
I.J. Intelligent Systems and Applications, 2018, 11, 27-35
Published Online November 2018 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijisa.2018.11.04

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Sorted r-Train: An Improved Dynamic Data

Structure for Handling Big Data

Mohd Abdul Ahad
Department of Computer Science and Engineering, School of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi-110062, India

E-mail:itsmeahad@gmail.com

Ranjit Biswas
Department of Computer Science and Engineering, School of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi-110062, India

E-mail:ranjitbiswas@yahoo.com

Received: 19 March 2018; Accepted: 12 July 2018; Published: 08 November 2018

Abstract—In today’s computing era, the world is dealing

with big data which has enormously expanded in terms of

7Vs (volume, velocity, veracity, variability, value, variety,

visualization). The conventional data structures like

arrays, linked list, trees, graphs etc. are not able to

effectively handle these big data. Therefore new and

dynamic tools and techniques which can handle these big

data effectively and efficiently are the need of the hour.

This paper aims to provide an enhancement to the

recently proposed “dynamic” data structure “r-Train” for

handling big data. With the emergence of the “Internet of

Things (IoT)” technology, real-time handling of requests

and services are pivotal. Therefore it becomes necessary

to promptly fetch the required data as and when required

from the enormous piles of big data that are generally

located at different sites. Therefore an effective searching

and retrieval mechanism must be provided that can

handle these challenging issues. The primary aim of this

proposed refinement is to provide an effective means of

insertion, deletion and searching techniques to efficiently

handle the big data.

Index Terms—r-Train, trie, HAT, Linked List, Arrays,

Big Data, larray.

I. INTRODUCTION

A dynamic data structure in the context of this paper is

one that can store the data of variable sizes. When we talk

about big data one prominent point that is pertinent to

address is “How to store this enormous data”. As these

data are so huge that it cannot be stored in a single

storage device, therefore we need multiple storage

devices to store these big data. At the same time, we need

to look for the storage techniques that will somehow link

these storage devices together in one or the other way so

that the process of data storage and retrieval remains

uncomplicated and time efficient. The critical issue about

big data lies in its intricate and heterogeneous nature. The

major portion of big data generated today is largely

unstructured. This means that there is no fixed structure

attached with the data. Furthermore big data possesses

several characteristics which are exponentially expanding

with time and are often represented by 10 V’s of big data

in recent years. It is very important to understand the

effect of each of these characteristics as they are closely

linked to each other and sometimes overlaps with each

other. If we are able to effectively identify and analyze

these varying characteristics of big data, we can come up

with system, tools and techniques to handle these huge

datasets in an effective manner. The 10 V’s of big data

are shown in Fig. 1.

Fig.1. 10 V’s of big data

There are several techniques evolved in recent times

for handling such huge datasets. In [1], the author

proposed a new type of dynamic data structure known as

“r-Train”. The core idea of the “r-Train” data structure is

to store the data items in various “coaches” (which are

like data items stored in a linked list). Each coach

consists of some data items and the address to reach the

next coach, forming a ‘train’ like structure.

28 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

A. r-Train Data Structure: A Brief Introduction

The author of [1] proposed a new dynamic

“homogeneous data structure r-Train” which is used to

store similar type of data. The main advantage of this data

structure that was pointed out by ‘R. Biswas’ [1] is its

ability to be scalable to any desired amount as and when

required. The difference of r-Train from the data structure

arrays lies in a way that, in array we cannot leave an

empty space for a data in-between the elements already

present in the array, but in case of r-Train it is quite

possible. A coach of the ‘r-Train’ may consist of one or

more empty spaces. The empty space is being represented

by a ‘ɛ’ (also known as null element) which is treated as

of same data type as the other elements of the coach. The

definition given by R-Biswas asserts an r-Train as a

“linked list of tagged coaches”. The term tagged coach

means that every coach consists of some data elements

(including ‘ɛ’) and the information about how many more

elements can be stored in it. The various formal terms and

definition related to r-Train data structure are given

below in brief [1]. However for detailed information

about the functioning of “r-Train”, one could see [1, 2, 3,

4, 5].

