
I.J. Intelligent Systems and Applications, 2018, 10, 20-26 
Published Online October 2018 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijisa.2018.10.03 

Copyright © 2018 MECS                                                           I.J. Intelligent Systems and Applications, 2018, 10, 20-26 

Mathematical Model of the Dynamics in a One 

Nonholonomic Vibration Protection System 
 

Viktor Legeza 
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 

E-mail: viktor.legeza@gmail.com 

 

Ivan Dychka 
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 

E-mail: dychka@pzks.fpm.kpi.ua 

 

Ruslan Hadyniak 
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 

E-mail: ruslan.hadyniak@gmail.com 

 

Lіubov Oleshchenko 
National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine 

E-mail: oleshchenkoliubov@gmail.com 

 

Received: 11 June 2018; Accepted: 02 August 2018; Published: 08 October 2018 

 

 

Abstract—Dynamic behavior of a heavy homogeneous 

sphere in a spherical cavity of a supporting body that 

performs specified translational movements in space has 

been studied. Using the Appel formalism, the equations 

of ball motion in a moving spherical cavity without slip 

are constructed and a numerical analysis of the evolution 

of the ball motion is carried out. 

 

Index Terms—Heavy Homogeneous Sphere, Pure 

Rolling, Appell’s Formalism, Translational Motion, 

Spherical Recess, Energy Conservation Integral, Roller 

Absorbers. 

 

I.  INTRODUCTION 

The investigation of the problem considered in this 

article is due to the fact that recently a large number of 

seismic and damping devices have appeared, the effect of 

vibration protection of which is based on the use of 

special bearing supports that realize nonholonomic ties. 

In such systems, the effect of vibration protection is 

achieved by providing significant relative displacements 

of incommunicable bodies with rolling without sliding 

along the supporting surfaces of mobile bearing bodies [7 

– 12, 17 – 19, 21 – 23]. In this case, the motion of the 

supporting bodies is either specified as a function of time, 

or completely determined by the joint motion of a system 

of coupled solids. 

Prior to this, the close problems of nonholonomic 

mechanics [8 – 9, 14 – 15] on the rolling of a heavy 

homogeneous ball without sliding along fixed surfaces of 

the second order (sphere, horizontal and vertical cylinders, 

vertical cone and paraboloid of revolution, triaxial 

ellipsoid) are of theoretical importance. In [4 – 6], the 

dynamic effects that arise when the ball rolled along a 

plane and a sphere rotating about a vertical axis were 

investigated. In [10, 13, 17 – 19], problems of the 

dynamics of rolling systems with practical value were 

investigated. In the books [1, 8, 20] formulas are derived 

for determining the natural frequency of the plane 

oscillations of a homogeneous sphere (cylinder) in a 

stationary spherical (cylindrical) recess. Also, roller 

absorbers are successfully used to suppress the so-called 

"dance" (galloping) of wires of powerful power lines, as 

well as for seismic protection of buildings [8]. In work 

[10] dynamic behavior of ball shock absorbers of 

longitudinal shocks was studied in the complex transport 

system, which are used on railway platforms for the 

carriage of particularly fragile loads. In [16], the 

formulation of the problem of controlled motion of a thin 

homogeneous disk, which rolls along a horizontal plane 

without slip, is considered. This problem is formulated 

and solved in the framework of the theory of optimal 

control. In the reports [12, 21, 22] of Chinese scientists, 

the results of studies on the effectiveness of the effect of 

roller absorbers (VBA type) on the level of dynamic 

loads acting on the blades and racks of powerful wind 

farms are presented. In work [23], some basic drawbacks 

of ball absorbers of VBA type in the region of vibration 

damping of low-frequency oscillations of flexible high-

altitude structures were noted. 

As can be seen from this short review, roller absorbers 

and shock absorbers are in demand in various fields of 

technology and the national economy. The tasks of 

damping vibration, associated with their study and use, 

are new, diverse and topical from a scientific point of 

view.
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II.  STATEMENT OF THE PROBLEM 

The motion of a homogeneous heavy ball without 

sliding along the inner surface of a movable spherical 

cavity of the supporting (carrying) body is considered. In 

this case, the motion of a supporting body with a 

spherical cavity in space is carried out translationally in 

accordance with the given functions of time – 

translational movements of the vertex of the indicated 

spherical recess (Fig. 1). 

 

 

Fig.1. Homogeneous ball in spherical groove of the supporting body 

The peculiarity of the present study is that the spherical 

excavation of the supporting body has the ability to move 

translationally in space in accordance with specified 

functions of time )(0 tx , )(0 ty  and )(0 tz , and which can 

be regarded as specified movements of the carrying body. 

