced analytical tools. Despite numerous studies in this domain, many have fallen short in exploring the full extent of recent developments. Thus, this paper introduces an innovative deep learning-based classification model specifically designed for fraud detection in supply chain analytics. To enhance the model's performance, hyperparameters are fine-tuned using Bayesian optimization techniques. To manage the challenges posed by high-dimensional data, Principal Component Analysis (PCA) is applied to streamline data dimensions. In order to address class imbalance, the SMOTE technique has been employed for oversampling the minority class of the dataset. The model's robustness is validated through evaluation on the well-established 'DataCo smart supply chain for big data analysis' dataset, yielding impressive results. The proposed approach achieves a 94.71% fraud detection rate and an overall accuracy of 99.42%. Comparative analysis with various other models highlights the significant improvements in fraud transaction detection achieved by this approach. While the model demonstrates high accuracy, it may not be directly transferable to more diverse or real-world datasets. As part of future work, the model can be tested on more varied datasets and refined to enhance generalizability, better aligning it with real-world scenarios. This will include addressing potential overfitting to the specific dataset used and ensuring further validation across different environments to confirm the model's robustness and generalizability.
[...] Read more.In the direct-to-home (DTH) environment video-on-demand (VOD) applications are tremendously popular due to its inexpensive and convenient nature. In VOD approach legal customers can connect their set-top boxes (STB) to the Internet and can access or record the available content. Due to the easy transmission of the highest quality digital data to the customers by the pay-per-view approach, the data are highly at risk. The data can be vulnerable for illegal distribution of duplicate copies and they are prone to unnecessary modifications which creates a financial loss to the information creators. So it is necessary to authenticate the owner as well as the illegal distributor to reduce the digital piracy which is the motivation for this work. This paper presents a forensic watermarking scheme for protecting copyrights, and for identifying the illegal distributor who distributes the legal copy in the illegal fashion though it is copyright violation. In this paper, two watermarks are embedded in the video that is on-demand, where one watermark is the owner’s information and another watermark is related to the unique information of the STB. This work is also suitable for the biomedical domain, where one watermark can be the patient information and another watermark will be the health center information, in order to secure the patient information and the hospital information.
[...] Read more.In order to implement the advantages of machine learning in the cybersecurity ecosystem, various anomaly detection-based models are being developed owing to their ability to flag zero-day attacks over their signature-based counterparts. The development of these anomaly detection-based models depends heavily on the dataset being employed in terms of factors such as wide attack pool or diversity. The CICIDS 2017 stands out as a relevant dataset in this regard. This work involves an analytical comparison of the performances by selected shallow machine learning algorithms as well as a deep learning algorithm leveraging the CICIDS 2017 dataset. The dataset was imported, pre-processed and necessary feature selection and engineering carried out for the shallow learning and deep learning scenarios respectively. Outcomes from the study show that the deep learning model presented the highest performance of all with respect to accuracy score, having percentage value as high as 99.71% but took the longest time to process with 550 seconds. Furthermore, some shallow learning classifiers such as Decision Tree and Random Forest took less processing time (4.567 and 3.95 seconds respectively) but had slightly less accuracy scores than the deep learning model with the CICIDS 2017 dataset. Results from our study show that Deep Neural Network is a viable model for intrusion detection with the CICIDS 2017 dataset. Furthermore, the results of this study are to provide information that may influence choices while developing machine learning based intrusion detection systems with the CICIDS 2017 dataset.