1) larray

A ‘larray’ is a collection of similar types of elements

where one or more elements can be ‘ɛ’ element or null

elements. Since ‘ɛ’ is treated as of same data type,

therefore the same amount of space (as that for the other

elements) will be reserved in the memory for storing “ɛ”

elements. The length of the larray may be defined as the

number of elements (including ɛ) stored in it [1]. The

following are few examples of larray.

i. X = < 2,6,7, ɛ,8, ɛ> , the length of ‘larray’ X is 6

ii. Y = <12, 5, ɛ, ɛ, ɛ, 7, 100, 8>, the length of

‘larray’ Y is 8

iii. Z = < ɛ, ɛ, ɛ, ɛ>, the length of ‘larray’ Z is 4

iv. P = <1, 5, 8, 14, 7>, the length of ‘larray’ P is 5

v. Q = < 2 >, the length of ‘larray’ Q is 1

vi. R = < ɛ >, the length of ‘larray’ R is 1

vii. S = < >, S is an empty larray.

If we have a ‘larray’ where all the elements present in

it are ‘ɛ’ (null) elements, then that array is known as “null

larray”. Here, larrays ‘Z’ and ‘R’ are said to be “null

larrays”. It can also be observed that the lengths of larray

‘Z’ and ‘R’ are ‘4’ and ‘1’ respectively. Therefore it can

be concluded that “null larrays” are not unique.

2) Coach of an r-Train

A “Coach (C)” of an “r-Train” may be defined as a pair

(LA, add) where “LA” is a “nonempty larray” (can

include a “null larray” also) and “add” is the address of

the next coach of the “r-Train”. However, if the coach

“C” is the last or the only coach of the “r-Train” then

“add” will contain an invalid address value [1].

Fig.2. An Example of a Coach of an “r-Train”

Fig. 2 shows a coach C with the items of ‘larray’ as < 3,

5, ɛ, ɛ,20, ɛ,24, ɛ, ɛ, e2> where e2 being the address of

next coach. Therefore while creating a coach it must be

noted that the last block of the coach must be reserved for

storing the address of the next coach and no element (ɛ

or non- ɛ) can be stored in it [1].

3) Status of the Coach

It is defined as the number of empty spaces (‘ɛ’

elements) in the larray at a given point in time. It is

denoted by “s” and has the value in the range

between rs 0 . Also the value of “s” is dynamic in

nature and will change with every insertion or deletion of

the element to or from the ‘larray’. If the “status” of a

coach is “0 (zero)” at any point of time, it signifies that

the larray of this coach is full and no more elements can

be added in this particular coach [1, 2]. If the “status” of

the larray is equal to “r”, it means that the larray is a “null

larray” with all the elements as ‘ɛ’ and we can store up to

a maximum of “r” number of elements in the larray [1].

4) Tagged Coach of an r-Train

If C (LA, add) is a “coach” of an “r-Train” then the

“tagged coach (TC)” of the coach C, is given by a pair

(C,s), where “C” is the “coach” and “s” is its “status”.

The tagged coach consists of the information about how

many empty spaces are available in the coach at any

given time. For example : If the Coach C (LA, add) is

there with its larray ‘LA’ given by < 2, 5, 7, 21, ɛ, ɛ, 3,

ɛ > then the tagged coach (TC) with respect to the coach

C will be TC = (C, 3). As we have three number of “ɛ”

elements present in the larray “LA” [1].

II. GENERAL REPRESENTATION OF R-TRAIN DATA

STRUCTURE

As mentioned by the author in [1, 2, 3, 4, 5] an “r-

Train” is a homogeneous, dynamic data structure which is

highly scalable in nature. It makes the best use of both

arrays and linked list data structures to come up with a

more powerful and efficient way of managing big data

(which arrays and linked lists lack in general) [1]. An “r-

Train” may be treated as the “linked list of tagged

coaches”. The alphabet “r” represents the number of

“tagged coaches (TC)” in the “r-Train”. The general

representation of an r-Train “T” of length “k” is given

below in Fig. 3.

T = < (C1, SC1), (C2, SC2), (C3, SC3),, (Ck, Sck) >,

 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data 29

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Where C1, C2 Ck are the tagged coaches and

Sc1, Sc2 Sck are their corresponding statuses

Also note that C1, C2 Ck consists of the pairs

(LA1, add1), (LA2, add2), (LA3, add3)....(LAk, addk)

respectively.

Where LA1, LA2, LA3 LAk are larrays with “d11,

d21, d31 ... dkr” are the data items and “add1, add2,

add3 addk” are the addresses of the next coach

(i.e. add1 holds the address of coach C2, add2 holds the

address of Coach C3 and so on. And ‘addk’ holds an

invalid address as it is the last coach of the r-Train) [1].