The purpose of the paper is – 1) on the basis of 

Appell's nonholonomic mechanics to construct kinematic 

and dynamic equations for the motion of a heavy ball in a 

spherical cavity without slipping, taking into account the 

translational motion it prescribes in space; 2) Using the 

differential equations obtained, a numerical experiment is 

performed to study the dynamic behavior of the ball 

motion. 

 

III.  GEOMETRIC RELATIONS AND NONHOLONOMIC TIES 

EQUATIONS 

We introduce two coordinate systems: fixed OXYZ  

and movable '''' ZYXO , connected with the top 'O of the 

spherical recess. Let us write the equation of the surface 

of the recess in the system of axes '''' ZYXO : 

 

     
2 2 2 2,B B Bx y z R R z R        ,         (1) 

 

where R  is the radius of the spherical recess; 

, ,B B Bx y z    coordinates of the contact point of the ball 

and the spherical recess (point B ). 

Using equation (1), we define the expression for the 

unit normal vector n  to the inner surface of the spherical 

recess at the point B . 

 

 
1

; ;B B Bn x y z R
R

                          (2) 

 

We also write the expression for the first derivative of 

the unit normal vector n


 in the case of translational 

motion of the supporting body. Differentiating expression 

(2), we obtain: 

 

 
1

; ;B B Bn x y z
R

                            (3) 

 

The radius vectors Br  and Cr  are related by the 

following geometric relationship (Fig. 1): 

 

,C Br r r n                                   (4) 

 

where 

rB  is the radius vector with the origin at the point 

O  and the end at the point B  whose coordinates are 

defined as follows: 

 

 ; ;B O B O B O Br x x y y z z                 (5) 

 

We differentiate equation (4) in time: 

 

C BV r r n                               (6) 

 

We rewrite (6) in a scalar form with (3): 

 

,zα+z=z

;yα+y=y

;xα+x=x

'
BOC

'
BOC

'
BOC













                          (7) 

 

where 1 r R   . It is obvious that for 0r R     

and the relative motion of the ball is not realized.  

The vector kinematic relation (the equation of 

nonholonomic ties), which determines the absence of slip 

of the ball relative to the spherical recess at the point B  

of contact, has the form: 

 

,C BV V r n                             (8)  

 

where 
 
V rB B  . 

From equations (6) and (8), after certain 

transformations, we obtain the differential equations of a 

nonholonomic ties in the scalar form: 

 

  ;C O Y B Z Bx x z R y                        (9) 

 

  ;C O Z B X By y x z R                     (10)
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 C O X B Y Bz z y x                       (11) 

 

IV.  CONSTRUCTION OF THE EQUATIONS OF MOTION OF A 

HEAVY BALL IN A MOVABLE CAVITY 

The construction of the dynamic equations of motion 

of a ball in a moving spherical cavity will be performed 

using the Appell’s approach for nonholonomic systems 

[14, 15]. 

Let us write in a general form the function S  - the 

energy of the accelerations of a heavy ball in the motion 

under consideration: 

 

   2 2 2 2 2 2 ,
2 2

C C C X Y Z

m J
S x y z                (12)  

 

where m  is the mass of the ball; r  is the radius of the 

ball; J  is the moment of inertia of a homogeneous ball 

with respect to its center of mass at the point C  

 20,4 .J m r    

We define the second derivatives of the coordinates of 

the center of mass of the ball in (12), using the once-

differentiated equations (9) - (11). 

 

 C O Y B Z B Xx x z R y F             ;     (13) 

 

  ;C O Z B X B Yy y x z R F                  (14) 

 

  ,C O X B Y B Zz z y x F                         (15) 

 

where  

 

 ;X Y B Z BF z y         
 

 ;Y Z B X BF x z         
 

 Z X B Y BF y x        . 

 

We substitute the obtained expressions (13) – (15) in 

(12) and take into account only that part of the 

acceleration energy S , which depends only on the 

accelerations , ,X Y Z   . We denote it S . 

 

   
2 22 2

2 2
B B X

J m
S y z R               

 

   
2 22 2

2 2
B B Y

J m
x z R 

            
 

+    
2 22 2

2 2
B B Z

J m
y x 

           

 2
B B Y Zm y z R            

 2
B B X Zm x z R            

2
B B X Ym x y           

     B O Z O Y B Xm y z F y F z R                

    O X B Z O B Ym x F z R F z x             + 

   O Y B O X B Zm y F x x F y             .      (16) 

 

We write Appell's equations in a general form: 

 

; ,X Y Z
X Y Z

S S S
P P P

  

  

  

               (17) 

 

We differentiate expression (16) in accordance with 

(17): 

 

  22 2
B X

X

S
J m R x


 





       
 

 

 2 2
B B Y B B Zm x y m x z R                   

      ;B O O Y BZ
m y F z y F z R           

 
    (18) 