[...] Read more.During the development and implementation of the software system for text analysis, attention was focused on the morphological, syntactic and stylistic levels of the language, which made it possible to develop detailed profiles of authorship for various writers. The main goal of the system is to automate the process of identifying authorship and detecting plagiarism, which ensures the protection of intellectual property and contributes to the preservation of cultural heritage. The scientific novelty of the research was manifested in the development of specific algorithms adapted to the peculiarities of the natural language, as well as in the use of advanced technologies, such as deep learning and big data. The introduction of the interdisciplinary approach, which combines computer science, linguistics, and literary studies, has opened up new perspectives for the detailed analysis of scholarly works. The results of the work confirm the high efficiency and accuracy of the system in authorship identification, which can serve as an essential tool for scientists, publishers, and law enforcement agencies. In addition to technical aspects, it is vital to take into account ethical issues related to confidentiality and copyright protection, which puts under control not only the technological side of the process but also moral and legal norms. Thus, the work revealed the importance and potential of using modern text processing methods for improving literary analysis and protecting cultural heritage, which makes it significant for further research and practical use in this area.
[...] Read more.Suicide remains a critical global public health issue, claiming vast number of lives each year. Traditional assessment methods, often reliant on subjective evaluations, have limited effectiveness. This study examines the potential of Bidirectional Encoder Representations from Transformers (BERT) in revolutionizing suicide risk prediction by extracting textual biomarkers from relevant data. The research focuses on the efficacy of BERT in classifying suicide-related text data and introduces a novel BERT-based approach that achieves state-of-the-art accuracy, surpassing 97%. These findings highlight BERT's exceptional capability in handling complex text classification tasks, suggesting broad applicability in mental healthcare. The application of Artificial Intelligence (AI) in mental health poses unique challenges, including the absence of established biological markers for suicide risk and the dependence on subjective data, which necessitates careful consideration of potential biases in training datasets. Additionally, ethical considerations surrounding data privacy and responsible AI development are paramount. This study emphasizes the substantial potential of BERT and similar Natural Language Processing (NLP) techniques to significantly improve the accuracy and effectiveness of suicide risk prediction, paving the way for enhanced early detection and intervention strategies. The research acknowledges the inherent limitations of AI-based approaches and stresses the importance of ongoing efforts to address these issues, ensuring ethical and responsible AI application in mental health.
[...] Read more.Cyberbullying is an intentional action of harassment along the complex domain of social media utilizing information technology online. This research experimented unsupervised associative approach on text mining technique to automatically find cyberbullying words, patterns and extract association rules from a collection of tweets based on the domain / frequent words. Furthermore, this research identifies the relationship between cyberbullying keywords with other cyberbullying words, thus generating knowledge discovery of different cyberbullying word patterns from unstructured tweets. The study revealed that the type of dominant frequent cyberbullying words are intelligence, personality, and insulting words that describe the behavior, appearance of the female victims and sex related words that humiliate female victims. The results of the study suggest that we can utilize unsupervised associative approached in text mining to extract important information from unstructured text. Further, applying association rules can be helpful in recognizing the relationship and meaning between keywords with other words, therefore generating knowledge discovery of different datasets from unstructured text.
[...] Read more.Stock market prediction has become an attractive investigation topic due to its important role in economy and beneficial offers. There is an imminent need to uncover the stock market future behavior in order to avoid investment risks. The large amount of data generated by the stock market is considered a treasure of knowledge for investors. This study aims at constructing an effective model to predict stock market future trends with small error ratio and improve the accuracy of prediction. This prediction model is based on sentiment analysis of financial news and historical stock market prices. This model provides better accuracy results than all previous studies by considering multiple types of news related to market and company with historical stock prices. A dataset containing stock prices from three companies is used. The first step is to analyze news sentiment to get the text polarity using naïve Bayes algorithm. This step achieved prediction accuracy results ranging from 72.73% to 86.21%. The second step combines news polarities and historical stock prices together to predict future stock prices. This improved the prediction accuracy up to 89.80%.