Fig.3. An example of an “r-Train” with “k” number of Coaches

Example: A 4-Train of length 3

Let the 4-Train is denoted by ‘T’ and is given by

T = < (C1, 2), (C2, 1), (C3, 1), (C4, 0) >

Where C1 = < 1, ɛ, ɛ, add1 >, C2 < 4, 8, ɛ, add2 >, C3 =

< 2, 5, ɛ, add3 > and C4 = < 7, 3, 9, Invalid Address >

Fig.4. An example of 4-Train of length 3

Fig. 4 shows an example of 4-Train of length 3,

similarly, we can create r-Train of any desired length. For

further details about r-Train and its implementation, one

could see [1].

III. RELATED WORK

There are numerous data structures being proposed by

various authors that work well for different needs and

situations. The researchers in [6] proposed a “dynamic

self adjusting” form of binary tree and gave it the name

“splay trees”. Here the authors used a restructuring

heuristics known as splaying, every time a tree is being

accessed. The data structure by the name “AVL Trees”

was proposed by “G. M.Velskii & E.M. Landis” [7].

These types of trees are not perfectly balanced but the

height of pair of subtrees differs by at most 1. They

maintain the “search, insertion and deletion” time of

O (log (n)). The researchers in [8] introduced a

framework for the pre-processing and management of

IoT big data. They also discussed the latest innovations,

developments and challenges in managing big data

generated from IoT devices. Nikolas Askitis Ranjan

Sinha [9] proposed a HAT-trie data structure which is a

type of “cache conscious trie” based data structure for

strings. The authors in [10] proposed a “random matrix

theory (RMT)” based approach to detect anomalies in

smart grids. They also identified the system correlation in

terms of “Mean Spectral Radius (MSR)”. The researchers

in [11] implemented the Chornos Software (a kind of

time-based database) in C++ language. They claim to

increase the processing efficiency by 40- 90 percent by

storing the data and algorithms in RAM instead of main

memory when compared with MongoDB and MYSQL

databases. The authors in [12] reviewed the various

techniques used for storing the big data generated from

DNA and RNA fragment samples for performing “next-

generation sequencing (NGS)”. The author in [13]

proposed a new data structured named “Hashed -Array-

Trees” which combines the merits of arrays, hash tables

and trees. The authors in [14] proposed a new dynamic

technique for storing multidimensional point data which

was based on quadtree like sub-division of space. Gu M

et al in [15] presented a comprehensive review of the

innovations in “nanophotonics-enabled optical storage

techniques” and its uses for storing big data. The authors

in [16] talked about the big data storage systems specially

catering to high velocity, volumes and varieties of data.

They also highlighted the various challenges in way of

big data storage security. The authors of [17] presented

an algorithm for maintaining “Dynamic AVL Trees”.

The researchers in [18, 19, 20, 21] discussed about the

impact of Big data in the daily lives of humans. The

challenges, opportunities, applications and advantages

associated with the effective handling of big data were

also discussed in their paper. The authors of [22]

proposed the various indicators affecting the expansion

of big data. In [23], the researchers highlighted the

critical barriers and challenges that hinder the analysis

of big data due to its heterogeneous and intricate

nature. The researchers in [24] proposed a cloud based

architecture by combining the advantages of existing

BDA’s to provide performance enhancements and QoS.

The author in [25] discussed the important

characteristics of big data in terms of knowledge

discovery and highlighted the future prospects of KDD

30 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

with big data. In [26], the authors highlighted the need

for securing big data and maintaining its authenticity

and accuracy for gaining valuable insights from it. The

researchers in [27] proposed a model for performing

visualization and analytics of big data by transforming

the data into structured format and visualizing it

through graphs and charts. The authors of [28]

proposed a privacy-preserved big data storage

technique using “proxy- re-encryption” and anonymity.

IV. SORTED R-TRAIN (THE PROPOSED APPROACH)

This paper proposes a modified approach for storing

and searching the data in the “r-Train” data structure so

that the data becomes sorted and searching can be

performed efficiently and effectively. The “r-Train” data

structure can be further improved by making a provision

for deleting “any coach” of the r-Train (not only the last

coach as in case of conventional r-Train). However, a

coach will be deleted only when it has no non- ɛ elements

stored in it. In the proposed approach after every insertion

and deletion operation, the data is being sorted so that

every data item comes in its proper place in an organized

manner (ascending or descending). Since the sorting is

done after the insertion or deletion operation, the end-user

need not worry about the overhead involved. Furthermore,

as we are getting a sorted data, the searching operation

can be completed in an identical time complexity as in

case of a binary search tree approach. The point to note

here is, the data structure r-Train or Sorted r-Train are

effective only when we have a huge amount of data or big

data. If we have a limited amount of data, then using r-

Train or Sorted r-Train will be an overhead to the

programmer and thus should not be used.