 

  22 2
B Y

Y

S
J m R y


 



        
 

 

 2 2
B B Z B B Xm y z R m x y                   

    O X B Z O Bm x F z R F z x             ;  (19) 

 

  22 2
B Z

Z

S
J m R z R


 





        
 

 

   2 2
B B Y B B Xm y z R m x z R                    

   O Y B O X Bm y F x x F y                    (20) 

 

To determine the right-hand sides of Appell's equations, 

we introduce the quasicoordinates , ,X Y Z   , where 

; ; .X X Y Y Z Z         We write down the 

expression for elementary work δA, considering the 

motion of the ball under the action of gravity on virtual 

displacement .Cz  Here, the work of the nonholonomic 

ties reaction is zero, since the virtual displacement is zero 

because of the lack of slip of the ball with respect to the 

spherical recess. 

 

CA m g z                               (21) 

 

We define the virtual displacement taking into account 

the third scalar equation (11) of nonholonomic ties: 

 

 C B X B Yz y x                       (22) 

 

On the other hand, the expression for the elementary 

work of δA in terms of generalized forces , ,X Y ZP P P , 

referred respectively to independent quasicoordinates 
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, ,X Y Z   , has the form:  

 

X X Y Y Z ZA P P P                   (23) 

 

Using equations (21) - (23), we obtain expressions for 

generalized forces (the right-hand sides of Appell's 

equations): 

 

; ; 0X B Y B ZP m g y P m g x P                 (24) 

 

We substitute the expressions (18) - (20) and (24) into 

Appell's equations (17). After carrying out some 

transformations, we obtain a system of differential 

equations with respect to , ,X Y Z   : 

 

 , ,
T T

X Y ZD B    ,                  (25) 

 

where the elements of the matrix D  have the form: 

 

 
22

11 122
; ;B B B

J
d R x d x y

m 
       


 

 13 21 12; ;B Bd x z R d d       

 
22

22 2
;B

J
d R y

m 
  


 

 23 31 13 32 23; ; ;B Bd y z R d d d d        

 
22

33 2
,B

J
d R z R

m 
   


 

 

and the elements of the column vector TB  are determined 

by the following expressions 

 

     1
1 ;O Y B B O Zb y F z R y g z F              

(26) 

 

     1
2 ;B O Z O X Bb x g z F x F z R              

 (27) 

 

   1
3 B O X B O Yb y x F x y F                   (28) 

 

We express the accelerations  ,  ,   X Y Z  from the 

system (25): 

 

1 2 3; ;X Y ZQ b Q b Q b                     (29) 

 

where 

1
2

2

J
Q R

m 


 

  
 

, 0   or  r R .  

Let us free ourselves from the derivatives    ,  , x y zB B B  

in the right-hand sides of expressions (29) for bk . To this 

end, we use equation (6), on the left-hand side of which 

we take into account the kinematic relation (8): 

 

  ;B Y B Z Bx z R y                         (30) 

 

 ;B Z B X By x z R                       (31) 

 

B X B Y Bz y x                           (32) 

 

We write down the differential equations of motion of 

the ball in quasi-coordinate fields after the indicated 

transformations: 

 

    X O B O By z R g z y          + 

   n B Z B YR r y z R               ;      (33) 

 

    Y O B O Bg z x x z R          + 

   n B X B ZR r z R x               ;     (34) 

 

 Z O B O Bx y y x          

   n B Y B XR r x y            ,          (35) 

 

were 
 2 2

;
2 1,4

R r

R R R r r





     
  

 

 1
n X B Y B Z BR x y z R                 . 

 

For a complete description of the motion of a 

homogeneous heavy ball in a moving spherical cavity to 

the system of differential equations of motion (33) - (35), 

it is necessary to attach a system of kinematic equations 

(30) - (32) that describe the trajectory of the ball trace on 

the surface of a spherical cavity in space and time (in the 

movable axes O X Y Z    ). 

The problem under consideration admits the 

construction of an energy conservation integral with 

allowance for the translational motion of the spherical 

cavity in space. To find it, we multiply each of the 

equations of the system (33) - (35), respectively, by 

, ,X Y Z    and add them to each other. As a result, we 

obtain the following equation: 

 

X X Y Y Z Z            

  O Y B X Bg z x y          

 O B Z B Yx y z R            

 O B X B Zy z R x          .              (36) 

 

We transform the right-hand side of equation (36) 

taking into account the equations of system (9) - (11) thus: 
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X X Y Y Z Z         

2 22 1,4

O O O O O O O C O C O C O Cx x y y z z x x y y z z g z g z

R R r r

              


    
 

 (37) 

 

We integrate equation (37), multiplied by the mass of 

the ball m . After some transformations, we get: 

 

 
2

2 22 1,4
2

m R R r r


         

2 2 2

2

O O O
C O O C

x y z
m m g z m g z m x dx

 
             

 ,O C O Cm y dy m z dz const              (38) 

 

where 
2 2 2 2

X Y Z      . 