[...] Read more.The Internet of Things (IoT) has extended the internet connectivity to reach not just computers and humans, but most of our environment things. The IoT has the potential to connect billions of objects simultaneously which has the impact of improving information sharing needs that result in improving our life. Although the IoT benefits are unlimited, there are many challenges facing adopting the IoT in the real world due to its centralized server/client model. For instance, scalability and security issues that arise due to the excessive numbers of IoT objects in the network. The server/client model requires all devices to be connected and authenticated through the server, which creates a single point of failure. Therefore, moving the IoT system into the decentralized path may be the right decision. One of the popular decentralization systems is blockchain. The Blockchain is a powerful technology that decentralizes computation and management processes which can solve many of IoT issues, especially security. This paper provides an overview of the integration of the blockchain with the IoT with highlighting the integration benefits and challenges. The future research directions of blockchain with IoT are also discussed. We conclude that the combination of blockchain and IoT can provide a powerful approach which can significantly pave the way for new business models and distributed applications.
[...] Read more.Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task. The performances obtained from these networks were evaluated in consideration of achieved recognition rates and training time.
[...] Read more.The proliferation of Web-enabled devices, including desktops, laptops, tablets, and mobile phones, enables people to communicate, participate and collaborate with each other in various Web communities, viz., forums, social networks, blogs. Simultaneously, the enormous amount of heterogeneous data that is generated by the users of these communities, offers an unprecedented opportunity to create and employ theories & technologies that search and retrieve relevant data from the huge quantity of information available and mine for opinions thereafter. Consequently, Sentiment Analysis which automatically extracts and analyses the subjectivities and sentiments (or polarities) in written text has emerged as an active area of research. This paper previews and reviews the substantial research on the subject of sentiment analysis, expounding its basic terminology, tasks and granularity levels. It further gives an overview of the state- of – art depicting some previous attempts to study sentiment analysis. Its practical and potential applications are also discussed, followed by the issues and challenges that will keep the field dynamic and lively for years to come.
[...] Read more.Along with the growth of the Internet, social media usage has drastically expanded. As people share their opinions and ideas more frequently on the Internet and through various social media platforms, there has been a notable rise in the number of consumer phrases that contain sentiment data. According to reports, cyberbullying frequently leads to severe emotional and physical suffering, especially in women and young children. In certain instances, it has even been reported that sufferers attempt suicide. The bully may occasionally attempt to destroy any proof they believe to be on their side. Even if the victim gets the evidence, it will still be a long time before they get justice at that point. This work used OCR, NLP, and machine learning to detect cyberbullying in photos in order to design and execute a practical method to recognize cyberbullying from images. Eight classifier techniques are used to compare the accuracy of these algorithms against the BoW Model and the TF-IDF, two key features. These classifiers are used to understand and recognize bullying behaviors. Based on testing the suggested method on the cyberbullying dataset, it was shown that linear SVC after OCR and logistic regression perform better and achieve the best accuracy of 96 percent. This study aid in providing a good outline that shapes the methods for detecting online bullying from a screenshot with design and implementation details.
[...] Read more.Non-functional requirements define the quality attribute of a software application, which are necessary to identify in the early stage of software development life cycle. Researchers proposed automatic software Non-functional requirement classification using several Machine Learning (ML) algorithms with a combination of various vectorization techniques. However, using the best combination in Non-functional requirement classification still needs to be clarified. In this paper, we examined whether different combinations of feature extraction techniques and ML algorithms varied in the non-functional requirements classification performance. We also reported the best approach for classifying Non-functional requirements. We conducted the comparative analysis on a publicly available PROMISE_exp dataset containing labelled functional and Non-functional requirements. Initially, we normalized the textual requirements from the dataset; then extracted features through Bag of Words (BoW), Term Frequency and Inverse Document Frequency (TF-IDF), Hashing and Chi-Squared vectorization methods. Finally, we executed the 15 most popular ML algorithms to classify the requirements. The novelty of this work is the empirical analysis to find out the best combination of ML classifier with appropriate vectorization technique, which helps developers to detect Non-functional requirements early and take precise steps. We found that the linear support vector classifier and TF-IDF combination outperform any combinations with an F1-score of 81.5%.