The steps given below present the proposed

modification. (We are assuming that the length of the

larray is ‘r’ (just to present a generalized approach))

1. Let “BEGIN” be the address of the first Coach

(C1).

2. Create the first Coach C1 with all ‘larray’ items in

it as “ɛ” elements and “add1” as the address

pointing to an invalid value (since C1 is the only

coach we have at this point of time).

An example of this type of coach will be

C1 = < ɛ1, ɛ2, ɛ3, ɛ4, ɛr, add1>

3. Find the “tagged coach (TC1)” of the coach C1

 TC1 = (C1, s), where “s” denotes the “status of

the coach C1”. At this point of time the value of

“s” will be equal to “r”, since all the elements in

the coach C1 are “ɛ” (null elements).

Let us assume that we have the indices first, mid and

last, wherein first denotes the index location of the first

non- ɛ element of the larray, last denotes the index

location of the last but one element of the larray and mid

denotes the index location of ((first +last)/2) of the larray.

(Point to note here is that the elements at these locations

(first, mid, or last) can be ‘ɛ’ as well)

A. Insertion Operation

The “insertion operation” in the “Sorted r-Train” can

also be of two types as we have in case of classical “r-

Train” data structure.

i. Insertion of a “New data item” in a “Coach”.

ii. Insertion of a “New Coach” in the “Sorted r-

Train”

a. Insertion of a “New data element” in Sorted r-Train

The insertion of new element is done as per the

following algorithm:

Algorithm: LA_Insertion

Let the Status of Coach (C) = Number of “ɛ” elements

in the Coach and let the Length of Coach (C) = Number

of Elements that can be stored in the coach = K

1. FOR each New Element, DO

2. FOR Each Coach in the Sorted r-Train, DO
3. If Status (S) of Coach (C) = 0

a. Print “ Coach Full, Check the status of Next Coach for

Insertion
4. END IF

5. If status (S) of Coach = Length of Coach (K)
a. Insert the Element at LA[0] (First location in the Larray) in the

Coach

b. Update the Status of the Coach as S= S-1
6. END IF

7. Else if (0<S < K)

a. Loc= SearchLocation(LA) (Location where the new element

will be inserted

b. Insert (LA, element, Loc) // insert the element at location Loc
c. Sort (LA) // Sort the larray

d. Update the Status of the Coach as S= S-1
8. End ELSE IF

9. END FOR
10. END FOR

Function: SearchLocation(LArray)
int SearchLoc(LA)

{

return (LA.IndexOf(ɛ)) // returns First index of ‘ɛ’ in the larray

}

Let us take few exmple for showing the insertion

opertation.

Example 1:

Let the given larray be

LA = < 3, 5, 7, ɛ, 26, 32, 39, ɛ, add >

We can easily find out the following:

Size of the larray = 8 (No. of elements in larray)

Status of the Coach = 2 (No. of ‘ɛ’ elements in larray)

Index of larray element ‘3’ = 0

Index of larray element ‘5’ = 1

Index of larray element ‘7’ = 2

Index of larray element ‘ɛ’ = 3

Index of larray element ‘26’ = 4

Index of larray element ‘32’ = 5

Index of larray element ‘39’ = 6

Index of larray element ‘ɛ’ = 7

Since Status (S) of Coach is > 0, we can insert the

element in this coach.

 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data 31

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Location (index) for insertion = SearchLocation(LA)

 = 3

Let the element to be inserted is ‘4’.

Therefore ‘4’ will be inserted at index 3 of larray.

So, the larray after insertion becomes

LA = (LA) = < 3, 5, 7, 4, 26, 32, 39, ɛ, add >
Now, sort the larray to get the final larray after insertion

Therefore LA = <3, 4, 5, 7, 26, 32, 39, ɛ, add >
This completes the insertion operation

Example 2:

Let the given larray be

LA = < 9, 12, 17, 19, 38, 39, 45, 90 ɛ, add >

From the larray above, we can easily find out the

following:

Size of the larray = 9 (No. of elements in larray)

Status of the Coach = 1 (No. of ‘ɛ’ elements in larray)

Index of larray element ‘9’ = 0

Index of larray element ‘12’ = 1

Index of larray element ‘17’ = 2

Index of larray element ‘19’ = 3

Index of larray element ‘38’ = 4

Index of larray element ‘39’ = 5

Index of larray element ‘45’ = 6

Index of larray element ‘90’ = 7

Index of larray element ‘ɛ’ = 8

Since Status (S) of Coach is > 0, we can insert the

element in this coach.