Now we write the indicated energy conservation 

integral: 

 

 
2

2 2

2 2 2

2 1,4
2

2

O O O
C O

m R R r r

x y z
m g z m m g z


       

 
        

 

,IN IN IN
X C Y C Z CF dx F dy F dz const              (39) 

 

where ; ;IN IN IN
X O Y O Z OF m x F m y F m z         

inertial forces that arise during the translational motion of 

the spherical recess in space and act on the ball along the 

axes, OX , OY  и OZ , respectively. 

In the integral (39), the terms with negative signs 

correspond to the portable component of the motion of 

the heavy ball in the movable notch. 

 

V.  RESULTS OF NUMERICAL EXPERIMENT 

Integration of the resulting system of differential 

equations (33) - (35) and the study of the dynamic 

behavior of a nonholonomic mechanical system were 

carried out numerically using the certificated 

"MATHCAD" software. In this case, the translational 

motion of the vertex of the spherical recess was given by 

the following three periodic functions of time in 

accordance with normative documents [2, 3]: 

 

   1
1sin

t
Ox t A e t

  
    ; 

 

   2
2sin

t
Oy t B e t

  
    ; 

 

   3
3sin

t
Oz t C e t

  
    . 

 

 

 

 

 

The parameters of the dynamic system and the 

specified displacements of the spherical cavity were 

selected as follows: 3,0R  m; 0,2r  m; A  0,2m; 

B  0,2m; C  0,1m; 1 0,5;   2 5,5  ; 3 0,1;   

1 2 / ;rad с   2 1 / ;rad с   3 0,5 /rad с  . 

The integration of the resulting system of differential 

equations was carried out for zero, initial values of the 

unknowns. The character of the relative motion of the 

ball is illustrated by the projections of the ball trace on 

the spherical notch on the plane X O Y    (Fig. 2), X O Z    

(Fig. 3) and Y O Z    (Fig. 4). A numerical experiment 

showed that there is a curve on the surface of the sphere 

located above the initial position of the ball above which 

its movements are not carried out (for the parameters of 

controlled displacements of a supporting body with a 

spherical recess chosen in the work). This conclusion also 

follows from the existence condition for the energy 

conservation integral (39). 

For the dynamical system under study with the initial 

data chosen above, the angular velocity of rotation n  of 

the sphere around the normal 

n  practically all the time 

during the motion of the ball is zero. Therefore, that part 

of the kinetic energy of the ball, which corresponds to its 

rotational component (
2 2 2

n     ), is almost 

completely concentrated in the energy of pure rolling of 

the ball with angular velocity  . 

 

 

Fig.2. Projections of the ball trace on the spherical groove  

on the plane X O Y    

 

Fig.3. Projections of the ball trace on the spherical groove on the plane
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Fig.4. Projections of the ball trace on the spherical groove on  

the plane Y O Z    

Figure 5 shows the time variation t  of the angular 

velocity of the pure rolling of the ball ωτ in rad / s. For 

comparison, Figure 6 shows the evolution of the zB (m) 

applicator of the ball trace in time t  in the movable axes 

O X Y Z    .  

 

 

Fig.5. Time variation t  of the angular velocity of the pure rolling of the 

ball ωτ in rad / s 

 

Fig.6. The evolution of the zB (m) applicator of the ball trace in time t  

in the movable axes O X Y Z     

 

VI.  CONCLUSIONS 

In this paper we construct a mathematical model for 

the dynamic behavior of a heavy homogeneous ball in a 

moving spherical recess that performs a given 

translational motion in space. In this case, the ball rolls in 

the recess without slipping. The kinematic and dynamic 

equations of motion of the "heavy ball – mobile spherical 

recess" system are derived using the nonholonomic 

mechanics of Appel. In this problem, the energy 

conservation integral was obtained. On the basis of the 

obtained differential equations, a numerical analysis of 

the evolution of the ball motion in a movable recess was 

carried out. 

A numerical experiment has shown that on the surface 

of a moving sphere there exists a curve located above the 

initial position of the ball above which its movements are 

not realized. This conclusion also follows from the 

condition for the existence of an integral of conservation 

of energy in a given problem. In addition, if the initial 

data is chosen so that the angular velocity of rotation n  

of the ball around the normal 

n  is zero, it remains 

practically zero throughout the ball's motion. This is 

explained by the fact that that part of the kinetic energy of 

the ball, which corresponds to its rotational component 
2 2 2

n     , is completely concentrated in the energy 

of the pure rolling of the ball with angular velocity  . 
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