[...] Read more.In this paper, a new acquisition protocol is adopted for identifying individuals from electroencephalogram signals based on eye blinking waveforms. For this purpose, a database of 10 subjects is collected using Neurosky Mindwave headset. Then, the eye blinking signal is extracted from brain wave recordings and used for the identification task. The feature extraction stage includes fitting the extracted eye blinks to auto-regressive model. Two algorithms are implemented for auto-regressive modeling namely; Levinson-Durbin and Burg algorithms. Then, discriminant analysis is adopted for classification scheme. Linear and quadratic discriminant functions are tested and compared in this paper. Using Burg algorithm with linear discriminant analysis, the proposed system can identify subjects with best accuracy of 99.8%. The obtained results in this paper confirm that eye blinking waveform carries discriminant information and is therefore appropriate as a basis for person identification methods.
[...] Read more.Climate change, a significant and lasting alteration in global weather patterns, is profoundly impacting the stability and predictability of global temperature regimes. As the world continues to grapple with the far-reaching effects of climate change, accurate and timely temperature predictions have become pivotal to various sectors, including agriculture, energy, public health and many more. Crucially, precise temperature forecasting assists in developing effective climate change mitigation and adaptation strategies. With the advent of machine learning techniques, we now have powerful tools that can learn from vast climatic datasets and provide improved predictive performance. This study delves into the comparison of three such advanced machine learning models—XGBoost, Support Vector Machine (SVM), and Random Forest—in predicting daily maximum and minimum temperatures using a 45-year dataset of Visakhapatnam airport. Each model was rigorously trained and evaluated based on key performance metrics including training loss, Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), R2 score, Mean Absolute Percentage Error (MAPE), and Explained Variance Score. Although there was no clear dominance of a single model across all metrics, SVM and Random Forest showed slightly superior performance on several measures. These findings not only highlight the potential of machine learning techniques in enhancing the accuracy of temperature forecasting but also stress the importance of selecting an appropriate model and performance metrics aligned with the requirements of the task at hand. This research accomplishes a thorough comparative analysis, conducts a rigorous evaluation of the models, highlights the significance of model selection.
[...] Read more.This document presents two developed methods for solving the classification task of medical implant materials based on the compatible use of the Wiener Polynomial and SVM. The high accuracy of the proposed methodology for solving this task are experimentally confirmed. A comparison of the proposed methods with existing ones: Logistic Regression; Linear SVC; Random Forest; SVC (linear kernel); SVC (RBF kernel); Random Forest + Wiener Polynomial is carried out. The duration of training of all methods that described in work is investigated. The article presents the visualization of all method results for solving this task.
[...] Read more.Cyberbullying is an intentional action of harassment along the complex domain of social media utilizing information technology online. This research experimented unsupervised associative approach on text mining technique to automatically find cyberbullying words, patterns and extract association rules from a collection of tweets based on the domain / frequent words. Furthermore, this research identifies the relationship between cyberbullying keywords with other cyberbullying words, thus generating knowledge discovery of different cyberbullying word patterns from unstructured tweets. The study revealed that the type of dominant frequent cyberbullying words are intelligence, personality, and insulting words that describe the behavior, appearance of the female victims and sex related words that humiliate female victims. The results of the study suggest that we can utilize unsupervised associative approached in text mining to extract important information from unstructured text. Further, applying association rules can be helpful in recognizing the relationship and meaning between keywords with other words, therefore generating knowledge discovery of different datasets from unstructured text.
[...] Read more.Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task. The performances obtained from these networks were evaluated in consideration of achieved recognition rates and training time.
[...] Read more.Stock market prediction has become an attractive investigation topic due to its important role in economy and beneficial offers. There is an imminent need to uncover the stock market future behavior in order to avoid investment risks. The large amount of data generated by the stock market is considered a treasure of knowledge for investors. This study aims at constructing an effective model to predict stock market future trends with small error ratio and improve the accuracy of prediction. This prediction model is based on sentiment analysis of financial news and historical stock market prices. This model provides better accuracy results than all previous studies by considering multiple types of news related to market and company with historical stock prices. A dataset containing stock prices from three companies is used. The first step is to analyze news sentiment to get the text polarity using naïve Bayes algorithm. This step achieved prediction accuracy results ranging from 72.73% to 86.21%. The second step combines news polarities and historical stock prices together to predict future stock prices. This improved the prediction accuracy up to 89.80%.