Location (index) for insertion = SearchLocation(LA)

 = 8

Let the element to be inserted is ‘14’.

Therefore 14 will be inserted at index 8 of larray.

So, the larray after insertion becomes

LA = < 9, 12, 17, 19, 38, 39, 45, 90, 14, add >
Now, sort the larray to get the final larray after insertion

Therefore LA = <9, 12, 14, 17, 19, 38, 39, 45, 90 add >
This completes the insertion operation

Example 3:

Let the given larray be

LA = < 13, 25, 77, ɛ, ɛ, ɛ, add >

From the given larray, we can easily find out the

following:

Size of the larray = 6 (No. of elements in larray)

Status of the Coach = 3 (No. of ‘ɛ’ elements in larray)

Index of larray element ‘13’ = 0

Index of larray element ‘25’ = 1

Index of larray element ‘77’ = 2

Index of larray element ‘ɛ’ = 3

Index of larray element ‘ɛ’ = 4

Index of larray element ‘ɛ’ = 5

Since Status (S) of Coach is > 0, we can insert the

element in this coach.

Location (index) for insertion = SearchLocation(LA)

 = 3

Let the element to be inserted is ‘44’.

Therefore ‘4’ will be inserted at index 3 of larray.

So, the larray after insertion becomes

LA = (LA) = < 13, 25, 77, 44, ɛ, ɛ, add >
Now, sort the larray to get the final larray after insertion

Therefore LA = <13, 25, 44, 77, ɛ, ɛ, add >
This completes the insertion operation

b. Insertion of new coach at the end in Sorted r-Train

This is very much similar to the insertion technique of

r-Train data structure by R. Biswas [1]. Let the new

coach to be inserted is Ck+1, perform the following steps

to insert this coach in the Sorted r-Train

1. Create the new Coach Ck+1 with all ‘r’ larray items

in it as ‘ɛ’

An example of this type of coach will be

Ck+1 = < ɛ1, ɛ2, ɛ3, ɛ4, ɛr , addk+1>

1. Update the pilot (linked list)

2. Update the address part of the Coach Ck and assign

the address of Coach Ck+1 to it.

3. Set the address part of Coach Ck+1 to an invalid

address value.

4. Set the status of Coach Ck+1 = r.

B. Search Operation

Let us assume that we have a Sorted r-Train as

T = < (C1,Sc1),(C2,Sc2),(C3,Sc3),...,(Ci,Sci) ... (Ck, Sck) >

Where the coach Ci is (LAi , addi) where “LAi” is the

larray and “addi” stores the “address of the next coach

Ci+1” or an “invalid address” in case Ci is the last coach

(when i= k) and Sci denotes the “status of coach Ci”, for i

= 1,2,3…k.

Let the element to be searched is “num”.

There can be two cases when we want to search for a

particular element ‘num’

1. When we know the coach number of ‘num’, we

can directly go to that coach by visiting the pilot

and perform “binary search” on that coach to

match the elements of larray with ‘num’.

2. When the coach number is not known, we will

proceed in the following manner

 Start from the first coach C1, and perform the

operations given below till the element is found.

Let ‘LA’ be a larray, ‘first’ and ‘last’ denotes the index

location of first non- ɛ element and last but one element

of the larray respectively (note that ‘last’ here means

‘length of the larray - 1’, as the last element of the larray

is the address of the next coach which is not taken into

account for these calculations)

The pseudo code for searching the element is given

below:

32 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Algorithm: LA_Search

¬boolean LA_Search (LA, first, last, num)
1. {

2. mid=(first +last)/2;
3. if (first >last) return false;

4. found=false;

5. if(LA[mid] = = num){
6. Print (“Element Found at Location”+mid);

7. return true;
8. }

9. else if(A[mid] = = ‘ɛ’)

10. {
11. found=Search(LA, mid+1, last, num);

12. }
13. else if(LA[mid] > num){

14. found=Search(LA, first, mid-1, num);

15. }
16. else

17. {
18. found=Search(LA, mid+1, last, num);

19. }

20. return found;
21. }

Let us take few exmple for showing the search

opertation.

Example 1:

Let the given larray be:

LA = < 3, 5, 7, 4, 26, 32, 39, ɛ, add >

Let the element to be searched = 4

Now from the given larray, we can find first and last

indexes.

first = 0

last = 7

mid = (first +last)/2

 = (0+7)/2

 = 3

Now check if (4 = = LA [mid])

i.e Is (4 = = LA [3]), YES, Since LA [3] = 4

Therefore element Found at index 3. The search operation

successfully completes here.

Example 2:

Let the given larray be:

LA = < 13, 25, 37, 46, 60, ɛ, add >

Let the element to be searched = 60

Now from the given larray, we can find first and last

indexes.

first = 0

last = 5

mid = (first +last)/2

 = (0+5)/2

 = 2

Now check if (60 = = LA [2])

Is (60= = LA [2]), NO, Since LA [2] = 37

Now we will find new value of low (index) as

low = mid+1

Therefore, low = 2+1 = 3

mid = (3+5)/2 = 4

Is (60 = = (LA [4]), YES, Since LA [4] = 60

Therefore element found at index 4. The search operation

successfully completes here.

C. Deletion Operation

We can have the following three types of “deletion

operations” in the proposed “Sorted r-Train” analogous to

classical “r-Train” [1, 2].

1. Deletion of the data item from a Coach in the

Sorted r-Train (here deletion operation refers to

replacing the value of the deleted item with “ɛ”).

2. Deletion of the last Coach of Sorted r-Train

3. Deletion of a Coach from between the Two

Coaches

a. Deletion of the data item from a coach (C)

1. Let the element to be deleted is “k”

2. If the coach number of the element “k” is known,

we will directly go to that coach by accessing the

pilot and search for “k” using search technique as

discussed in previous section (Searching

operation).

3. After finding “k” within the coach, we will replace

its value by “ɛ”. And change the status of the

coach as s = s+1 (An important point to note here

is, deletion operation does not have any effect on

the size of the coach.)

4. Sort the larray (LA) (so that all ‘ɛ’ elements comes

at the beginning of the larray)

5. If the coach number of the element “k” is not

known, we will start from the first coach C1 say,

and search for the element “k” using the search

technique discussed in above section (searching

technique)

6. After finding ‘k’ within any coach Ci (for i= 1, 2,

3, n) we will replace its value by “ɛ”.

7. Sort the larray (LA)

8. Change the status of the coach Ci as s= s+1

The sorting of elements after every deletion operation

ensures that all the ‘ɛ’ elements are always present in the

beginning of the larray, this makes the process of

insertion and searching less complex.

b. Deletion of the last Coach of Sorted r-Train

The deletion of a coach “Ci” is possible if and only if it

is an empty coach (i.e all the elements in the coach are

“ɛ” elements, as depicted here under in Fig. 5)

Fig.5. An example of an “Empty Last Coach” of an r-Train

For deleting the last coach Ci, of a Sorted r-Train, we

proceed as follows:

a) Update the address “addi-1” of the coach “Ci-1” by

storing an “invalid address” in it.

b) Delete the “coach (Ci, r)” from the Sorted r-Train

c) Update the pilot.

 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data 33

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Fig.6. (a) An r-Train before deletion operation

Fig.6. (b) An r-Train after deletion operation is performed

It can be observed from the above Fig. 6(a) and Fig.

6(b) that the coach (Ci,Sci) has been deleted.

1) Deletion of a Coach that lies between the Two

Coaches in the Sorted r-Train

For deleting the coach ‘Ci’, of a Sorted r-Train which

is between Ci-1 and Ci+1, we proceed as follows:

a) Update the address “add i-1” of the coach “Ci-1” by

storing the address of “Ci+1” in it.

b) Delete the coach (Ci, r) from the r-Train

c) Update the pilot.

Fig.7. (a) An r-Train before deletion operation

Fig.7. (b) An r-Train after deletion operation

Fig. 7(a) and Fig. 7(b) given above shows the deletion

operation. Here the Coach Ci has been deleted from the r-

train.

V. CONCLUSION

The data structure “r-Train” proposed by R. Biswas [1]

is a dynamic and highly scalable data structure which can

be used for handling big data in an efficient and effective

manner. As mentioned in [29], the “r-Train” data

structured can be very successfully used for processing

the data in parallel for executing various tasks. The

proposed modification “Sorted r-Train” has further

improved the time required for searching an element

stored in the “r-Train” data structure. As the data is being

stored in a sorted manner, we can very effectively apply

binary search technique (which runs in O (log (n)) time in

the worst case) in order to search the data items [30].

Moreover, deletion of any coach is made possible by just

adjusting the address fields of the previous and next

coach of the deleted coach (analogous to Linked list [30,

31]). The proposed approach of Sorted r-Train data

structure can be used to store data generated from IoT

devices as it requires real-time analysis and processing.