[...] Read more.Non-functional requirements define the quality attribute of a software application, which are necessary to identify in the early stage of software development life cycle. Researchers proposed automatic software Non-functional requirement classification using several Machine Learning (ML) algorithms with a combination of various vectorization techniques. However, using the best combination in Non-functional requirement classification still needs to be clarified. In this paper, we examined whether different combinations of feature extraction techniques and ML algorithms varied in the non-functional requirements classification performance. We also reported the best approach for classifying Non-functional requirements. We conducted the comparative analysis on a publicly available PROMISE_exp dataset containing labelled functional and Non-functional requirements. Initially, we normalized the textual requirements from the dataset; then extracted features through Bag of Words (BoW), Term Frequency and Inverse Document Frequency (TF-IDF), Hashing and Chi-Squared vectorization methods. Finally, we executed the 15 most popular ML algorithms to classify the requirements. The novelty of this work is the empirical analysis to find out the best combination of ML classifier with appropriate vectorization technique, which helps developers to detect Non-functional requirements early and take precise steps. We found that the linear support vector classifier and TF-IDF combination outperform any combinations with an F1-score of 81.5%.
[...] Read more.Along with the growth of the Internet, social media usage has drastically expanded. As people share their opinions and ideas more frequently on the Internet and through various social media platforms, there has been a notable rise in the number of consumer phrases that contain sentiment data. According to reports, cyberbullying frequently leads to severe emotional and physical suffering, especially in women and young children. In certain instances, it has even been reported that sufferers attempt suicide. The bully may occasionally attempt to destroy any proof they believe to be on their side. Even if the victim gets the evidence, it will still be a long time before they get justice at that point. This work used OCR, NLP, and machine learning to detect cyberbullying in photos in order to design and execute a practical method to recognize cyberbullying from images. Eight classifier techniques are used to compare the accuracy of these algorithms against the BoW Model and the TF-IDF, two key features. These classifiers are used to understand and recognize bullying behaviors. Based on testing the suggested method on the cyberbullying dataset, it was shown that linear SVC after OCR and logistic regression perform better and achieve the best accuracy of 96 percent. This study aid in providing a good outline that shapes the methods for detecting online bullying from a screenshot with design and implementation details.
[...] Read more.Addressing scheduling problems with the best graph coloring algorithm has always been very challenging. However, the university timetable scheduling problem can be formulated as a graph coloring problem where courses are represented as vertices and the presence of common students or teachers of the corresponding courses can be represented as edges. After that, the problem stands to color the vertices with lowest possible colors. In order to accomplish this task, the paper presents a comparative study of the use of graph coloring in university timetable scheduling, where five graph coloring algorithms were used: First Fit, Welsh Powell, Largest Degree Ordering, Incidence Degree Ordering, and DSATUR. We have taken the Military Institute of Science and Technology, Bangladesh as a test case. The results show that the Welsh-Powell algorithm and the DSATUR algorithm are the most effective in generating optimal schedules. The study also provides insights into the limitations and advantages of using graph coloring in timetable scheduling and suggests directions for future research with the use of these algorithms.