With Sorted r-Train, the data storage and retrieval time

can be reduced to a greater extent as compared to the

classical r-Train data structure. With the intricate and

heterogeneous nature of big data, it is imperative to

device new techniques and approaches for effective

handling of these huge datasets. Sorted r-Train is an

attempt towards the same. In future, the application of

sorted r-train data structure for storing big data generated

from IoT devices can be explored in order to perform real

time query processing and analysis.

REFERENCES

[1] Biswas, Ranjit. "“Atrain Distributed System”(ADS): An

Infinitely Scalable Architecture for Processing Big Data

of Any 4Vs." In Computational Intelligence for Big Data

Analysis, pp. 3-54. Springer, Cham, 2015.

[2] Biswas, Ranjit. "Heterogeneous Data Structure “r-

Atrain”." In Global Trends in Intelligent Computing

Research and Development, pp. 338-359. IGI Global,

2014. doi:10.4018/978-1-4666-4936-1.ch012

[3] Biswas, Ranjit. "Introducing Data Structures for Big

Data." In Effective Big Data Management and

Opportunities for Implementation, pp. 25-52. IGI Global,

2016.

[4] Biswas, Ranjit. "Data Structures for Big Data."

34 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

International Journal Computing and Optimization, no. 2,

73-93 (2014).

[5] Biswas, R.,Processing of Heterogeneous Big Data in an

Atrain Distributed System (ADS) Using the

Heterogeneous Data Structure r-Atrain. International

Journal Computing and Optimization, 1(1), pp.17-45,

(2014). doi: http://dx.doi.org/10.12988/ijco.2014.445

[6] Sleator, Daniel Dominic, and Robert Endre Tarjan. "Self-

adjusting binary search trees." Journal of the ACM (JACM)

32, no. 3 (1985): 652-686.

dio:http://dx.doi.org/10.1145/3828.3835

[7] G.M.Velskii & E.M. Landis. An algorithm for the

organization of information. Soviet Mathemtics Doklady

3:1259-1263, 1962.

[8] H. Cai, B. Xu, L. Jiang and A. V. Vasilakos, "IoT-Based

Big Data Storage Systems in Cloud Computing:

Perspectives and Challenges," in IEEE Internet of Things

Journal, vol. 4, no. 1, pp. 75-87, Feb. 2017. doi:

10.1109/JIOT.2016.2619369

[9] Askitis, Nikolas, and Ranjan Sinha. "HAT-trie: a cache-

conscious trie-based data structure for strings." In

Proceedings of the thirtieth Australasian conference on

Computer science-Volume 62, pp. 97-105. Australian

Computer Society, Inc., 2007.

[10] He, Xing, Qian Ai, Robert Caiming Qiu, Wentao Huang,

Longjian Piao, and Haichun Liu. "A big data architecture

design for smart grids based on random matrix theory."

IEEE transactions on smart Grid, 8, no. 2 (2017): 674-

686.

[11] M. Tahmassebpour, "A New Method for Time-Series Big

Data Effective Storage," in IEEE Access, vol. 5, pp.

10694-10699, 2017. doi: 10.1109/ACCESS.2017.2708080

[12] Bertil Schmidt, Andreas Hildebrandt, Next-generation

sequencing: big data meets high performance computing,

Drug Discovery Today, Volume 22, Issue 4, 2017, Pp:

712-717, doi: https://doi.org/10.1016/j.drudis.2017.01.

014.

[13] Sitarski, E.: HATs: Hashed array trees. Dr. Dobb’s

Journal 21(11) (1996),

http://www.ddj.com/architect/184409965?pgno=5

[14] Park, Eunhui, and David M. Mount. "A self-adjusting data

structure for multidimensional point sets." In European

Symposium on Algorithms, pp. 778-789. Springer, Berlin,

Heidelberg, 2012. doi =http://dx.doi.org/10.1007/978-3-

642-33090-2_67

[15] Gu, Min, Xiangping Li, and Yaoyu Cao. "Optical storage

arrays: a perspective for future big data storage." Light:

Science & Applications, 3, no. 5 (2014): e177.

[16] Strohbach M., Daubert J., Ravkin H., Lischka M. Big

Data Storage. In: Cavanillas J., Curry E., Wahlster W.

(eds) New Horizons for a Data-Driven Economy. 2016,

Springer, Cham

[17] Van Doren, James R., and Joseph L. Gray. "An algorithm

for maintaining dynamic AVL trees." In Information

Systems, pp. 161-180. Springer, Boston, MA, 1974.

[18] Berman, Jules J. Principles of big data: preparing,

sharing, and analyzing complex information. Newnes,

2013.

[19] Feinleib, David. Big Data Demystified: How Big Data is

Changing the Way We Live, Love, and Learn. Big Data

Group, 2013.

[20] Needham, J.: Disruptive Possibilities: How Big Data

Changes Everything. O’reilly Publisher, Cambridge (2013)

[21] Simon, P.: Too Big to Ignore: The Business Case for Big

Data. John Wiley & Sons, New Jersey (2013)

[22] Makrufa Sh. Hajirahimova, Aybeniz S. Aliyeva, "About

Big Data Measurement Methodologies and Indicators",

International Journal of Modern Education and Computer

Science(IJMECS), Vol.9, No.10, pp. 1-9, 2017.DOI:

10.5815/ijmecs.2017.10.01

[23] Rasim M. Alguliyev, Rena T. Gasimova, Rahim N.

Abbasl ,"The Obstacles in Big Data Process",

International Journal of Information Technology and

Computer Science(IJITCS), Vol.9, No.4, pp.31-38, 2017.

dio: 10.5815/ijitcs.2017.04.05

[24] Entesar Althagafy, M. Rizwan Jameel Qureshi,"Novel

Cloud Architecture to Decrease Problems Related to Big

Data", International Journal of Computer Network and

Information Security (IJCNIS), Vol.9, No.2, pp.53-60,

2017. doi: 10.5815/ijcnis.2017.02.07

[25] Mai Abdrabo, Mohammed Elmogy, Ghada Eltaweel,

Sherif Barakat,"Enhancing Big Data Value Using

Knowledge Discovery Techniques", International Journal

of Information Technology and Computer

Science(IJITCS), Vol.8, No.8, pp.1-12, 2016. doi:

10.5815/ijitcs.2016.08.01

[26] PankajDeep Kaur, Awal Adesh Monga,"Managing Big

Data: A Step towards Huge Data Security", International

Journal of Wireless and Microwave

Technologies(IJWMT), Vol.6, No.2, pp.10-20, 2016. doi:

10.5815/ijwmt.2016.02.02

[27] Rohit More, R H Goudar,"DataViz Model: A Novel

Approach towards Big Data Analytics and Visualization",

International Journal of Engineering and

Manufacturing(IJEM), Vol.7, No.6, pp.43-49, 2017. doi:

10.5815/ijem.2017.06.04

[28] Liang, Kaitai, Willy Susilo, and Joseph K. Liu. "Privacy-

preserving ciphertext multi-sharing control for big data

storage." IEEE transactions on information forensics and

security, 10.8, (2015): 1578-1589.

[29] Alam, B.: Matrix Multiplication using r-Train Data

Structure. In: AASRI Conference on Parallel and

Distributed Computing Systems, AASRI (Elsevier)

Procedia 5, 189–193 (2013), doi:

10.1016/j.aasri.2013.10.077

[30] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.:

Introduction to Algorithms, 2nd edn. MIT Press and

McGraw-Hill (2001)

[31] Xiong, Qing, Chanle Wu, Jianbing Xing, Libing Wu, and

Huyin Zhang. “A linked-list data structure for advance

reservation admission control.” In Networking and mobile

computing, pp. 901-910. Springer, Berlin, Heidelberg,

2005.

Authors’ Profiles

Mohd Abdul Ahad is working as an

Assistant Professor in the Department of

Computer Science and Engineering, School

of Engineering Sciences and Technology,

Jamia Hamdard, New Delhi, India. He has a

rich experience of 9 years in computer

Science and Engineering. His research

interests include Big Data, IoT, and Distributed Systems. He is

a member of IEEE, ACM, ISTE. He has worked as a review and

editorial member of several International Journals.

http://dx.doi.org/10.12988/ijco.2014.445

 Sorted r-Train: An Improved Dynamic Data Structure for Handling Big Data 35

Copyright © 2018 MECS I.J. Intelligent Systems and Applications, 2018, 11, 27-35

Dr. Ranjit Biswas is working as a Professor

in the Department of Computer Science and

Engineering, School of Engineering

Sciences and Technology, Jamia Hamdard,

New Delhi, India. He has a vast experience

of more than 33 years in computer Science

and Engineering. His research interests

include Fuzzy Systems, Soft Sets, Big Data,

and Distributed Systems.

How to cite this paper: Mohd Abdul Ahad, Ranjit Biswas,

"Sorted r-Train: An Improved Dynamic Data Structure for

Handling Big Data", International Journal of Intelligent Systems

and Applications(IJISA), Vol.10, No.11, pp.27-35, 2018. DOI:

10.5815/ijisa.2018.11.04