[...] Read more.Timing-critical path analysis is one of the most significant terms for the VLSI designer. For the formal verification of any kinds of digital chip, static timing analysis (STA) plays a vital role to check the potentiality and viability of the design procedures. This indicates the timing status between setup and holding times required with respect to the active edge of the clock. STA can also be used to identify time sensitive paths, simulate path delays, and assess Register transfer level (RTL) dependability. Four types of Static Random Access Memory (SRAM) controllers in this paper are used to handle with the complexities of digital circuit timing analysis at the logic level. Different STA parameters such as slack, clock skew, data latency, and multiple clock frequencies are investigated here in their node-to-node path analysis for diverse SRAM controllers. Using phase lock loop (ALTPLL), single clock and dual clock are used to get the response of these controllers. For four SRAM controllers, the timing analysis shows that no data violation exists for single and dual clock with 50 MHz and 100 MHz frequencies. Result also shows that the slack for 100MHz is greater than that of 50MHz. Moreover, the clock skew value in our proposed design is lower than in the other three controllers because number of paths, number of states are reduced, and the slack value is higher than in 1st and 2nd controllers. In timing path analysis, slack time determines that the design is working at the desired frequency. Although 100MHz is faster than 50MHz, our proposed SRAM controller meets the timing requirements for 100MHz including the reduction of node to node data delay. Due to this reason, the proposed controller performs well compared to others in terms slack and clock skew.
[...] Read more.This article presents a new approach for image recognition that proposes to combine Conical Radon Transform (CRT) and Convolutional Neural Networks (CNN).
In order to evaluate the performance of this approach for pattern recognition task, we have built a Radon descriptor enhancing features extracted by linear, circular and parabolic RT. The main idea consists in exploring the use of Conic Radon transform to define a robust image descriptor. Specifically, the Radon transformation is initially applied on the image. Afterwards, the extracted features are combined with image and then entered as an input into the convolutional layers. Experimental evaluation demonstrates that our descriptor which joins together extraction of features of different shapes and the convolutional neural networks achieves satisfactory results for describing images on public available datasets such as, ETH80, and FLAVIA. Our proposed approach recognizes objects with an accuracy of 96 % when tested on the ETH80 dataset. It also has yielded competitive accuracy than state-of-the-art methods when tested on the FLAVIA dataset with accuracy of 98 %. We also carried out experiments on traffic signs dataset GTSBR. We investigate in this work the use of simple CNN models to focus on the utility of our descriptor. We propose a new lightweight network for traffic signs that does not require a large number of parameters. The objective of this work is to achieve optimal results in terms of accuracy and to reduce network parameters. This approach could be adopted in real time applications. It classified traffic signs with high accuracy of 99%.
Alzheimer’s illness is an ailment of mind which results in mental confusion, forgetfulness and many other mental problems. It effects physical health of a person too. When treating a patient with Alzheimer's disease, a proper diagnosis is crucial, especially into earlier phases of condition as when patients are informed of the risk of the disease, they can take preventative steps before irreparable brain damage occurs. The majority of machine detection techniques are constrained by congenital (present at birth) data, however numerous recent studies have used computers for Alzheimer's disease diagnosis. The first stages of Alzheimer's disease can be diagnosed, but illness itself cannot be predicted since prediction is only helpful before it really manifests. Alzheimer’s has high risk symptoms that effects both physical and mental health of a patient. Risks include confusion, concentration difficulties and much more, so with such symptoms it becomes important to detect this disease at its early stages. Significance of detecting this disease is the patient gets a better chance of treatment and medication. Hence our research helps to detect the disease at its early stages. Particularly when used with brain MRI scans, deep learning has emerged as a popular tool for the early identification of AD. Here we are using a 12- layer CNN that has the layers four convolutional, two pooling, two flatten, one dense and three activation functions. As CNN is well-known for pattern detection and image processing, here, accuracy of our model is 97.80%.
[...] Read more.Predicting the student performance is playing vital role in educational sector so that the analysis of student’s status helps to improve for better performance. Applying data mining concepts and algorithms in the field of education is Educational Data Mining. In recent days, Machine learning algorithms are very much useful in almost all the fields. Many researchers used machine learning algorithms only. In this paper we proposed the student performance prediction system using Deep Neural Network. We trained the model and tested with Kaggle dataset using different algorithms such as Decision Tree (C5.0), Naïve Bayes, Random Forest, Support Vector Machine, K-Nearest Neighbor and Deep neural network in R Programming and compared the accuracy of all other algorithms. Among six algorithms Deep Neural Network outperformed with 84% as accuracy.
[...] Read more.